Supporting Information

"Regioselective Cobalt-Catalyzed Alder-ene reaction towards towards Silicon- and BoronFunctionalized Building Blocks"

G. Hilt, F. Erver and K. Harms

Content:

Preparation of alkenes and alkynes S 2
General Procedures A and B S 2
Analytical Data of the Alder-ene products \quad S $2-\mathrm{S} 9$
Analytical Data of the follow-up products S 9-S 13
${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ Spectra \quad S $14-\mathrm{S} 36$

Corresponding author:

Prof. Dr. Gerhard Hilt
Fachbereich Chemie
Philipps-Universität Marburg
Hans-Meerwein-Straße
35043 Marburg
Germany

Hilt@chemie.uni-marburg.de

Preparation of alkynes and alkynes

Commercially unavailable allylsilanes were easily furnished by reacting allylmagnesium chloride with the corresponding chlorosilane. ${ }^{1}$ The propargylsilane was received out of lithiation of 2-heptyne and quenching with the accordant chlorosilane. ${ }^{2}$ A copper-mediated allylation of methyl propiolate with allylbromide gave the eneyneoate in one step ${ }^{3}$ while the alkynylphenone was produced in an alkylation-oxidation sequence commencing with benzaldehyde. ${ }^{4}$

General procedure A for the cobalt-catalyzed Alder-ene reaction with electron-rich alkynes

Anhydrous zinc iodide ($20 \mathrm{~mol} \%$), zinc dust ($20 \mathrm{~mol} \%$) and CoBr_{2} (dppp) ($10 \mathrm{~mol} \%$) were suspended in 1.0 mL dichloromethane under argon atmosphere. Then the terminal alkene (1.0 eq.) and the alkyne (1.5 eq.) were added and the mixture was stirred at room temperature for 16 h or until complete conversion of the starting materials was monitored by GC. The reaction mixture was filtered over a short pad of silica gel and the solvent was removed under vacuum. The residue was then purified by flash column chromatography or bulb-to-bulb-distillation.

General procedure B for the cobalt-catalyzed Alder-ene reaction with electron-poor alkynes

Anhydrous zinc iodide ($40 \mathrm{~mol} \%$), zinc dust ($40 \mathrm{~mol} \%$) and CoBr_{2} (dppe) ($20 \mathrm{~mol} \%$) were suspended in 1.0 mL dichloromethane under argon atmosphere. Then the terminal alkene (1.0 eq.) was added. The alkyne (3.0 eq.) was added to the reaction mixture over 7 h in seven portions. Then the mixture was stirred at room temperature for another 9 h or until complete conversion of the starting materials was monitored by GC. The reaction mixture was filtered over a short pad of silica gel and the solvent was removed under vacuum. The residue was then purified by flash column chromatography or bulb-to-bulb-distillation.

((2E,5E)-5-Benzylidenenon-2-enyl)trimethylsilane (3a)

According to the general procedure A the catalyst was prepared from zinc iodide (320 mg , 1.0 mmol), zinc dust ($65 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{CoBr}_{2}(\mathrm{dppp})(315 \mathrm{mg}, 0.5 \mathrm{mmol})$ in 5.0 mL dichloromethane. Then but-3-enyltrimethylsilane ($0.88 \mathrm{~mL}, 5.0 \mathrm{mmol}$) and hex-1ynylbenzene ($1.32 \mathrm{~mL}, 7.5 \mathrm{mmol}$) were added to the reaction mixture which subsequently was stirred for 16 h . After work up and purification by flash column chromatography (silica gel, pentane) the desired product $\mathbf{3 a}$ was obtained as colorless oil ($1.081 \mathrm{~g}, 3.77 \mathrm{mmol}, 75 \%$).
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{~ M H z}\right): \delta=7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.29-6.27(\mathrm{~s}, 1 \mathrm{H})$, $5.56-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.36-5.27(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.44$ $(\mathrm{m}, 4 \mathrm{H}), 1.38-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{7 5} \mathbf{~ M H z}\right): \delta=143.2,138.7,128.6,128.4,128.0,126.4,125.8,125.2,40.8$, 30.6, 30.4, 22.9, 22.8, 14.0, -1.9.

IR (film, $\mathbf{c m}^{-1}$): 2955, 2927, 2872, 1656, 1599, 1493, 1466, 1444, 1383, 1248, 1155, 967, 852, 747, 698.
MS (EI): m/z = 286 ($\mathrm{M}^{+}, 10$), 271 (1), 229 (9), 212 (7), 184 (3), 169 (2), 161 (2), 155 (16), 141 (4), 135 (4), 129 (8), 115 (10), 104 (1), 91 (12), 73 (100).

[^0]HRMS (EI): calculated for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{Si}: \mathrm{m} / \mathrm{z}=286.2117$; found $\mathrm{m} / \mathrm{z}=286.2104$.

Benzyl((1E,4E)-4-benzylideneoct-1-enyl)dimethylsilane (3b)

According to the general procedure A the catalyst was prepared from zinc iodide (64 mg , 0.2 mmol), zinc dust ($13 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\mathrm{CoBr}_{2}(\mathrm{dppp})(63 \mathrm{mg}, 0.1 \mathrm{mmol})$ in 1.0 mL dichloromethane. Then allyl(benzyl)dimethylsilane ($190 \mathrm{mg}, 1.0 \mathrm{mmol}$) and hex-1ynylbenzene $(0.26 \mathrm{~mL}, 1.5 \mathrm{mmol})$ were added to the reaction mixture which subsequently was stirred for 16 h . After work up and purification by flash column chromatography (silica gel, pentane) the desired product 3b was obtained as yellow oil ($241 \mathrm{mg}, 0.69 \mathrm{mmol}, 69 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{~ M H z}\right): \delta=7.36-7.20(\mathrm{~m}, 7 \mathrm{H}), 7.14-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 6.03-$ $5.95(\mathrm{~m}, 1 \mathrm{H}), 5.84-5.70(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 2 \mathrm{H}), 1.67-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.59-$ $1.49(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, 75 \mathbf{~ M H z}\right): \delta=141.1,139.9,138.3,133.2,128.7,128.2,128.1,127.5$, 126.1, 126.0, 124.1, 31.6, 27.3, 25.4, 23.1, 21.9, 14.0, -3.70.

IR (film, $\mathbf{c m}^{-1}$): 3058, 3022, 2955, 2927, 2871, 1599, 1493, 1452, 1248, 1207, 1155, 1031, 962, 834, 751, 698, 524, 474.

MS (EI): m/z = 348 ($\mathrm{M}^{+}, 12$), 257 (7), 149 (100), 135 (4), 121 (37), 105 (2), 91 (10), 77 (1), 59 (4).
HRMS (EI): calculated for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{Si}: \mathrm{m} / \mathrm{z}=348.2273$; found $\mathrm{m} / \mathrm{z}=348.2284$.

($(1 E, 4 E)$-4-Benzylidenehex-1-enyl)diisopropylsilane (3c)

According to the general procedure A the catalyst was prepared from zinc iodide (64 mg , 0.2 mmol), zinc dust ($13 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\mathrm{CoBr}_{2}(\mathrm{dppp})(63 \mathrm{mg}, 0.1 \mathrm{mmol})$ in 1.0 mL dichloromethane. Then allyldiisopropylsilane ($156 \mathrm{mg}, 1.0 \mathrm{mmol}$) and but-1-ynylbenzene ($0.22 \mathrm{~mL}, 1.5 \mathrm{mmol}$) were added to the reaction mixture which subsequently was stirred for 16 h . After work up and purification by flash column chromatography (silica gel, pentane) the desired product 3 c was obtained as colorless oil ($217 \mathrm{mg}, 0.76 \mathrm{mmol}, 76 \%$).
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{~ M H z}\right): \delta=7.38-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 6.27$ (td, $J=6.3,18.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{tdd}, J=1.5,4.6,18.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.05$ (d, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~m}, 14 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{7 5} \mathbf{~ M H z}\right): \delta=149.0,142.9,138.4,128.5,128.1,126.0,125.8,124.3,44.7$, $23.9,18.8,18.5,12.9,10.6$.
IR (film, $\mathbf{c m}^{-1}$): 3023, 2939, 2889, 2863, 2098, 1608, 1493, 1461, 1383, 1266, 1070, 996, 916, 881, 789, 760, 740, 697.
MS (EI): $\mathrm{m} / \mathrm{z}=286\left(\mathrm{M}^{+}, 29\right), 243$ (100), 230 (4), 215 (18), 201 (29), 187 (28), 173 (34), 159 (36), 145 (43), 135 (19), 121 (44), 111 (30), 91 (29), 73 (16), 59 (25).

HRMS (EI): calculated for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{Si}: \mathrm{m} / \mathrm{z}=286.2117$; found $\mathrm{m} / \mathrm{z}=286.2119$.

((5E)-3-Butylnona-2,5-dienyl)diisopropylsilane (3d)

According to the general procedure A the catalyst was prepared from zinc iodide (32 mg , 0.10 mmol), zinc dust ($7 \mathrm{mg}, 0.10 \mathrm{mmol}$) and $\mathrm{CoBr}_{2}(\mathrm{dppp})(32 \mathrm{mg}, 0.05 \mathrm{mmol})$ in 0.5 mL dichloromethane. Then hex-1-ene ($0.065 \mathrm{~mL}, 0.50 \mathrm{mmol}$) and hept-2-ynyldiisopropylsilane
($158 \mathrm{mg}, 0.75 \mathrm{mmol}$) were added to the reaction mixture which subsequently was stirred for 16 h . After work up and purification by flash column chromatography (silica gel, pentane) the desired product 3d was obtained as colorless oil ($136 \mathrm{mg}, 0.46 \mathrm{mmol}, 92 \%$) containing the $(2 E)$ - and the (2Z)-isomer in a $50: 50$ ratio which was determined with the singlet at 3.54 and 3.42 ppm . The spectroscopic data are given for both isomers.
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{~ M H z}\right): \delta=5.48-5.32(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{t}, J=9.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.02(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 0.5 \mathrm{H}$), $3.54(\mathrm{bs}, 0.5 \mathrm{H}), 3.42(\mathrm{bs}, 0.5 \mathrm{H}), 2.71-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.96(\mathrm{~m}, 4 \mathrm{H}), 1.57-$ $1.50(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.25(\mathrm{~m}, 6 \mathrm{H}), 1.04-1.02(\mathrm{~m}, 12 \mathrm{H}), 0.94-0.86(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{7 5} \mathbf{~ M H z}\right): \delta=136.6,136.3,135.8,131.8,130.4,128.9,128.8,128.3$, $123.2,120.8,120.6,42.2,40.4,34.8,34.7,34.6,32.2,30.3,29.8,29.5,29.2,28.1,23.0,22.9$, $22.8,22.7,22.5,19.0,18.9,18.7,14.1,13.8,13.7,12.8,11.0,10.7,10.0,9.9$.
IR (film, $\mathbf{c m}^{-1}$): 2956, 2932, 2891, 2864, 2100, 1653, 1463, 1379, 1366, 1243, 1159, 1070, 1003, 969, 918, 881, 850, 802, 707, 649, 431.
MS (EI): m/z = 294 (M^{+}, 7), 251 (71), 223 (13), 209 (7), 195 (25), 181 (46), 167 (28), 153
(35), 141 (44), 125 (49), 111 (29), 99 (31), 87 (38), 73 (63), 59 (100).

HRMS (EI): calculated for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{Si}: \mathrm{m} / \mathrm{z}=294.2743$; found $\mathrm{m} / \mathrm{z}=294.2743$.

((2E)-5-((Diisopropylsilyl)methylene)non-2-enyl)trimethylsilane (3e)

According to the general procedure A the catalyst was prepared from zinc iodide (26 mg , $0.08 \mathrm{mmol})$, zinc dust ($5 \mathrm{mg}, 0.08 \mathrm{mmol}$) and $\mathrm{CoBr}_{2}(\mathrm{dppp})(25 \mathrm{mg}, 0.04 \mathrm{mmol})$ in 0.4 mL dichloromethane. Then but-3-enyltrimethylsilane $(0.07 \mathrm{~mL}, 1.0 \mathrm{mmol})$ and hept-2ynyldiisopropylsilane ($100 \mathrm{mg}, 1.2 \mathrm{mmol}$) were added to the reaction mixture which subsequently was stirred for 16 h . After work up and purification by flash column chromatography (silica gel, pentane) the desired product $\mathbf{3 e}$ was obtained as colorless oil (72 $\mathrm{mg}, 0.21 \mathrm{mmol}, 53 \%$) containing the ($5 E$)- and the ($5 Z$)-isomer in a $58: 42$ ratio which was determined with the singlet at 3.55 and 3.43 ppm . The spectroscopic data are given for both isomers.
${ }^{1}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{~ M H z}\right): \delta=5.48-5.31(\mathrm{~m}, 1 \mathrm{H}), 5.28-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{bs}, 0.4 \mathrm{H}), 3.43$ (bs, 0.6H), 2.72-2.60 (m, 2H), 2.06-1.93 (m, 2H), 1.60-1.48 (m, 2H), 1.47-1.39 (m, 2H), 1.39$1.24(\mathrm{~m}, 4 \mathrm{H}), 1.12-0.99(\mathrm{~m}, 14 \mathrm{H}), 0.95-0.86(\mathrm{~m}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, 75 \mathbf{~ M H z}\right): \delta=136.9,136.1,127.6,127.4,127.2,127.1,123.0,120.6,42.4$, 40.6, 32.2, 30.2, 29.4, 28.1, 23.0, 22.7, 22.6, 22.5, 19.0, 18.9, 18.8, 14.1, 14.0, 12.8, 11.0, 10.7, 10.0, -1.9.

IR (film, $\mathbf{c m}^{\mathbf{- 1}}$): 3012, 2955, 2891, 2864, 2100, 1659, 1462, 1383, 1248, 1156, 1064, 1003, 966, 918, 880, 850, 802, 696.
MS (EI): m/z = 338 (${ }^{+}$, 5), 295 (10), 267 (4), 221 (7), 211 (7), 195 (30), 181 (14), 167 (4), 153 (9), 139 (5), 129 (5), 111 (4), 101 (8), 87 (11), 73 (100), 59 (35).
HRMS (EI): calculated for $\mathrm{C}_{20} \mathrm{H}_{42} \mathrm{Si}_{2}: \mathrm{m} / \mathrm{z}=338.2825$; found $\mathrm{m} / \mathrm{z}=338.2832$.

2-((4E)-4-Benzylideneoct-1-enyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3f)

According to the general procedure A the catalyst was prepared from zinc iodide (638 mg , 2.0 mmol), zinc dust ($131 \mathrm{mg}, 2.0 \mathrm{mmol}$) and $\mathrm{CoBr}_{2}(\mathrm{dppp})(631 \mathrm{mg}, 1.0 \mathrm{mmol})$ in 5.0 mL dichloromethane. Then 2-allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($0.87 \mathrm{~mL}, 5.0 \mathrm{mmol}$) and hex-1-ynylbenzene $(1.32 \mathrm{~mL}, 7.5 \mathrm{mmol})$ were added to the reaction mixture which subsequently was stirred for 16 h . After work up and purification by bulb-to-bulb-distillation
($0.5 \mathrm{mbar}, 170{ }^{\circ} \mathrm{C}$) the desired product $\mathbf{3 f}$ was obtained as yellow oil $(1.209 \mathrm{~g}, 3.70 \mathrm{mmol}$, 74%) containing the ($1 Z$)- and the ($1 E$)-isomer in a $89: 11$ ratio which was determined with the dublet at 3.30 and 3.01 ppm . The boron-functionalized carbon atom could not be detected in ${ }^{13} \mathrm{C}$ NMR.
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{~ M H z}\right): \delta=7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.55-6.44(\mathrm{~m}, 1 \mathrm{H})$, $6.30(\mathrm{~s}, 1 \mathrm{H}), 5.50-5.44(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.25-1.19(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.46(\mathrm{~m}$, $2 \mathrm{H}), 1.36-1.22(\mathrm{~m}, 14 \mathrm{H}), 0.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{7 5} \mathbf{~ M H z}\right): \delta=152.6,142.4,141.0,138.6,128.6,128.0,126.8,126.0$, 125.9, 82.9, 40.3, 30.6, 30.3, 24.9, 24.8, 22.8, 14.0.
${ }^{11} \mathbf{B}$ NMR ($\left.\mathbf{C D C l}_{\mathbf{3}}, \mathbf{1 2 8} \mathbf{~ M H z}\right): \delta=29.54$.
IR (film, $\mathbf{c m}^{-1}$): 2978, 2958, 2931, 2871, 1625, 1599, 1435, 1420, 1371, 1326, 1260, 1145, 1110, 1007, 968, 847, 748, 700.

MS (EI): m/z = 326 ($\mathrm{M}^{+}, 100$), 311 (7), 282 (11), 269 (15), 242 (18), 226 (76), 211 (9), 198 (47), 183 (73), 169 (81), 155 (79), 141 (44), 129 (71), 115 (60), 101 (69), 91 (88).

HRMS (EI): calculated for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{BO}_{2}: \mathrm{m} / \mathrm{z}=326.2417$; found $\mathrm{m} / \mathrm{z}=326.2412$.

4,4,5,5-Tetramethyl-2-((4E)-4-methyl-5-phenylpenta-1,4-dienyl)-1,3,2-dioxaborolane (3g)

According to the general procedure A the catalyst was prepared from zinc iodide (638 mg , 2.0 mmol), zinc dust ($131 \mathrm{mg}, 2.0 \mathrm{mmol}$) and $\mathrm{CoBr}_{2}(\mathrm{dppp})(631 \mathrm{mg}, 1.0 \mathrm{mmol})$ in 5.0 mL dichloromethane. Then 2-allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($0.87 \mathrm{~mL}, 5.0 \mathrm{mmol}$) and prop-1-ynylbenzene ($1.26 \mathrm{~mL}, 10.0 \mathrm{mmol}$) were added to the reaction mixture which subsequently was stirred for 16 h . After work up and purification by bulb-to-bulb-distillation ($0.5 \mathrm{mbar}, 140^{\circ} \mathrm{C}$) the desired product 3 g was obtained as yellow oil ($853 \mathrm{mg}, 3.00 \mathrm{mmol}$, 60%) containing the ($1 Z$)- and the ($1 E$)-isomer in a $93: 7$ ratio which was determined with the dublet at 3.29 and 3.00 ppm . The boron-functionalized carbon atom could not be detected in ${ }^{13} \mathrm{C}$ NMR.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{~ M H z}\right): \delta=7.35-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 1 \mathrm{H})$, $6.56-6.45(\mathrm{~m}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 5.48(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~s}$, $3 \mathrm{H}), 1.29(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{7 5} \mathbf{~ M H z}\right): \delta=151.9,138.6,137.7,128.8,128.0,125.9,125.7,82.9,43.3$, 24.9, 24.8, 17.7.
${ }^{11} \mathbf{B}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 2 8} \mathbf{~ M H z}\right): \delta=29.62$.
IR (film, $\mathbf{c m}^{-1}$): 2979, 2934, 1625, 1419, 1371, 1326, 1260, 1215, 1145, 1110, 968, 879, 846, 766, 742, 700.

MS (EI): m/z = $284\left(\mathrm{M}^{+}, 33\right), 269$ (4), 240 (12), 227 (7), 211 (2), 193 (7), 184 (100), 169 (40), 156 (67), 143 (47), 128 (42), 115 (44), 101 (47), 91 (39), 80 (30).

HRMS (EI): calculated for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{BO}_{2}: \mathrm{m} / \mathrm{z}=284.1948$; found $\mathrm{m} / \mathrm{z}=284.1940$.

(2E, 5Z)-Ethyl 3-methyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexa-2,5dienoate (3h)

According to the general procedure B the catalyst was prepared from zinc iodide (128 mg , 0.4 mmol), zinc dust ($26 \mathrm{mg}, 0.4 \mathrm{mmol}$) and CoBr_{2} (dppe) ($126 \mathrm{mg}, 0.2 \mathrm{mmol}$) in 1.0 mL dichloromethane. Then 2-allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($0.19 \mathrm{~mL}, 1.0 \mathrm{mmol}$)
and ethyl but-2-ynoate ($0.35 \mathrm{~mL}, 3.0 \mathrm{mmol}$) were added to the reaction mixture which subsequently was stirred for 16 h . After work up and purification by bulb-to-bulb-distillation $\left(0.5 \mathrm{mbar}, 120^{\circ} \mathrm{C}\right)$ the desired product 3 h was obtained as yellow oil $(185 \mathrm{mg}, 0.66 \mathrm{mmol}$, 66%). The boron-functionalized carbon atom could not be detected in ${ }^{13} \mathrm{C}$ NMR.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{~ M H z}\right): \delta=6.42-6.31(\mathrm{~m}, 1 \mathrm{H}), 5.70-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.49(\mathrm{dt}, J=1.2$, $13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=8.6$ $\mathrm{Hz}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{7 5} \mathbf{~ M H z}\right): \delta=166.8,158.3,149.3,116.3,83.0,59.4,43.2,24.8,18.7$, 14.3.
${ }^{11} \mathbf{B}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{1 2 8} \mathbf{~ M H z}\right): \delta=29.52$.
IR (film, $\mathbf{c m}^{-1}$): 2980, 2935, 1717, 1650, 1625, 1419, 1380, 1370, 1327, 1261, 1217, 1143, 1054, 968, 879, 846, 751, 677.

MS (EI): m/z = 280 (${ }^{+}$, 2), 265 (2), 234 (7), 219 (4), 206 (6), 193 (2), 180 (45), 164 (16), 151 (66), 136 (48), 121 (6), 107 (100), 91 (16), 79 (54), 67 (13).

HRMS (EI): calculated for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{BO}_{4}: \mathrm{m} / \mathrm{z}=280.1846$; found $\mathrm{m} / \mathrm{z}=280.1845$.

(2E,5E)-Ethyl 3-methyl-7-(trimethylsilyl)hepta-2,5-dienoate (3i)

According to the general procedure B the catalyst was prepared from zinc iodide (640 mg , $2.0 \mathrm{mmol})$, zinc dust ($130 \mathrm{mg}, 2.0 \mathrm{mmol}$) and CoBr_{2} (dppe) $(617 \mathrm{mg}, 1.0 \mathrm{mmol})$ in 5.0 mL dichloromethane. Then but-3-enyltrimethylsilane ($0.88 \mathrm{~mL}, 5.0 \mathrm{mmol}$) and ethyl but-2-ynoate $(1.74 \mathrm{~mL}, 15.0 \mathrm{mmol})$ were added to the reaction mixture which subsequently was stirred for 16 h . After work up and purification by flash column chromatography (silica gel, pentane/ diethyl ether 10:1) the desired product 3i was obtained as colorless oil ($966 \mathrm{mg}, 4.02 \mathrm{mmol}$, 80\%).
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{M H z}\right): \delta=5.69(\mathrm{~s}, 1 \mathrm{H}), 5.63-5.53(\mathrm{~m}, 1 \mathrm{H}), 5.32-5.23(\mathrm{~m}, 1 \mathrm{H}), 4.14$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, 75 \mathrm{MHz}\right): \delta=166.9,158.9,128.8,122.4,115.6,59.4,38.1,19.0,18.6$, 14.3, -1.8.

IR (film, $\mathbf{c m}^{-1}$): 3013, 2980, 2955, 1718, 1651, 1428, 1384, 1367, 1350, 1283, 1249, 1218, 1143, 1097, 1046, 944, 855, 724, 701.
MS (EI): m/z = $240\left(\mathrm{M}^{+}, 3\right), 225$ (4), 195 (16), 181 (3), 151 (6), 122 (18), 117 (4), 107 (12), 94 (19), 79 (34), 73 (100).

HRMS (EI): calculated for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}: \mathrm{m} / \mathrm{z}=240.1546$; found $\mathrm{m} / \mathrm{z}=240.1546$.

(2E,5E)-Ethyl 6-(benzyldimethylsilyl)-3-methylhexa-2,5-dienoate ($\mathbf{3} \mathbf{j}$)

According to the general procedure B the catalyst was prepared from zinc iodide (638 mg , 2.0 mmol), zinc dust ($131 \mathrm{mg}, 2.0 \mathrm{mmol}$) and CoBr_{2} (dppe) ($617 \mathrm{mg}, 1.0 \mathrm{mmol}$) in 5.0 mL dichloromethane. Then allyl(benzyl)dimethylsilane ($952 \mathrm{mg}, 5.0 \mathrm{mmol}$) and ethyl but-2ynoate ($1.74 \mathrm{~mL}, 15.0 \mathrm{mmol}$) were added to the reaction mixture which subsequently was stirred for 16 h . After work up and purification by flash column chromatography (silica gel, pentane/diethyl ether $10: 1$) the desired product $\mathbf{3 j}$ was obtained as colorless oil ($1.205 \mathrm{~g}, 3.98$ mmol, 80%).
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{~ M H z}\right): \delta=7.21(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.29(\mathrm{ddd}, J=7.2,7.4,14.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.69-5.63(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 2.81(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, 75 \mathbf{~ M H z}\right): \delta=166.7,157.8,144.6,139.7,130.5,128.1,124.1,116.4,59.6$, 44.0, 26.6, 19.0, 14.3, -1.7.

IR (film, $\mathbf{c m}^{-1}$): 3060, 3024, 2959, 1718, 1651, 1601, 1494, 1451, 1383, 1282, 1250, 1218, 1145, 1053, 835, 795, 764, 699.
MS (EI): m/z = $302\left(\mathrm{M}^{+}, 1\right), 257$ (7), 211 (15), 193 (6), 183 (3), 165 (100), 149 (17), 135 (6), 121 (15), 103 (50), 91 (28), 75 (43), 59 (11).

HRMS (EI): calculated for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}: \mathrm{m} / \mathrm{z}=302.1702$; found $\mathrm{m} / \mathrm{z}=302.1714$.

(2E)-Ethyl 6-(diisopropylsilyl)-3-methylhexa-2,5-dienoate (3I)

According to the general procedure B the catalyst was prepared from zinc iodide (638 mg , 2.0 mmol), zinc dust ($131 \mathrm{mg}, 2.0 \mathrm{mmol}$) and CoBr_{2} (dppe) ($617 \mathrm{mg}, 1.0 \mathrm{mmol}$) in 5.0 mL dichloromethane. Then allyldiisopropylsilane ($782 \mathrm{mg}, 5.0 \mathrm{mmol}$) and ethyl but-2-ynoate $(1.74 \mathrm{~mL}, 15.0 \mathrm{mmol})$ were added to the reaction mixture which subsequently was stirred for 16 h . After work up and purification by flash column chromatography (silica gel, pentane/diethyl ether 10:1) the desired product 31 was obtained as colorless oil ($873 \mathrm{mg}, 3.25$ $\mathrm{mmol}, 65 \%$) containing the ($5 E$)- and the ($5 Z$)-isomer in a $80: 20$ ratio which was determined with the dublet at 3.04 and 2.95 ppm .
Spectroscopic data for the major ($5 E$)-isomer:
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{~ M H z}\right): \delta=6.45(\mathrm{~m}, 1 \mathrm{H}), 5.70-5.66(\mathrm{~m}, 2 \mathrm{H}), 4.14(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, 7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.02-1.00(\mathrm{~m}$, 14H).
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{7 5} \mathbf{~ M H z}\right): \delta=166.8,158.0,146.3,125.4,116.3,59.5,44.0,19.0,18.8$, 18.5, 14.3, 10.8 .

IR (film, $\mathbf{c m}^{-1}$): 2941, 2891, 2864, 2103, 1719, 1651, 1601, 1462, 1383, 1218, 1145, 1051, 1001, 881, 803, 710, 693, 655.

MS (EI): m/z = $268\left(\mathrm{M}^{+}, 1\right), 225(100), 197$ (52), 179 (43), 167 (22), 151 (74), 137 (15), 123 (14), 109 (44), 89 (32), 77 (30), 61 (34).

HRMS (EI): calculated for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}: \mathrm{m} / \mathrm{z}=268.1859$; found $\mathrm{m} / \mathrm{z}=268.1842$.

(2E,5E)-Methyl 3-allyl-7-(trimethylsilyl)hepta-2,5-dienoate (3m)

According to the general procedure B the catalyst was prepared from zinc iodide (64 mg , 0.2 mmol), zinc dust ($13 \mathrm{mg}, 0.2 \mathrm{mmol}$) and CoBr_{2} (dppe) ($63 \mathrm{mg}, 0.1 \mathrm{mmol}$) in 0.5 mL dichloromethane. Then but-3-enyltrimethylsilane ($0.09 \mathrm{~mL}, 0.5 \mathrm{mmol}$) and methyl hex-5-en-2-ynoate ($186 \mathrm{mg}, 1.5 \mathrm{mmol}$) were added to the reaction mixture which subsequently was stirred for 16 h . After work up and purification by flash column chromatography (silica gel, pentane/diethyl ether 20:1) the desired product $\mathbf{3 m}$ was obtained as colorless oil ($76 \mathrm{mg}, 0.30$ mmol, 60\%).

[^1]${ }^{13} \mathbf{C}$ NMR (CDCl $\left.{ }_{3}, 75 \mathrm{MHz}\right): \delta=166.9,160.2,135.1,129.1,122.2,116.4,115.7,50.9,36.8$, 35.1, 22.3, 18.5, 14.0, -1.8.

IR (film, $\mathbf{c m}^{\mathbf{- 1}}$): 3079, 3013, 2953, 2900, 1722, 1651, 1634, 1434, 1367, 1249, 1181, 1144, 1031, 959, 914, 856, 725, 701.
MS (EI): $\mathrm{m} / \mathrm{z}=252\left(\mathrm{M}^{+}, 1\right), 237$ (1), 221 (3), 211 (2), 179 (1), 163 (5), 148 (5), 133 (10), 120 (10), 107 (32), 91 (15), 73 (100), 59 (11).

HRMS (EI): calculated for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}: \mathrm{m} / \mathrm{z}=252.1546$; found $\mathrm{m} / \mathrm{z}=252.1550$.

(2E,5E)-Methyl 3-allyl-6-(benzyldimethylsilyl)hexa-2,5-dienoate (3n)

According to the general procedure B the catalyst was prepared from zinc iodide (64 mg , 0.2 mmol), zinc dust ($13 \mathrm{mg}, 0.2 \mathrm{mmol}$) and CoBr_{2} (dppe) ($63 \mathrm{mg}, 0.1 \mathrm{mmol}$) in 0.5 mL dichloromethane. Then allyl(benzyl)dimethylsilane ($95 \mathrm{mg}, 0.5 \mathrm{mmol}$) and methyl hex-5-en-2-ynoate ($186 \mathrm{mg}, 1.5 \mathrm{mmol}$) were added to the reaction mixture which subsequently was stirred for 16 h . After work up and purification by flash column chromatography (silica gel, pentane/diethyl ether 10:1) the desired product $\mathbf{3 n}$ was obtained as colorless oil ($67 \mathrm{mg}, 0.21$ mmol, 43\%).
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{~ M H z}\right): \delta=7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.03-6.97(\mathrm{~m}, 2 \mathrm{H})$, 6.34-6.24 (m, 1H), 5.83-5.73 (m, 1H), 5.71-5.65 (m, 2H), 5.12-5.03 (m, 2H), 3.70 (s, 3H), $3.36(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 2 \mathrm{H}), 0.10(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{7 5} \mathbf{~ M H z}\right): \delta=166.6,159.2,144.3,139.7,135.9,134.7,130.8,128.2$, 128.1, 124.1, 116.7, 116.3, 50.9, 41.0, 37.0, 26.6, -1.8.

IR (film, $\mathbf{c m}^{-1}$): 3080, 3024, 2951, 2897, 1720, 1650, 1633, 1602, 1493, 1434, 1372, 1250, 1195, 1143, 1030, 916, 834, 699.
MS (EI): m/z = 314 ($\mathrm{M}^{+}, 1$), 283 (1), 223 (9), 191 (36), 175 (4), 163 (14), 149 (21), 135 (7), 121 (28), 105 (8), 89 (100), 75 (33), 59 (39).
HRMS (EI): calculated for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}: \mathrm{m} / \mathrm{z}=314.1702$; found $\mathrm{m} / \mathrm{z}=314.1721$.

(2E)-Methyl 3-allyl-6-(diisopropylsilyl)hexa-2,5-dienoate (3o)

According to the general procedure B the catalyst was prepared from zinc iodide (64 mg , 0.2 mmol), zinc dust ($13 \mathrm{mg}, 0.2 \mathrm{mmol}$) and CoBr_{2} (dppe) ($63 \mathrm{mg}, 0.1 \mathrm{mmol}$) in 0.5 mL dichloromethane. Then allyldiisopropylsilane ($78 \mathrm{mg}, 0.5 \mathrm{mmol}$) and methyl hex-5-en-2ynoate ($186 \mathrm{mg}, 1.5 \mathrm{mmol}$) were added to the reaction mixture which subsequently was stirred for 16 h . After work up and purification by flash column chromatography (silica gel, pentane/diethyl ether 10:1) the desired product $\mathbf{3 o}$ was obtained as colorless oil ($78 \mathrm{mg}, 0.28$ $\mathrm{mmol}, 56 \%$) containing the ($5 E$)- and the ($5 Z$)-isomer in a $58: 42$ ratio which was determined with the dublet at 3.07 and 2.99 ppm . The spectroscopic data are given for both isomers.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{~ M H z}\right): \delta=6.49-6.40(\mathrm{~m}, 0.6 \mathrm{H}), 6.16-6.06(\mathrm{~m}, 0.4 \mathrm{H}), 5.90-5.75(\mathrm{~m}$, $1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 5.69-5.61(\mathrm{~m}, 1 \mathrm{H}), 5.15-4.98(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 0.4 \mathrm{H}), 3.69(\mathrm{~s}$, $3 \mathrm{H}), 3.60-3.57(\mathrm{~m}, 0.6 \mathrm{H}), 3.40(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1.2 \mathrm{H}), 2.99(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 0.8 \mathrm{H}), 1.00(\mathrm{~m}, 14 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{7 5} \mathbf{~ M H z}\right): \delta=166.7,159.5,158.8,146.2,146.0,136.1,135.7,134.8$, 134.7, 130.9, 126.7, 125.6, 116.8, 116.7, 116.6, 116.4, 115.8, 115.7, 50.9, 45.3, 41.1, 36.8, $36.4,32.0,18.9,18.8,18.6,18.5,18.4,16.6,10.8,10.6$.

IR (film, cm $^{-1}$): 3079, 2944, 2891, 2864, 2103, 1722, 1650, 1634, 1605, 1462, 1434, 1368, 1249, 1194, 1144, 999, 881, 803.

MS (EI): m/z = 280 ($\mathrm{M}^{+}, 1$), 265 (1), 249 (1), 237 (19), 223 (1), 205 (18), 177 (28), 167 (86), 149 (33), 135 (33), 115 (24), 103 (19), 91 (100), 75 (78), 59 (60).

HRMS (EI): calculated for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}: \mathrm{m} / \mathrm{z}=280.1859$; found $\mathrm{m} / \mathrm{z}=280.1851$.

(5E)-3-Methyl-1-phenyl-7-(trimethylsilyl)hepta-2,5-dien-1-one (3p)

According to the general procedure B the catalyst was prepared from zinc iodide (64 mg , 0.2 mmol), zinc dust ($13 \mathrm{mg}, 0.2 \mathrm{mmol}$) and CoBr_{2} (dppe) ($63 \mathrm{mg}, 0.1 \mathrm{mmol}$) in 0.5 mL dichloromethane. Then but-3-enyltrimethylsilane ($0.09 \mathrm{~mL}, 0.5 \mathrm{mmol}$) and 1-phenylbut-2-yn1 -one ($144 \mathrm{mg}, 2.0 \mathrm{mmol}$) were added to the reaction mixture which subsequently was stirred for 16 h . After work up and purification by flash column chromatography (silica gel, pentane/ diethyl ether $10: 1$) the desired product $\mathbf{3 p}$ was obtained as yellow oil ($64 \mathrm{mg}, 0.23 \mathrm{mmol}$, 47%) containing the ($2 E$)- and the ($2 Z$)-isomer in a $80: 20$ ratio which was determined with the singlet at 2.20 and 2.17 ppm .

Spectroscopic data for the major ($2 E$)-isomer:
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{~ M H z}\right): \delta=7.95-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.41(\mathrm{~m}, 3 \mathrm{H}), 6.78-6.76(\mathrm{~m}, 1 \mathrm{H})$, $5.71-5.60(\mathrm{~m}, 1 \mathrm{H}), 5.42-5.33(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 0.03(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{7 5} \mathbf{~ M H z}\right): \delta=191.8,158.9,139.3,132.2,129.0,128.4,128.2,122.5$, 120.6, 38.6, 20.1, 18.6, -1.7.

IR (film, $\mathbf{c m}^{-1}$): 3391, 3013, 2954, 1662, 1612, 1579, 1448, 1421, 1387, 1361, 1247, 1155, 1050, 1003, 857, 774, 701, 660.
MS (EI): m/z = 272 ($\mathrm{M}^{+}, 3$), 257 (3), 231 (3), 217 (3), 181 (4), 167 (8), 152 (2), 141 (3), 128 (3), 115 (3), 105 (23), 91 (5), 73 (100).

HRMS (EI): calculated for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{OSi}: \mathrm{m} / \mathrm{z}=272.1596$; found $\mathrm{m} / \mathrm{z}=272.1594$.

(E)-Ethyl 4-(4-chloro-2,6-diethyltetrahydro-2H-pyran-3-yl)-3-methylbut-2-enoate (4)

A solution of ($2 E, 5 E$)-ethyl 3-methyl-7-(trimethylsilyl)hepta-2,5-dienoate (3i) ($100 \mathrm{mg}, 0.42$ mmol) and propionaldehyde ($0.062 \mathrm{~mL}, 0.84 \mathrm{mmol}$) in 1.0 mL dichloromethane is cooled to $-78^{\circ} \mathrm{C}$. Then a solution of titanium tetrachloride ($0.420 \mathrm{~mL}, 1 \mathrm{M}$ in dichloromethane) is added slowly. The reaction mixture is then stirred for 16 h while warming up to room temperature. After complete conversion 2 mL water are added and the mixture is transferred in a $20 / 20 \mathrm{~mL}$ water-dichloromethane mixture. The aqueous phase is extracted twice with 20 mL dichloromethane and the organic phase is dried over magnesium sulfate. After filtration and evaporation the crude product is purified by flash column chromatography (silica gel, pentane/diethyl ether 20:1) to obtain 4 as yellow oil ($78 \mathrm{mg}, 0.26 \mathrm{mmol}, 61 \%$). Spectroscopic analysis reveals two diastereomers in a 50:50 ratio.
Spectroscopic data for both isomers:
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{~ M H z}\right): \delta=5.80-5.74(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.19(\mathrm{~m}, 0.5 \mathrm{H}), 4.12(\mathrm{qd}, J=3.6$, $7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.82-3.72 (m, 0.5H), 3.26-3.18 (m, 1H), 3.18-3.11 (m, 0.5H), 2.99-2.91 (m, $0.5 \mathrm{H}), 2.65-2.57(\mathrm{~m}, 0.5 \mathrm{H}), 2.40(\mathrm{~m}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.91-$ $1.83(\mathrm{~m}, 0.5 \mathrm{H}), 1.81-1.30(\mathrm{~m}, 6 \mathrm{H}), 1.26(\mathrm{td}, J=3.0,7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.96-0.84(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{7 5} \mathbf{~ M H z}\right): \delta=166.7,166.5,159.8,158.0,117.6,116.9,82.4,82.3,78.8$, $77.5,62.9,61.9,59.5,59.4,47.3,42.8,42.1,40.6,37.5,34.1,28.7,26.5,19.4,18.8,14.3$, 10.8, 10.1, 9.9, 9.8.

IR (film, $\mathbf{c m}^{-1}$): 2965, 2936, 2878, 2847, 1716, 1646, 1463, 1369, 1349, 1320, 1301, 1276, 1224, 1149, 1096, 1081, 1046, 883, 743.
MS (EI): m/z = 302 ($\left.\mathrm{M}^{+}, ~ 6\right), 267$ (10), 257 (23), 237 (5), 221 (6), 209 (41), 191 (9), 179 (14), 163 (26), 135 (100), 121 (29), 107 (30), 93 (68), 81 (46), 67 (21), 59 (40).
HRMS (EI): calculated for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{ClO}_{3}: \mathrm{m} / \mathrm{z}=302.1649$; found $\mathrm{m} / \mathrm{z}=302.1651$.

(E)-Ethyl 6-hydroxy-3,7-dimethyl-5-vinyloct-2-enoate (5)

To a solution of ($2 E, 5 E$)-ethyl 3-methyl-7-(trimethylsilyl)hepta-2,5-dienoate ($\mathbf{3 i}$) (380 mg , $1.58 \mathrm{mmol})$ and isobutyraldehyde ($0.10 \mathrm{~mL}, 1.05 \mathrm{mmol}$) in 2.5 mL dichloromethane is added dropwise a solution of titanium tetrachloride ($1.58 \mathrm{~mL}, 1 \mathrm{M}$ in dichloromethane) at room temperature. The reaction mixture is then stirred for 16 h . After complete conversion the mixture is transferred in a $20 / 20 \mathrm{~mL}$ water-dichloromethane mixture. The aqueous phase is extracted twice with 20 mL dichloromethane and the organic phase is dried over magnesium sulfate. After filtration and evaporation the crude product is purified by flash column chromatography (silica gel, pentane/diethyl ether 3:1) to obtain 5 as yellow oil ($182 \mathrm{mg}, 0.76$ $\mathrm{mmol}, 72 \%$) containing the anti- and the syn-alcohol in a 60:40 ratio which was determined by GCMS analysis. The isomers could be separated partially by column chromatography.
Spectroscopic data for the anti-alcohol:
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{~ M H z}\right): \delta=5.62(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{td}, J=9.8,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-4.96(\mathrm{~m}$, 2 H), 4.12 (q, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.25$ (dd, $J=4.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{dd}, J=3.4,13.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.47-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{dd}, J=10.8,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{bs}$, $1 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.92$ (dd, $J=6.8,18.1 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, 75 \mathbf{~ M H z}\right): \delta=166.6,158.5,138.4,117.2,116.6,79.0,59.4,46.0,41.7$, 30.3, 20.0, 18.9, 15.6, 14.3 .

Spectroscopic data for the syn-alcohol:
${ }^{1} \mathbf{H}$ NMR (CDCl $\left.{ }_{3}, \mathbf{3 0 0} \mathbf{~ M H z}\right): \delta=5.74-5.61(\mathrm{~m}, 2 \mathrm{H}), 5.18-5.04(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.12-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~s}$, $3 \mathrm{H}), 1.68(\mathrm{dq}, J=6.8,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{bs}, 1 \mathrm{H}), 1.26(\mathrm{dq}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{dd}$, $J=6.4,12.1 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, 75 \mathrm{MHz}\right): \delta=166.6,157.5,136.9,117.8,117.5,77.9,59.5,44.6,43.2$, 31.2, 19.3, 18.7, 17.9, 14.3.

Spectroscopic data for both isomers:
IR (film, $\mathbf{c m}^{-1}$): 3499, 3074, 2968, 2875, 1708, 1645, 1460, 1380, 1286, 1227, 1152, 1048, 998, 919, 876, 834, 739, 686, 626.

MS (EI): m/z = 240 ($\mathrm{M}^{+}, 1$), 225 (1), 197 (4), 179 (4), 168 (20), 153 (12), 139 (32), 122 (28), 111 (25), 95 (100), 79 (36), 67 (11), 55 (27).

HRMS (EI): calculated for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3}: \mathrm{m} / \mathrm{z}=240.1725$; found $\mathrm{m} / \mathrm{z}=240.1722$.

Ethyl 2-(5-isopropyl-2-methyl-4-vinyltetrahydrofuran-2-yl)acetate (6)

A solution containing (E)-ethyl 6-hydroxy-3,7-dimethyl-5-vinyloct-2-enoate $(91 \mathrm{mg}, 0.38$ mmol) in 5.0 mL tetrahydrofurane is cooled to $0^{\circ} \mathrm{C}$. Then sodium hydride $(8 \mathrm{mg}, 0.19 \mathrm{mmol}$,
60% in paraffin oil) is added and the reaction is warmed to room temperature over 2 h . After full conversion the reaction mixture is quenched with 2 mL water and is transferred in a 10/20 mL water-diethyl ether mixture. The aqueous phase is extracted twice with 20 mL diethyl ether and the organic phase is dried over magnesium sulfate. After filtration and evaporation the crude product is purified by filtration through a short plug of silica gel (pentane/diethyl ether 10:1) to obtain the desired product $\mathbf{6}$ as pale yellow oil ($80 \mathrm{mg}, 0.33 \mathrm{mmol}, 88 \%$). The resulting 4 diastereomers could be resolved partially by cyclisation of the separated syn- and anti-alcohol.

Spectroscopic data for both cycloisomerization products of the anti-alcohol, the ratio (50:50) was determined with the singlet at 1.42 and 1.31 ppm :
${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{~ M H z}\right): \delta=5.97-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.04-4.99(\mathrm{~m}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.12$ (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.44 (ddd, $J=5.1,9.3,17.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.89-2.73 (m, 1H), 2.62-2.51 (m, $2 \mathrm{H}), 2.39-2.30(\mathrm{~m}, 0.5 \mathrm{H}), 2.03-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.62(\mathrm{~m}, 1.5 \mathrm{H}), 1.42(\mathrm{~s}, 1.5 \mathrm{H}), 1.31(\mathrm{~s}$, $1.5 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{dd}, J=4.0,6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{dd}, J=4.0,6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{7 5} \mathbf{~ M H z}\right): \delta=171.1,171.0,138.4,138.3,115.0,86.8,85.7,79.5,79.2$, $60.2,60.1,47.4,46.9,46.7,46.1,44.8,44.2,29.0,28.9,28.2,26.5,20.4,20.2,19.0,18.6$, 14.2.

Spectroscopic data for both cycloisomerization products of the syn-alcohol, the ratio (70:30) was determined with the singlet at 1.36 and 1.28 ppm :
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{~ M H z}\right): \delta=5.75-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.09-4.95(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.07(\mathrm{~m}, 2 \mathrm{H})$, 3.51-3.45 (m, 1H), 2.74-2.61 (m, 1H), 2.56-2.48 (m, 2H), 2.07-1.92 (m, 1.5H), 1.81-1.69 (m, 1.5 H), $1.36(\mathrm{~s}, 0.9 \mathrm{H}), 1.28(\mathrm{~s}, 2.1 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.94-0.86(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{7 5} \mathbf{~ M H z}\right): \delta=171.1,170.9,139.5,139.3,115.4,115.3,87.8,87.4,79.7$, $79.5,60.2,60.1,46.7,46.6,46.4,44.9,44.7,31.4,31.0,27.8,27.4,19.4,17.9,17.6,14.2$, 14.1.

Spectroscopic data for all cycloisomerization products:
IR (film, $\mathbf{c m}^{-1}$): 3078, 2970, 2879, 1736, 1641, 1460, 1377, 1332, 1303, 1223, 1105, 1035, 956, 916, 848, 806.

MS (EI): m/z = $239\left(\mathrm{M}^{+}, 1\right), 225$ (1), 197 (17), 168 (71), 153 (37), 122 (43), 109 (34), 95 (100), 79 (36), 67 (18), 55 (21).

HRMS (EI): calculated for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3}: \mathrm{m} / \mathrm{z}=240.1725$; found $\mathrm{m} / \mathrm{z}=240.1720$.

(2E)-Ethyl 6-iodo-3-methylhexa-2,5-dienoate (7)

To a solution of ($2 E, 5 E$)-ethyl 3-methyl-6-(trimethylsilyl)hexa-2,5-dienoate ($\mathbf{3 k}$) (100 mg , 0.44 mmol) in 4 mL acetonitrile is added N-iodosuccinimide ($169 \mathrm{mg}, 0.75 \mathrm{mmol}$) in one portion. The solution is then heated to $80^{\circ} \mathrm{C}$ for 4 h and the reaction is carried out in the dark. After GCMS analysis indicates full conversion the reaction is quenched with 4 mL saturated sodium sulfite. The reaction mixture is transferred into a $20 / 20 \mathrm{~mL}$ water-diethyl ether mixture and the aqueous phase is extracted twice with 20 mL diethyl ether. The combined organic phases are washed with 30 mL brine and dried over magnesium sulfate. After filtration and evaporation the crude product is purified by flash column chromatography (silica gel, pentane/diethyl ether 10:1) to obtain the desired product 7 as colorless oil (100 mg , $0.36 \mathrm{mmol}, 81 \%$) containing the ($5 E$)- and the ($5 Z$)-isomer in a $76: 24$ ratio which was determined with the dublet at 2.99 and 2.84 ppm .
Spectroscopic data for the major ($5 E$)-isomer:
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{~ M H z}\right): \delta=6.54-6.43(\mathrm{~m}, 1 \mathrm{H}), 6.23-6.13(\mathrm{~m}, 1 \mathrm{H}), 5.71-5.66(\mathrm{~m}, 1 \mathrm{H})$, $4.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{7 5} \mathbf{~ M H z}\right): \delta=166.5,155.4,136.8,116.8,85.8,59.7,45.4,19.0,14.3$.
IR (film, $\mathbf{c m}^{-1}$): 3066, 2981, 2936, 1716, 1651, 1606, 1444, 1383, 1368, 1352, 1307, 1273, 1221, 1146, 1096, 1049, 954, 912, 867, 695, 623.

MS (EI): m/z = 280 ($\mathrm{M}^{+}, 4$), 235 (29), 207 (1), 167 (9), 153 (36), 141 (1), 125 (36), 117 (2), 107 (57), 97 (12), 79 (100), 67 (16), 53 (19).
HRMS (EI): calculated for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{IO}_{2}: \mathrm{m} / \mathrm{z}=279.9960$; found $\mathrm{m} / \mathrm{z}=279.9965$.
(2E,5E, 10E)-Ethyl 3,10-dimethyl-11-phenylundeca-2,5,7,10-tetraenoate (8)
To a degassed mixture of (2E)-ethyl 6-iodo-3-methylhexa-2,5-dienoate (7) ($310 \mathrm{mg}, 1.14$ $\mathrm{mmol})$, 4,4,5,5-tetramethyl-2-((4Z)-4-methyl-5-phenylpenta-1,4-dienyl)-1,3,2-dioxaborolane ($\mathbf{3 g}$) $(260 \mathrm{mg}, 0.92 \mathrm{mmol})$ in 12 mL tetrahydrofurane and 4 mL water is added thallium carbonate ($1072 \mathrm{mg}, 2.29 \mathrm{mmol}$) and tetrakis triphenylphosphinopalladium ($53 \mathrm{mg}, 0.05$ mmol) in one portion. The reaction mixture is then stirred for 3 h at room temperature. After full conversion the mixture is filtered through a short pad containing silica gel and magnesium sulfate. The crude product is then purified by flash column chromatography (silica gel, pentane/diethyl ether 10:1) to obtain the desired product $\mathbf{8}$ as pale yellow oil ($280 \mathrm{mg}, 0.90$ $\mathrm{mmol}, 99 \%$) containing the ($7 E$)- and the ($7 Z$)-isomer in a $76: 24$ ratio corresponding to the deployed vinyliodide 7.
Spectroscopic data for the major ($7 E$)-isomer:
${ }^{1} \mathbf{H}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{~ M H z}\right): \delta=7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.52-6.45(\mathrm{~m}, 1 \mathrm{H})$, 6.42-6.34 (m, 1H), $6.31(\mathrm{~s}, 1 \mathrm{H}), 5.73-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.69-5.59(\mathrm{~m}, 1 \mathrm{H}), 5.55-5.45(\mathrm{~m}, 1 \mathrm{H})$, $4.15(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.08-3.02(\mathrm{~m}, 4 \mathrm{H}), 2.19-2.18(\mathrm{~m}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{7 5} \mathbf{~ M H z}\right): \delta=166.7,157.8,138.3,137.1,130.6,128.8,128.0,127.1$, $126.0,125.9,125.7,124.4,116.3,59.5,43.9,38.5,19.0,18.0,14.3$.
IR (film, $\mathbf{c m}^{-1}$): 2982, 2937, 1716, 1650, 1494, 1447, 1382, 1351, 1222, 1151, 1097, 1042, 973, 921, 879, 858, 749, 702, 650, 514.

MS (EI): m/z = 310 ($\mathbf{M}^{+}, 4$), 264 (1), 249 (1), 237 (3), 219 (3), 207 (4), 195 (4), 183 (16), 167 (20), 155 (24), 143 (31), 129 (47), 115 (46), 105 (32), 91 (100), 77 (21), 65 (10), 55 (8).

HRMS (EI): calculated for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{2}: \mathrm{m} / \mathrm{z}=310.1933$; found $\mathrm{m} / \mathrm{z}=310.1935$.

(2E,4E,6E, $8 E, 10 E$)-Ethyl 3,10-dimethyl-11-phenylundeca-2,4,6,8,10-pentaenoate (9)

To a solution of ($2 E, 5 E, 10 E$)-ethyl 3,10-dimethyl-11-phenylundeca-2,5,7,10-tetraenoate (8) ($100 \mathrm{mg}, 0.32 \mathrm{mmol}$) in 2.5 mL benzene is added DDQ ($87 \mathrm{mg}, 0.38 \mathrm{mmol}$). The reaction mixture is stirred for 2 h at room temperature. After full conversion the mixture is filtered through a short pad of silica gel (eluent: pentane/diethyl ether 10:1). The crude product is then purified by flash column chromatography (silica gel, pentane/diethyl ether 20:1) to obtain the desired product 9 as yellow solid ($37 \mathrm{mg}, 0.12 \mathrm{mmol}, 37 \%$).

[^2]IR (film, $\mathbf{c m}^{-1}$): 2980, 1704, 1596, 1567, 1444, 1385, 1365, 1351, 1237, 1145, 1040, 990, 921, 874, 834, 753, 703.
MS (EI): m/z = 308 ($\mathrm{M}^{+}, 100$), 293 (9), 279 (11), 262 (20), 247 (23), 235 (96), 219 (92), 205 (45), 193 (40), 179 (51), 165 (51), 143 (46), 128 (44), 115 (50), 105 (37), 91 (41).

HRMS (EI): calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{2}: \mathrm{m} / \mathrm{z}=308.1776$; found $\mathrm{m} / \mathrm{z}=308.1764$.

3a
(1)

3b

3c

ppm (f1)

3d

3e

ppm (t1)

3g

3h

3m

30

ppm (fi)

3p

4

syn-5

anti-5

6

6

7

8

9

[^0]: $\left.{ }^{1}{ }^{1}\right)$ Abe, M.; Kubo, A.; Yamamoto, S.; Hatoh, Y.; Murai, M.; Hattori, Y.; Makabe, H.; Nishioka, T.; Miyoshi, H. Biochem. 2008, 47, 6260.
 ${ }^{2}{ }^{2}$) Harmata, M.; Huang, C.; Rooshenas, P.; Schreiner, P. R. Angew. Chem. Int. Ed. 2008, 47, 8696.
 ${ }^{3}$) Bieber, L. W.; da Silva, M. F. Tetrahedron Lett. 2007, 48, 7088.
 $\left.{ }^{(4}\right)$ Herrero, M. T.; Tellitu, I.; Domínguez, E.; Hernández, S.; Moreno, I. Tetrahedron 2002, 58, 8581.

[^1]: ${ }^{1} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{3 0 0} \mathbf{~ M H z}\right): \delta=5.89-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 5.65-5.54(\mathrm{~m}, 1 \mathrm{H}), 5.31-5.21$ $(\mathrm{m}, 1 \mathrm{H}), 5.14-5.02(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.46(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 0.00(\mathrm{~s}, 9 \mathrm{H})$.

[^2]: ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{5 0 0} \mathbf{~ M H z}\right): \delta=7.31-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=10.8$, $15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.50-6.43(\mathrm{~m}, 2 \mathrm{H}), 6.40-6.32(\mathrm{~m}, 2 \mathrm{H}), 6.23(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.72(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
 ${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 2 5} \mathbf{~ M H z}\right): \delta=167.1,152.2,140.1,137.7,136.7,135.9,135.4,134.8$, 133.0, 132.2, 129.2, 128.4, 128.2, 126.8, 119.1, 59.7, 14.3, 13.9, 13.7.

