Asymmetric Synthesis of Sterically and Electronically Demanding Linear ω-Trifluoromethyl Containing Amino Acids via Alkylation of Chiral Equivalents of Nucleophilic Glycine and Alanine

Jiang Wang ${ }^{\text {a }}$, Daizong Lin ${ }^{\text {a }}$, Shengbin Zhou ${ }^{\text {a }}$, Xiao Ding ${ }^{\text {a }}$, Vadim A. Soloshonok ${ }^{\text {b,* }}$, and Hong Liu ${ }^{\text {a, }}$,

${ }^{\text {a }}$ State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu chong zhi Road, Shanghai 201203, People’s Republic of China
${ }^{\mathrm{b}}$ Department of Chemistry, Institute of Chemical Biology \& Drug Discovery State University of New York at Stony Brook Stony Brook, NY 11794-3400

E-mail: vsoloshonok@notes.cc.sunysb.edu; hliu@mail.shcnc.ac.cn

Table of Contents
(A) General Methods ... $S 2$
(B) General Procedure for the Asymmetric Alkylation Reactions S3
(C) Analytical Characterization Data of Asymmetric Alkylation Products S6
(D) The Absolute Configuration of 3a S14
(E) Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra for the Products. S15
(F) Reference S26

(A) General Methods

The reagents (chemicals) were purchased from commercial sources, and used without further purification. Analytical thin layer chromatography (TLC) was HSGF 254 (0.15-0.2 mm thickness). All products were characterized by their NMR and MS spectra. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in deuterochloroform $\left(\mathrm{CDCl}_{3}\right)$ on a 300 MHz instrument. Chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane. Proton coupling patterns are described as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), and broad (br). Low- and high-resolution mass spectra (LRMS and HRMS) were measured on spectrometer. Optical rotations were reported as follows: $[\alpha]_{\mathrm{D}}^{22}$ (c: $\mathrm{g} / 100 \mathrm{~mL}$, in solvent).

(B) General Procedure for the Asymmetric Alkylation Reactions

General Procedure for the Synthesis of (S,2S)-3a:

The $\mathrm{Ni}(\mathrm{II})$ complex of glycine $(\mathrm{S}) \mathbf{- 1 a}(200 \mathrm{mg}, 0.40 \mathrm{mmol})$ was dissolved in DMF (2 $\mathrm{mL})$. The sodium hydroxide ($19.2 \mathrm{mg}, 0.48 \mathrm{mmol}$) was added at ambient conditions. Then the 1,1,1-trifluoro-4-iodobutane $2 \mathbf{2 a}(104 \mathrm{mg}, 0.44 \mathrm{mmol})$ was added and the reaction mixture was stirred for 0.5 h . The reaction was quenched by pouring the crude reaction mixture over 30 mL aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$. The suspension was extracted with ethyl acetate (3 times). The combined organic layers were dried with MgSO_{4}, concentrated, and purified by column chromatography on silica gel (petroleum ether/ ethyl acetate $=1 / 1)$ to give $(S, 2 S)$-3a as a red solid.

Procedure for the Synthesis of (S,2S)-3d: The Ni(II) complex of alanine (S)-1b (200 $\mathrm{mg}, 0.39 \mathrm{mmol}$) was dissolved in DMF (2 mL). The sodium hydroxide ($131 \mathrm{mg}, 1.17$ mmol) was added at ambient conditions. Then the 1,1,1-trifluoro-4-iodobutane 2a $(232 \mathrm{mg}, 0.98 \mathrm{mmol})$ was added and the reaction mixture was stirred for 1 h . The reaction was quenched by pouring the crude reaction mixture over 30 mL aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$. The suspension was extracted with ethyl acetate (3 times). The combined organic layers were dried with MgSO_{4}, concentrated, and purified by column chromatography on silica gel (petroleum ether/ ethyl acetate $=1 / 1$) to give $(S, 2 S)$ - $\mathbf{3 d}$ as a red solid. HPLC (Chiralpak IA, i-propanol $/ n$-hexane $=40 / 60$, flow rate 1.0 $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\text {minor }}=6.0 \mathrm{~min}, \mathrm{t}_{\text {major }}=9.2 \mathrm{~min}, \mathrm{de}=99 \%$.

Procedure for the Synthesis of (S)-4a: The crystallized complex (S,2S)-3a (1 g, 1.65 mmol) was decomposed by refluxing a suspension in a mixture of aqueous 6 N HCl $(1 \mathrm{~mL})$ and $\mathrm{MeOH}(15 \mathrm{~mL})$ for 30 min , until the red color of the solution disappeared, as described previously. The reaction was cooled to room temperature and then evaporated to dryness. Water (20 mL) was added to the residue to form a clear solution, and this solution was then separated by column chromatography on C_{18}-reversed phase (230-400 mesh) silica gel. Pure water as an eluent was employed to remove the green NiCl_{2} and excess HCl ; water was then used to obtain optically pure product $(S)-4 \mathbf{a}(293 \mathrm{mg}, 96 \%):[\alpha]_{\mathrm{D}}{ }^{24}=+7.9(c=0.38 \mathrm{~g} / 100 \mathrm{~mL}, 6 \mathrm{NHCl})$. The ligand BPB that decomposed from $(S, 2 S)$-3a was recovered by MeOH eluent (608 mg , 96%), and the column chromatography was washed with 100 mL of MeOH for further use.

Procedure for the synthesis of $(\mathbf{S})-\mathbf{1}^{\mathbf{1}}$.

(S)-BPB ($1 \mathrm{~g}, 2.60 \mathrm{mmol})$, Gly $(976 \mathrm{mg}, 13.0 \mathrm{mmol}), \mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1.52 \mathrm{~g}, 5.21$ $\mathrm{mmol}), \mathrm{MeOH}(50 \mathrm{~mL})$ was added as solvent. And $\mathrm{NaH}(55-65 \%$ in oil, $1.04 \mathrm{~g}, 26$ mmol), $\mathrm{KOH}(437 \mathrm{mg}, 7.81 \mathrm{mmol})$ were added successively. The resulting mixture was refluxed for 2 h and then the reaction was terminated and cooled. The solution was neutralized with acetic acid. After 12 h the separated crystalline solid was filtered and washed with 100 mL of ethanol, followed by stirring in methane/water (v/v) 1:2, 200 mL), then filtered to form a red crystal (1.27 g , yield 98%). The complex was
sufficiently pure for further use without additional purification.

(C) Analytical Characterization Data of Asymmetric Alkylation

Products

Ni(II)-(S)-BPB/(S)-2-Amino-6,6,6-Trifluorohexanoic Acid Schiff Base Complex

 3a. Mp 183-185 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{24}=+1667\left(c=0.3 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ MHz): $\delta=8.13$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.35$ (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.70-6.62 (m, 2H), $4.42(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$. 3.60-3.44 (m, 4H), 2.78-2.70 (m, 1H), 2.58-2.49 (m, 1H), 2.37-2.31 (m, 1H), 2.22-1.94 (m, 6H), 1.90-1.79 (m, 2H), 1.73-1.62 (m, 1H) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta=18.0,23.5,30.6,33.0(\mathrm{q}, J=28.7 \mathrm{~Hz}), 34.0,57.0,63.1,69.4,70.2,120.7$, 123.6, 125.3, 126.2, $126.7(\mathrm{q}, J=274.9 \mathrm{~Hz}), 127.0,127.2,128.8,128.9,129.8,131.4$, 132.2, 133.1, 133.5, 142.2, 170.8, 178.8, 180.3 ppm . LRMS (EI) [M] ${ }^{+}$found $m / z 607$. HRMS (EI) $[\mathrm{M}]^{+}$found $m / z 607.1593$, calcd. for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{NiO}_{3}$ 607.1598. HPLC (Chiralpak IA, i-propanol $/ n$-hexane $=40 / 60$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$), $\mathrm{t}_{\text {minor }}$ $=6.0 \mathrm{~min}, \mathrm{t}_{\text {major }}=12.3 \mathrm{~min}, \mathrm{de}=97 \%$.
Ni(II)-(R)-BPB/(R)-2-Amino-6,6,6-Trifluorohexanoic Acid Schiff Base Complex

3a. Mp 182-184 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{24}=-2248\left(c=0.3 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}): \delta=8.11(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 3 \mathrm{H})$, 7.36-7.31 (m, 2H), 7.26-7.20 (m, 3H), $6.90(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.61(\mathrm{~m}, 2 \mathrm{H})$, $4.40(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89\left(\mathrm{dd}, J_{1}=8.1 \mathrm{~Hz}, J_{2}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right) .3 .58-3.43(\mathrm{~m}, 4 \mathrm{H})$,
$2.77-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.18-1.88(\mathrm{~m}, 6 \mathrm{H})$, 1.81-1.79 (m, 2H), 1.70-1.62(m, 1H) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=18.0$, 23.5, 30.6, $33.0(\mathrm{q}, ~ J=28.7 \mathrm{~Hz}$), 34.0, 57.0, 63.0, 69.6, 70.1, 120.7, 123.6, 125.3, 126.2, 127.0, 127.2, 128.8, 128.9, 129.8, 131.4, 132.2, 133.1, 133.5, 142.2, 170.8, 178.8, 180.3 ppm . HPLC (Chiralpak IA, i-propanol $/ n$-hexane $=40 / 60$, flow rate 1.0 $\mathrm{mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\text {major }}=6.0 \mathrm{~min}, \mathrm{de}>99 \%$.

Ni(II)-(S)-BPB/(S)-2-Amino-5,5,5-Trifluoropentanoic Acid Schiff Base Complex 3b. Mp 201-203 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}=+1774\left(c=0.1 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ MHz): $\delta=8.13(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.36$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.71-6.63 (m, 2H), $4.42(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84\left(\mathrm{dd}, J_{1}=9.6 \mathrm{~Hz}, J_{2}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right)$. 3.59-3.46 (m, 4H), 2.77-2.68 (m, 2H), 2.59-2.54 (m, 1H), 2.42-2.38 (m, 1H), 2.24-2.20 (m, 1H), 2.14-2.04(m, 2H), 1.89-1.84 (m, 1H) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ MHz): $\delta=23.8,28.0,30.1(\mathrm{q}, ~ J=29.4 \mathrm{~Hz}), 30.7,57.2,63.2,68.5,70.2,120.8,123.8$, 124.9, 126.1, 126.3 (q, $J=274.7 \mathrm{~Hz}), 126.9,127.2,128.9,129.0,129.1,129.9,131.5$, $132.5,133.2,133.3,142.4,171.4,178.3,180.4 \mathrm{ppm}$. LRMS (EI) $[\mathrm{M}]^{+}$found $m / z 593$. HRMS (EI) $[\mathrm{M}]^{+}$found m / z 593.1436, calcd. for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{NiO}_{3}$ 593.1442. HPLC (Chiralpak IA, i-propanol $/ n$-hexane $=40 / 60$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\text {minor }}$ $=6.0 \mathrm{~min}, \mathrm{t}_{\text {major }}=12.2 \mathrm{~min}, \mathrm{de}>99 \%$.

Ni(II)-(R)-BPB/(R)-2-Amino-5,5,5-Trifluoropentanoic Acid Schiff Base Complex 3b. Mp 200-202 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}=-1868\left(c=0.31 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}): \delta=8.12(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 3 \mathrm{H})$,
$7.36(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-6.63(\mathrm{~m}$, $2 \mathrm{H}), 4.42(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84\left(\mathrm{dd}, J_{1}=10.2 \mathrm{~Hz}, J_{2}=3.9 \mathrm{~Hz}, 1 \mathrm{H}\right) .3 .59-3.46(\mathrm{~m}$, $4 \mathrm{H}), 2.75-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.21(\mathrm{~m}, 1 \mathrm{H})$, 2.11-2.05 (m, 2H), 1.90-1.85 (m, 1H) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=19.2$, $23.9,28.1,29.7,30.7,57.1,63.1,68.5,70.21,120.9,123.8,124.9,126.1,126.9,127.2$, 127.7, 128.8, 128.9, 129.0, 129.1, 130.0, 131.5, 131.8, 132.5, 133.1, 133.3, 133.4, 142.3, 171.4, 178.3, 180.6 ppm . HPLC (Chiralpak IA, i-propanol $/ n$-hexane $=40 / 60$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\text {minor }}=6.0 \mathrm{~min}, \mathrm{t}_{\text {major }}=12.3 \mathrm{~min}, \mathrm{de}=96 \%$.

Ni(II)-(S)-BPB/(S)-2-Amino-4,4,4-Trifluorobutanoic Acid Schiff Base Complex

3c. Mp 173-175 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{24}=+2821\left(c=0.19 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}): \delta=8.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 3 \mathrm{H})$, $7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.69-6.61(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20\left(\mathrm{dd}, J_{1}=6.8 \mathrm{~Hz}, J_{2}=2.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}) .3 .62-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.46-3.40(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.49(\mathrm{~m}, 2 \mathrm{H})$, 2.16-2.03 (m, 3H) ppm. ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=22.8,30.8,35.8(\mathrm{q}, \mathrm{J}=$ $28.7 \mathrm{~Hz}), 57.1,63.3,64.3,70.5,120.6,123.7,126.0,126.5,127.7,128.8,128.9,129.2$, $130.2,131.5,132.8,133.2,133.4,133.9,143.1,172.7,177.5,180.5$ ppm. LRMS (EI) $[\mathrm{M}]^{+}$found m / z 579. HRMS (EI) [M] ${ }^{+}$found m / z 579.1280, calcd. for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{NiO}_{3}$ 579.1283. HPLC (Chiralpak IA, i-propanol $/ n$-hexane $=40 / 60$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\text {minor }}=7.1 \mathrm{~min}, \mathrm{t}_{\text {major }}=14.0 \mathrm{~min}, \mathrm{de}>96 \%$.

Ni(II)-(R)-BPB/(R)-2-Amino-4,4,4-Trifluorobutanoic Acid Schiff Base Complex

3c. Mp 174-176 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{24}=-2634\left(c=0.29 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$,
$400 \mathrm{MHz}): \delta=8.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 3 \mathrm{H})$, $7.36(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.95(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.60(\mathrm{~m}$, $2 \mathrm{H}), 4.39(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}) .3 .61-3.41(\mathrm{~m}, 4 \mathrm{H}), 2.87-2.77$ $(\mathrm{m}, 1 \mathrm{H}), 2.54-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta$ $=22.8,30.7,57.1,63.3,64.4,70.5,120.6,123.6,126.0,126.5,127.0,127.7,128.8$, $128.9,129.2,130.2,131.5,132.7,133.2,133.4,133.9,143.0,172.7,177.8,180.6 \mathrm{ppm}$. HPLC (Chiralpak IA, i-propanol $/ n$-hexane $=40 / 60$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}), \mathrm{t}_{\text {minor }}=7.1 \mathrm{~min}, \mathrm{t}_{\text {major }}=14.1 \mathrm{~min}, \mathrm{de}=94 \%$.

Ni(II)-(S)-BPB/(S)-2-Amino-6,6,6-Trifluoro-2-Methylhexanoic Acid Schiff Base

Complex 3d. Mp 203-205 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{24}=+1932\left(c=0.23 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=8.08(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.27$ $(\mathrm{m}, 7 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.49$ $(\mathrm{d}, \mathrm{J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.49-3.41(\mathrm{~m}, 1 \mathrm{H})$, 3.27-3.19 (m, 1H), 2.66-2.63 (m, 1H), 2.52-2.44 (m, 2H), 2.05 (s, 3H), 1.31-1.23 (m, $6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=18.5,23.1,29.7,30.6,33.6(\mathrm{q}, J=29.1$ $\mathrm{Hz}), 38.4,57.2,63.4,70.0,120.8,124.1,126.9,127.1,128.0,128.6,128.9,129.0$, 129.6, 130.1, 131.6, 131.7, 133.3, 136.4, 141.5, 173.0, 180.6, 182.0 ppm. LRMS (EI) $[\mathrm{M}]^{+}$found m / z 621. HRMS (EI) $[M]^{+}$found m / z 621.1749, calcd. for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{NiO}_{3}$ 621.1759. HPLC (Chiralpak IA, i-propanol $/ n$-hexane $=40 / 60$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\text {minor }}=6.0 \mathrm{~min}, \mathrm{t}_{\text {major }}=9.2 \mathrm{~min}, \mathrm{de}=99 \%$.
$\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta=8.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.34$ $(\mathrm{m}, 7 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.63(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{~d}, J=$ $12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.45-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.18(\mathrm{~m}$, $1 \mathrm{H}), 2.69-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.00(\mathrm{~s}, 6 \mathrm{H}), 1.30(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=18.5,23.1,29.7,30.6,33.6(\mathrm{q}, J=29.2 \mathrm{~Hz}), 38.4,57.1$, $63.4,70.0,120.8,124.1,126.8,127.1,128.0,128.6,128.8,128.9,129.0,129.5,130.1$, 131.6, 131.7, 133.3, 136.4, 141.5, 173.0, 180.6, 182.0 ppm. HPLC (Chiralpak IA, i-propanol $/ n$-hexane $=40 / 60$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}), \mathrm{t}_{\text {minor }}=5.8 \mathrm{~min}$, $\mathrm{t}_{\text {major }}=9.0 \mathrm{~min}, \mathrm{de}>97 \%$.

2-Amino-6,6,6-Trifluorohexanoic Acid 4a: Mp 193-195 ${ }^{\circ} \mathrm{C} ; ;[\alpha]_{\mathrm{D}}{ }^{24}=+7.9(c=0.38$ $\mathrm{g} / 100 \mathrm{~mL}, 6 \mathrm{~N} \mathrm{HCl}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 300 \mathrm{MHz}\right): \delta=3.78-3.73(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.06(\mathrm{~m}$, $2 \mathrm{H}), 1.87-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 100 \mathrm{MHz}\right): \delta=19.8$, $31.2,34.6(\mathrm{q}, ~ J=28.2 \mathrm{~Hz}), 55.1,129.6(\mathrm{q}, J=274.4 \mathrm{~Hz}), 174.3 \mathrm{ppm}$. LRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found m / z 186. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$found m / z 208.0561, calcd. for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{Na} 208.0557$.

2-Amino-6,6,6-Trifluoro-2-Methylhexanoic Acid 4d: Mp 193-195 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{27}=$ $+8.3(c=0.4 \mathrm{~g} / 100 \mathrm{~mL}, 6 \mathrm{NHCl}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 300 \mathrm{MHz}\right): \delta=2.31-2.20(\mathrm{~m}, 2 \mathrm{H})$, 2.04-1.85 (m, 2H) 1.75-1.67 (m, 1H), $1.55(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.49(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 100 \mathrm{MHz}\right): \delta=18.6,24.4,34.7(\mathrm{q}, J=28.3 \mathrm{~Hz}), 38.2,63.2,129.5(\mathrm{q}, J=274.5$ Hz), 178.0 ppm . LRMS (ESI) $[\mathrm{M}+\mathrm{H}]^{+}$found m / z 200. HRMS (ESI) $[\mathrm{M}+\mathrm{Na}]^{+}$found $\mathrm{m} / \mathrm{z} 222.0718$, calcd. for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{NO}_{2} \mathrm{Na} 222.0718$.

Analytical high performance liquid chromatography was carried out using the Dionex

ASI-100 automated sampler, using the Chiralpak IA column. The loading loop was 5 $\mu \mathrm{L}$. The eluting employed was an isocratic mixture of n-hexane and i-propanol (60:40 respectively) at a flow of $1 \mathrm{~mL} / \mathrm{min}$ unless stated. Retention times are reported in minutes. The enantiomeric excess was calculated from the integration of the absorption peaks at 254 nm .
$(S, 2 S)-3 a: \mathrm{R}_{\mathrm{t}}($ minor $)=6.0 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=12.3 \mathrm{~min}, \mathrm{de}=97 \%$;

Peak \#	Time $[\mathrm{Min}]$	Area	Height $[\mu \mathrm{V}]$	Width [min]	Area [\%]
1	5.975	2532.8	252.7	0.151	55.656
2	12.203	2018	77.5	0.3956	44.344

Peak \#	Time $[\mathrm{Min}]$	Area	Height $[\mu \mathrm{V}]$	Width [min]	Area [\%]
1	5.981	60	5.6	0.1636	1.497
2	12.283	3945.3	149	0.4068	98.503

$(S, 2 S)-3 \mathbf{b}: \mathrm{R}_{\mathrm{t}}($ minor $)=6.0 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=12.2 \mathrm{~min}$, de $>99 \%$.

Peak \#	Time $[\mathrm{Min}]$	Area	Height $[\mu \mathrm{V}]$	Width [min]	Area [\%]
1	6.046	1163.6	113.8	0.1552	53.864
2	12.353	996.6	43.2	0.3533	46.136

Peak\#	Time $[\mathrm{Min}]$	Area	Height $[\mu \mathrm{V}]$	Width [min]	Area [\%]
1	5.919	13.9	1.4	0.1526	0.395
2	12.19	3508	151.7	0.3538	99.605

$(S, 2 S)-3 c: \mathrm{R}_{\mathrm{t}}($ minor $)=7.147 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=14.035 \mathrm{~min}, \mathrm{de}>96 \%$.

$(R, 2 R)-3 \mathrm{a}: \mathrm{R}_{\mathrm{t}}($ major $)=6.0 \mathrm{~min}, \mathrm{de}>99 \%$.

Peak \#	Time $[$ Min]	Area	Height $[\mathrm{HV}]$	Width [min]	Area [\%]
1	5.975	2532.8	252.7	0.151	55.656
2	12.203	2018	77.5	0.3956	44.344

Peak \#	Time $[\mathrm{Min}]$	Area	Height $[\mu \mathrm{V}]$	Width [min]	Area [\%]
1	5.950	2147	203.8	0.1589	100.000

$(R, 2 R)-3 \mathbf{b}: \mathrm{R}_{\mathrm{t}}($ major $)=6.0 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ minor $)=12.3 \mathrm{~min}, \mathrm{de}=96 \%$.

Peak \#	Time $[\mathrm{Min}]$	Area	Height $[\mathrm{HV}]$	Width [min]	Area [\%]
1	6.046	1163.6	113.8	0.1552	53.864
2	12.353	996.6	43.2	0.3533	46.136

Peak \#	Time $[\mathrm{Min}]$	Area	Height $[\mu \mathrm{V}]$	Width [min]	Area [\%]
1	5.891	1557.6	154	0.152	98.145
2	12.252	29.4	1.2	0.3415	1.855

$(R, 2 R)-3 \mathrm{c}: \mathrm{R}_{\mathrm{t}}($ minor $)=7.1 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=14.1 \mathrm{~min}, \mathrm{de}=94 \%$.

Peak\#	Time $[\mathrm{Min}]$	Area	Height $[\mu \mathrm{V}]$	Width [min]	Area [\%]
1	7.115	2863.8	228.7	0.1901	58.766
2	14.109	2009.4	71.2	0.4293	41.234

Peak \#	Time $[\mathrm{Min}]$	Area	Height $[\mu \mathrm{V}]$	Width [min]	Area [\%]
1	7.111	1419.5	111.6	0.1924	97.189
2	14.103	41.1	1.5	0.3741	2.811

$(S, 2 S)-3 d: R_{t}($ minor $)=6.0 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=9.2 \mathrm{~min}, \mathrm{de}=99 \%$.

Peak \#	Time $[$ Min] $]$	Area	Height $[$ [V]	Width [min]	${ }^{\text {Area }}$ [\%]
1	6.23	902.5	81	0.1681	49.767
2	9.204	910.9	53.1	0.262	50.233

Peak\#	Time $[\mathrm{Min}]$	Area	Height $[\mu \mathrm{V}]$	Width $[\mathrm{min}]$	Area $[\%]$
1	5.962	6	0.6	0.1512	0.569
2	9.184	1049.5	61.6	0.2588	99.431

$(S, 2 S)-\mathbf{3 d}: \mathrm{R}_{\mathrm{t}}($ minor $)=5.8 \mathrm{~min}, \mathrm{R}_{\mathrm{t}}($ major $)=9.0 \mathrm{~min}, \mathrm{de}>97 \%$.

Peak\#	Time $[\mathrm{Min}]$	Area	Height $[\mu \mathrm{V}]$	Width [min]	Area [\%]
1	6.23	902.5	81	0.1681	49.767
2	9.204	910.9	53.1	0.262	50.233

Peak\#	Time $[\mathrm{min}]$	Area	Height $[\mu \mathrm{V}]$	Width[min]	Area\%
1	5.836	6394.4	620.8	0.1562	98.808
2	8.903	77.1	4.6	0.2599	1.192

(D) The Absolute Configuration of 3 a and Quantum Chemical

Calculation

X-ray Single Crystal Stucture Analysis of $(S, 2 S)$-3a :

X-ray crystallographic data of $(S, 2 S)-3 a$ were solutions at $T=293(2) \mathrm{K}$: $\mathrm{C}_{39} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{NiO}_{5}, M_{r}=647.36$, monoclinic. Space group $P 2$ (1), $\mathrm{a}=11.393$ (2) $\AA, \mathrm{b}=$ 22.375 (4) $\AA, \mathrm{c}=11.623$ (2) $\AA, \alpha=90^{\circ}, \beta=103.254(3)^{\circ}, \gamma=90^{\circ}, V=2883.9(10) \AA^{3}$, $Z=2$.

FIGURE S1. The crystal structure of (S,2S)-3a by X-ray analysis.

These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.
(E) Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra for the Products

Ni(II)-(S)-BPB/(S)-2-Amino-6,6,6-Trifluorohexanoic Acid Schiff Base Complex

3a.

3b.

Ni(II)-(S)-BPB/(S)-2-Amino-4,4,4-Trifluorobutanoic Acid Schiff Base Complex

3c.

$\mathrm{Ni}(\mathrm{II})-(R)-\mathrm{BPB} /(\boldsymbol{R})$-2-Amino-4,4,4-Trifluorobutanoic Acid Schiff Base Complex
3c.

$\mathrm{Ni}(\mathrm{II})$-(S)-BPB/(S)-2-Amino-6,6,6-Trifluoro-2-Methylhexanoic Acid Schiff Base Complex 3d.

Ni(II)-(R)-BPB/(R)-2-Amino-6,6,6-Trifluoro-2-Methylhexanoic Acid Schiff Base

Complex 3d.

2-Amino-6,6,6-Trifluoro-2-Methylhexanoic Acid 4d.

(F) Reference

[1] Deng, G. H.; Wang, J.; Zhou, Y.; Jiang, H. L.; Liu, H. J. Org. Chem. 2007, 72, 8932.

