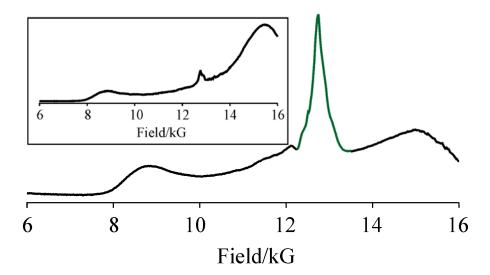
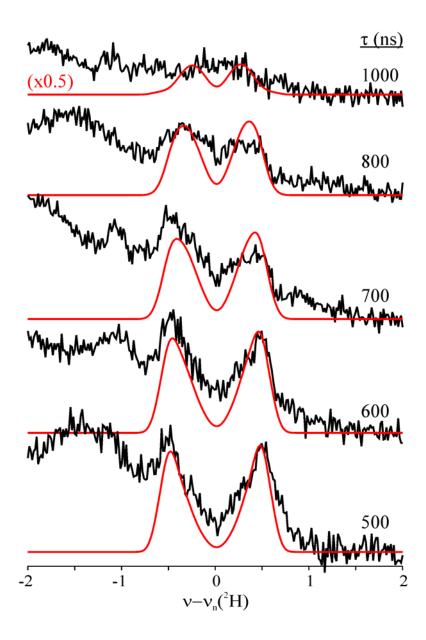
Supplementary Material

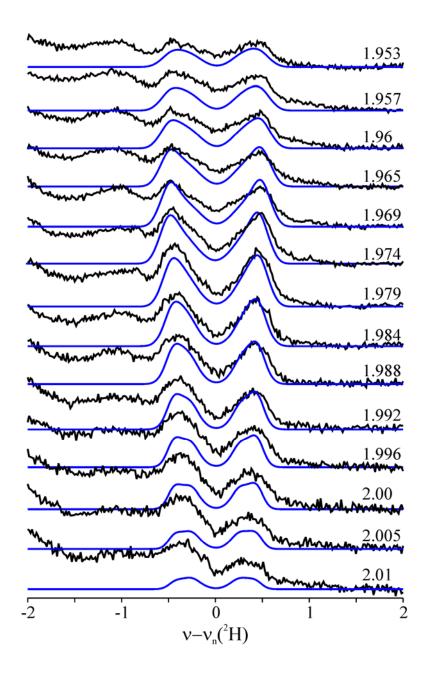
Protonation of the N₂-reduction catalyst [HIPTN₃N]Mo(III) investigated by ENDOR spectroscopy


R. Adam Kinney, † Rebecca L. McNaughton, † Jia Min Chin, ‡ Richard R. Schrock, ‡,* and Brian M. Hoffman †,*

[†]Department of Chemistry, Northwestern University, Evanston, Illinois 60208, [‡]Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139


Contents

- Figure S1. 35 GHz Echo-detected EPR of MoCO and ²HMoCO⁺
- **Figure S2**. Effect of varying tau on the Mims ²H ENDOR response near the maximum EPR response of ²H**Mo**CO⁺


Figure S3. Complete 2D field-frequency pattern of Mims ENDOR spectra from ²H**Mo**CO⁺, with ENDOR simulations.

35 GHz echo-detected EPR of [HIPTN₃N]Mo(CO) (**Mo**CO, black trace, inset) and [HIPTN₃N]Mo(CO) after treatment with [2,4,6-Me₃C₅H₃N]BAr'₄ (Ar' = 2,3-(CF₃)₂C₆H₃), in the absence of reductant (2 H**Mo**CO⁺), green trace; residual **Mo**CO, black trace). Experimental conditions: microwave frequency, 34.984-34.986 GHZ; π = 200 ns; repetition rate, 20-80 ms; τ = 600 ns; temperature, 2 K.

35 GHz Mims 2 H ENDOR spectra measured near the maximum EPR intensity of 2 H**Mo**CO $^+$ (g = 1.969). The value of tau, the time between the first and second pulses in the Mims sequence, is varied from 500 to 1000 ns, which is equivalent to varying the 2 H hyperfine suppression from 2 to 1 MHz (see text). *Experimental conditions*. Microwave frequency, 35.000 GHz; repetition time, 40 ms; $\pi/2 = 50$ ms; $t_{rf} = 30$ µs; temperature, 2 K; and the RF was randomly hopped. *Simulation parameters*. g = [2.010, 1.974, 1.953]; $g_1 = z$; EPR linewidth, 300 MHz; A = [-0.70, -1.15, 1.2] MHz; orientation relative to a_1 (a_2 , a_3) a_4 (a_4) a_5) a_5 (a_5) a_5) a_5 (a_5) a_5 0 a_5 1 MHz; orientation relative to a_5 1 (a_5 2) ENDOR linewidth, 0.15 MHz.

35 GHz Mims 2 H ENDOR field-frequency pattern for 2 H**Mo**CO $^+$. *Experimental conditions*. Microwave frequency, 34.968 GHz; repetition time, 40 ms; $\pi/2 = 50$ ms; $t_{rf} = 30$ µs; $\tau = 600$ ns; temperature, 2 K; and the RF was randomly hopped. *Simulation parameters*. $\mathbf{g} = [2.01, 1.974, 1.953]$; $g_1 = z$; EPR linewidth, 300 MHz; $\tau = 600$ ns; $\mathbf{A} = [-0.70, -1.15, 1.2]$ MHz; orientation relative to \mathbf{g} , (α , β , γ) = (25, 65, 0); $\mathbf{P} = [-0.075, 0.034, 0.041]$ MHz; orientation relative to \mathbf{g} , (α , β , γ) = (0, 55, 0); ENDOR linewidth, 0.15 MHz.