1	Supplementary Information (3 pages)	
2		
3	Additional information on the data calculated for use in the study.	
4		
5	The following information is provided to the article in Environmental Science and	
6	Technology on	
7	Determination of the Internal Chemical Energy of Wastewater	
8	by	
9	E.S. Heidrich*, T.P. Curtis and J. Dolfing	
10	School of Civil Engineering and Geosciences, Newcastle University, Newcastle	
11	upon Tyne NE1 7RU, UK	
12	* Corresponding author phone: +44 (0)191 222 6323, fax: +44 (0)191 222 6502,	
13	email: e.s.heidrich@newcastle.ac.uk.	
14	This document was prepared on 15 th November 2010	
15		
16	Page S-2: TABLE S-1: List of common organic compounds and their derived energy	
17	per gCOD values	
18		
19	Page S-3: S-2 Energy Calculations made from Shizas and Bagley's (3) data compared	
20	to those made in this paper.	

21

22 TABLE S-1: List of common organic compounds and their derived energy per gCOD

- 23 values
- 24

Compound	Formula	ΔH/gCOD
Benzene	C ₆ H ₆	10.2
Linoleic acid	$C_{18}H_{32}O_2$	13.4
Benzoic acid	C ₆ H₅COOH	13.4
Myristic acid	$CH_3(CH_2)_{12}CO_2H$	13.6
Lauric acid	$CH_3(CH_2)_{10}CO_2H$	13.6
Acetic acid	СН₃СООН	13.6
Phenol	C ₆ H₅OH	13.6
Palmitic Acid	CH ₃ (CH ₂) ₁₄ CO ₂ H	13.6
Oleic acid	$CH_3(CH_2)_7CH=CH(CH_2)_7CO_2H$	13.7
Methane	CH ₄	13.9
Ethane	C ₂ H ₆	13.9
Lactic acid	CH₃CH(OH)COOH	14.0
Ethanol	C₂H₅OH	14.3
Glucose	$C_6H_{12}O_6$	14.3
Propene	C ₃ H ₆	14.3
Cyclopropane	C ₃ H ₃	14.5
Ethanal	CH₃CHO	14.6
Ethene	C ₂ H ₄	14.7
Sucrose	$C_{12}H_{22}O_{11}$	14.7
Methanol	CH₃OH	15.1
Chloroethylene	C ₂ H ₃ Cl	15.7
Oxalic acid	(COOH) ₂	15.9
Formic acid	нсоон	15.9
Ethyne	C ₂ H ₂	16.3
Hexachlorobenzene	C ₆ Cl ₆	16.5
Dichloroethylene (1,1)	$C_2H_2Cl_2$	17.1
Dichloroethylene (1,2)	$C_2H_2Cl_2$	17.2
Methanal	нсно	17.8
Trichloroethylene	C ₂ HCl ₃	20.0
Teterachloroethylene	C ₂ Cl ₄	26.0
Chloroform	CHCl₃	29.1
Trichloroacetic acid	CCl₃COOH	30.4

25

26

S-2 Energy Calculations made from Shizas and Bagley's (3) data compared to those
made in this paper.

Shizas and Bagley (3) use a sample of municipal wastewater which prior to drying
contains 431 mg/L COD. This sample is then oven dried to give a total solids
measurement of 1980 mg/L. The dried sample is used in a bomb calorimeter giving
3.2 kJ/g dried weight.

34

35 Calculations derived from this data cited in various papers (5, 7-9, 14):

37 3.2 kJ/g \times 1.98 g/L = 6.3 kJ/L wastewater

38

$$\begin{array}{rcl}
6.3 \text{ kJ/L} \times \frac{1}{0.431 \text{ gCOD/L}} &=& 14.7 \text{ kJ/gCOD} \\
40 \end{array}$$

41 If the exercise is repeated on the data from the present paper using the oven dried
42 samples and the measurement taken for COD prior to drying the results would have
43 been:

44

45 Cramlington

46

 $8.3 \text{ kJ/L} \times \frac{1}{0.718 \text{ gCOD/L}} = 11.6 \text{ kJ/gCOD}$ 48 $49 \quad \text{Hendon}$ 50 $5.6 \text{ kJ/L} \times \frac{1}{0.576 \text{ gCOD/L}} = 9.9 \text{ kJ/gCOD}$ 51 52 $53 \quad \text{This is an underestimation of 60\% and 45\% respectively.}$ 54

S-3