SUPPORTING INFORMATION

SYNTHESIS OF ORTHOGONALLY PROTECTED DISULFIDE BRIDGE MIMETICS

Andrew C. Tadd, ${ }^{* a}$ Kristian Meinander, ${ }^{\text {a }}$ Kristina Luthman ${ }^{\text {b }}$ and Erik A. A. Wallén ${ }^{\text {a }}$

[^0]${ }^{b}$ Department of Chemistry - Medicinal Chemistry, University of Gothenburg, SE-41296, Göteborg, Sweden.

TABLE OF CONTENTS

General considerations 3
Experimental procedures 4
Assignment of alkene geometry for compounds $\mathbf{1 5}$ and 19 15
References 18
NMR spectra for new compounds 19

General considerations

Reactions were conducted with continuous magnetic stirring under an inert argon atmosphere unless otherwise stated. Glassware was oven-dried at $>120^{\circ} \mathrm{C}$, and allowed to cool to room temperature under a positive argon pressure or vacuum. Cooling of reaction vessels to $0^{\circ} \mathrm{C}$ was achieved by an ice-water bath and cooling to $-15^{\circ} \mathrm{C}$ was achieved by a dry ice-acetone bath. Protected allyl glycine 18 was prepared by a literature procedure. ${ }^{1}$ All reagents (excluding solvents) were used as supplied. Dichloromethane (DCM) was freshly distilled over calcium hydride. Ethyl acetate, hexane, cyclohexane, toluene and acetone were not distilled prior to use. Anhydrous N, N-dimethylformamide and methanol were of commercial quality. Thin-layer chromatography was performed with TLC aluminium sheets with silica gel $60 \mathrm{~F}_{245}$. Flash column chromatography was carried out using $0.040-0.063 \mathrm{~mm}$ silica gel with pre-absorption of the crude product onto silica.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ nuclear magnetic resonance experiments were carried out using a 300 MHz spectrometer. Chemical shifts are reported from the residual solvent peak. Chemical shifts (δ) are given in parts per million (ppm) and coupling constants (J) in Hertz (Hz). Proton multiplicity is assigned using the following abbreviations: singlet (s), doublet (d), triplet (t), quartet (q), quintet (quin), multiplet (m), broad (br) and apparent (ap.). Elemental analysis was performed by Robertson Microlit Laboratories. Where the percentage composition found was not within the required limits, accurate mass is reported instead of elemental analysis.

(S)-tert-Butyl 2-(9H-fluoren-9-ylmethoxycarbonylamino)pent-4-ynoate

Cyclohexane (7 mL) and tert-butyl-2,2,2-trichloroacetimidate ($3.25 \mathrm{~g}, 14.9 \mathrm{mmol}$) were added to a stirred solution of compound $\mathbf{8}(1.00 \mathrm{~g}, 2.98 \mathrm{mmol})$ in ethyl acetate $(14 \mathrm{~mL})$. The reaction mixture was then stirred for 72 hours at room temperature. After this time, the solvent was removed in vacuo and the crude product was purified via flash column chromatography (9:1 hexane:ethyl acetate) to yield the alkyne ($1.167 \mathrm{~g}, 99 \%$) as a colourless oil. $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.77(2 \mathrm{H}, \mathrm{d}, J 7.3), 7.62(2 \mathrm{H}, \mathrm{d}, J 7.4), 7.41(2 \mathrm{H}$, ap. t, $J 7.4), 7.32$ (2H, ap. t, $J 7.3$), $5.67(1 \mathrm{H}, \mathrm{d}, J 7.9), 4.47-4.21(4 \mathrm{H}, \mathrm{m}), 2.77(2 \mathrm{H}, \mathrm{dd}, J 4.0$ and 2.6), 2.04 $(\mathrm{IH}, \mathrm{s}), 1.51(9 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 169.5,155.8,144.03,143.95,141.5,127.9,127.3$, $125.3,120.2,83.0,78.7,71.7,67.4,52.8,47.3,28.1,23.2$. Data consistent with literature. ${ }^{2}$

(S)-tert-Butyl 5-bromo-2-(9H-fluoren-9-ylmethoxycarbonylamino)pent-4-ynoate, 7

N-Bromosuccinimide ($631 \mathrm{mg}, 3.54 \mathrm{mmol}$) and $\mathrm{AgNO}_{3}(50 \mathrm{mg}, 0.30 \mathrm{mmol})$ were added to a stirred solution of (S)-tert-butyl 2-(9H-fluoren-9-ylmethoxycarbonylamino)pent-4-ynoate $(1.167 \mathrm{~g}, 2.98 \mathrm{mmol})$ in acetone $(10.5 \mathrm{~mL})$ under argon. The reaction mixture was stirred for 7 hours at room temperature. After this time, water (ca. 50 mL) was added and the suspension was extracted with ethyl acetate $(3 \times 100 \mathrm{~mL})$. The combined organic layers were then washed with water (ca. 50 mL) and brine ($c a .50 \mathrm{~mL}$), dried over anhydrous sodium
sulphate and concentrated in vacuo. The crude product was purified via flash column chromatography (9:1 hexane:ethyl acetate) to yield alkyne $7(1.098 \mathrm{~g}, 78 \%)$ as a pale yellow oil. $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3335$ (br.), 3066, 2979, 2950, 1721, 1508, 1450, 1369, 1349, 1252, 1223, $1155,1076,1050,843,759,740 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.77(2 \mathrm{H}, \mathrm{d}, J 7.3), 7.61(2 \mathrm{H}, \mathrm{d}, J$ $7.4), 7.41(2 \mathrm{H}$, ap. t, $J 7.3), 7.33(2 \mathrm{H}$, ap. tt $J 7.4,1.1), 5.65(1 \mathrm{H}, \mathrm{d}, J 7.5), 4.47-4.31(3 \mathrm{H}, \mathrm{m})$, $4.25(1 \mathrm{H}$, ap.t, $J 7.0), 2.78(2 \mathrm{H}, \mathrm{d}, J 4.5), 1.51(9 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 169.4,155.7$, 144.1, 144.0, 141.5, 128.0, 127.3, 125.42, 125.36, 120.2, 83.2, 75.1, 67.4, 53.0, 47.4, 41.8, 28.2, 24.5; m/z LRMS (EI) 471 (${ }^{81} \mathrm{Br}^{\left.-\mathrm{M}^{+}, 60\right), ~} 469$ (${ }^{79} \mathrm{Br}-\mathrm{M}^{+}, 60$), 370 (95), 368 (100), 352 (65), 296 (35); HRMS (EI) $471.0859\left(\mathrm{M}^{+} . \mathrm{C}_{24} \mathrm{H}_{24}{ }^{81} \mathrm{BrNO}_{4}\right.$ requires 471.0872); $[\alpha]_{\mathrm{D}}=+2.4(c$ $0.5, \mathrm{MeOH})$.
(S)-Methyl 2-(tert-butoxycarbonylamino)-3-iodopropanoate, 9

Triphenylphosphine ($6.00 \mathrm{~g}, 22.9 \mathrm{mmol}$) and imidazole ($1.55 \mathrm{~g}, 22.8 \mathrm{mmol}$) were dissolved in $\mathrm{DCM}(100 \mathrm{~mL})$. The solution was cooled to $0^{\circ} \mathrm{C}$ using an ice bath and iodine $(5.80 \mathrm{~g}, 22.9$ mmol) was added in three portions under argon. The solution was allowed to warm to room temperature and stirred at room temperature for 10 minutes. The solution was then cooled again to $0{ }^{\circ} \mathrm{C}$ and a solution of Boc-Ser-OMe $\mathbf{1 0}(4.08 \mathrm{~g}, 18.6 \mathrm{mmol})$ in $\mathrm{DCM}(16 \mathrm{~mL})$ was added dropwise to the reaction mixture over 30 minutes. The reaction was then stirred at $0^{\circ} \mathrm{C}$ for 30 minutes and then at room temperature for two hours. After this time, the reaction mixture was filtered through silica/celite pad, washing with 1:1 hexane:diethyl ether, and the solvent reduced in vacuo to yield the crude product. The crude product was purified via flash
column chromatography (9:1 hexane:diethyl ether) to yield iodide 9 ($3.73 \mathrm{~g}, 61 \%$) as a white amorphous solid. $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.34(1 \mathrm{H}, \mathrm{br} . \mathrm{s}), 4.57-4.44(1 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s})$, 3.63-3.48 (2H, m), $1.46(9 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 170.4,155.2,80.4,54.0,53.4,28.6,8.2$. Data consistent with literature. ${ }^{3}$
(2S,7S)-tert-Butyl 7-(tert-butoxycarbonylamino)-2-(9H-fluoren-9-ylmethoxycarbonylamino)-7-(methoxycarbonyl)hept-4-ynoate, 6

Zinc dust ($331 \mathrm{mg}, 5.05 \mathrm{mmol}$) was weighed into a round bottomed flask. Iodine (12.8 mg , 0.05 mmol) was added and the flask was heated with a heat gun, under vacuum for ten minutes and then flushed with argon. The flask was evacuated and flushed with argon a further three times and cooled to $0^{\circ} \mathrm{C}$. Compound $9(500 \mathrm{mg}, 1.52 \mathrm{mmol})$ was dissolved in anhydrous DMF (1.5 mL) and added dropwise, via syringe, to the activated zinc at $0^{\circ} \mathrm{C}$. The reaction mixture was then allowed to warm to room temperature and stirred for 90 minutes to give the corresponding organozinc intermediate (TLC analysis was used to confirm the complete consumption of the starting material). In a separate flask, $\mathrm{CuCN}(118 \mathrm{mg}, 1.32$ $\mathrm{mmol})$ and $\mathrm{LiCl}(112 \mathrm{mg}, 2.63 \mathrm{mmol})$ were heated to $150^{\circ} \mathrm{C}$ for two hours under argon and then cooled to room temperature. DMF (2.2 mL) was added and the solution stirred for five minutes to form the soluble $\mathrm{CuCN} \cdot 2 \mathrm{LiCl}$ complex. The copper complex was then cooled to $-15^{\circ} \mathrm{C}$. Once the zinc insertion process was judged to have reached completion, stirring was ceased to allow the zinc powder to settle to the bottom of the flask. The supernatant was removed via syringe under argon (with care being taken to avoid the transfer of zinc) and
added dropwise to the copper complex at $-15^{\circ} \mathrm{C}$. Compound $7(476 \mathrm{mg}, 1.01 \mathrm{mmol})$ was then dissolved in DMF (1.5 mL) and also added dropwise to the copper complex at $-15^{\circ} \mathrm{C}$. The cooling bath was removed and the reaction mixture was stirred at room temperature for 16 hours under argon. After this time, water ($c a .50 \mathrm{~mL}$) was added and the suspension was extracted with diethyl ether $(3 \times 100 \mathrm{~mL})$, washed with brine $(c a .60 \mathrm{~mL})$, dried over anhydrous sodium sulphate and concentrated in vacuo. The crude product was purified via flash column chromatography (5:1 hexane:ethyl acetate) to yield alkyne $\mathbf{6}$ ($376 \mathrm{mg}, 63 \%$) as an amorphous white solid. $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3376,3358,3064,3038,2977,2934,1746,1737$, $1704,1516,1439,1389,1362,1219,1168,1058,1016,845,759,743 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $7.82-7.65(4 \mathrm{H}, \mathrm{m}), 7.45-7.26(4 \mathrm{H}, \mathrm{m}), 6.23(1 \mathrm{H}, \mathrm{d}, J 8.5), 6.03(1 \mathrm{H}, \mathrm{d}, J 8.7), 4.65-4.15(5 \mathrm{H}$, m), $3.71(3 \mathrm{H}, \mathrm{s}), 2.78-2.52(4 \mathrm{H}, \mathrm{m}), 1.52(9 \mathrm{H}, \mathrm{s}), 1.46(9 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 172.2$, $170.4,156.1,155.5,144.1,141.5,127.9,127.4,127.3,125.6,125.5,120.2,120.1,82.9,80.1$, $78.5,78.2,67.3,53.01,52.95,52.3,47.4,28.6,28.3,24.2,24.1 ; ~ m / z$ LRMS (EI) $592\left(\mathrm{M}^{+}\right.$, 20), 492 (25), 391 (50), 269 (45), 241 (55), 178 (100); Anal. Calc. for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{8}$: C, 66.87; H, 6.80; N, 4.73. Found: C, 66.76; H, 6.78; N, 4.70\%; $[\alpha]_{\mathrm{D}}=+11.6$ (c 0.5, MeOH).

(2S,7S)-tert-Butyl 7-amino-2-(9H-fluoren-9-ylmethoxycarbonylamino)-7-(methoxycarbonyl)hept-4-ynoate, 11^{4}

Anhydrous methanol ($2.10 \mathrm{~mL}, 1.66 \mathrm{~g}, 5.19 \mathrm{mmol}$) was added dropwise to a stirred solution of acetyl chloride ($3.60 \mathrm{~mL}, 3.97 \mathrm{~g}, 5.06 \mathrm{mmol}$) in ethyl actate (29 mL) under argon and the solution was stirred at room temperature for 20 minutes. In a separate flask, compound 6 (50
$\mathrm{mg}, 0.08 \mathrm{mmol}$) was added under argon. The 1.75 M HCl solution $(1.1 \mathrm{~mL})$ was then added to compound 6 and the reaction mixture stirred for 16 hours at room temperature. After this time, the solution was evaporated to give the crude product which was purified via flash column chromatography ($99: 1$ chloroform:methanol) to yield amine 11 ($38.4 \mathrm{mg}, 92 \%$) as a pale yellow oil. $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3375$ (br.), 3065, 3042, 2978, 2952, 2855, 1746, 1740, 1731, $1715,1517,1505,1451,1369,1350,1222,1156,1106,1057,1017,846,760,740 ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 7.79-7.63 (4H, m), 7.43-7.26 (4H, m), $6.07(1 \mathrm{H}, \mathrm{d}, J$ 8.7), 4.50-4.35 (3H, m), $4.24(1 \mathrm{H}, \mathrm{t}, J 7.1), 3.73(3 \mathrm{H}, \mathrm{s}), 3.61(1 \mathrm{H}$, ap. t, $J 4.8), 2.74-2.52(4 \mathrm{H}, \mathrm{m}), 1.97(2 \mathrm{H}, \mathrm{br} . \mathrm{s})$, $1.49(9 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 175.1,170.1,156.1,144.2,144.1,141.5,127.9,127.31$, 127.27, 125.48, 125.45, 120.2, 82.7, 79.1, 78.0, 67.3, 53.6, 53.1, 52.6, 47.4, 28.2, 25.4, 23.7; m / z LRMS (ESI) $515.2\left(\mathrm{M}+\mathrm{Na}^{+}, 20\right), 493.2(\mathrm{M}+\mathrm{H}, 100)$; HRMS (ESI) $493.2327\left(\mathrm{M}+\mathrm{H}^{+}\right.$. $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires 493.2339); Anal. Calc. for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, $68.28 ; \mathrm{H}, 6.55$; $\mathrm{N}, 5.69$. Found: C, 68.94; H, 7.01; N, 5.45\%.
(2S,7S)-tert-Butyl 2-amino-7-(tert-butoxycarbonylamino)-7-(methoxycarbonyl)hept-4ynoate, 12

Diethylamine ($0.14 \mathrm{~mL}, 98 \mathrm{mg}, 1.34 \mathrm{mmol}$) was added to a stirred solution of compound $\mathbf{6}$ $(40 \mathrm{mg}, 0.07 \mathrm{mmol})$ in anhydrous methanol $(0.6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The ice bath was removed and the reaction mixture was stirred at room temperature for 5.5 hours. After this time, the solution was evaporated to give the crude product which was purified via flash column chromatography (99:1 chloroform:methanol) to yield amine 12 ($24.5 \mathrm{mg}, 98 \%$) as a pale
yellow oil. $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3374,2978$, 2932, 1722, 1715, 1514, 1506, 1455, 1438, 1393, $1368,1250,1220,1163,1060,1021,849,779 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.77(1 \mathrm{H}, \mathrm{d}, J 8.7)$, $4.49(1 \mathrm{H}, \mathrm{dt}, J 8.8$ and 4.3$), 3.76(3 \mathrm{H}, \mathrm{s}), 3.47(1 \mathrm{H}$, ap. $\mathrm{t}, J 5.0), 2.78-2.46(4 \mathrm{H}, \mathrm{m}), 1.82(2 \mathrm{H}$, br. s), $1.47(9 \mathrm{H}, \mathrm{s}), 1.45(9 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 173.8,171.8,155.5,81.7,80.1,79.0$, $77.8,53.8,52.8,52.3,28.6,28.2,25.5,23.7 ; m / z \operatorname{LRMS}(\mathrm{EI}) 370\left(\mathrm{M}^{+}, 15\right), 269$ (85), 169 (80), 57 (100); HRMS (EI) $370.2111\left(\mathrm{M}^{+} . \mathrm{C}_{18} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6}\right.$ requires 370.2104).
(2S,7S)-7-(tert-Butoxycarbonyl)-2-(tert-butoxycarbonylamino)-7-(9H-fluoren-9-ylmethoxycarbonylamino)hept-4-ynoic acid, 13^{5}

Trimethyltinhydroxide ($76.3 \mathrm{mg}, 0.42 \mathrm{mmol}$) was added to a stirred solution of compound $\mathbf{6}$ $(50 \mathrm{mg}, 0.08 \mathrm{mmol})$ in 1,2-dichloroethane $(2.0 \mathrm{~mL})$ under argon. The reaction mixture was then heated at $70{ }^{\circ} \mathrm{C}$ for 4 hours. After this time, the reaction mixture was concentrated in vacuo, and the residue dissolved in ethyl acetate (ca. 15 mL). The organic phase was washed with $0.5 \mathrm{M} \mathrm{HCl}_{(\mathrm{aq})}(3 \times 15 \mathrm{~mL})$ and brine $(\mathrm{ca} 15 \mathrm{~mL}$.$) , dried over anhydrous sodium sulphate,$ filtered and concentrated in vacuo. The product was then dissolved in the minimum amount of ethyl acetate possible (ca. 0.3 mL) and an excess of hexane added (ca. 10 mL). The flask was then sealed and placed in a freezer overnight to yield white crystals. Collection of the crystals by filtration yielded carboxylic acid $\mathbf{1 3}$ ($38.3 \mathrm{mg}, 78 \%$). Note: flash column chromatography resulted in the decomposition of compound $13 . \mathrm{mp} 121.5-122.5^{\circ} \mathrm{C} ; \mathrm{v}_{\max }$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3370$ (br.), 2978, 2928, 2855, 1715, 1516, 1451, 1394, 1368, 1351, 1250, 1224, $1159,1058,847,759,740 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.80-7.26(8 \mathrm{H}, \mathrm{m}), 6.02(1 \mathrm{H}, \mathrm{d}, J 8.7), 5.88$
$(1 \mathrm{H}, \mathrm{d}, J 8.6), 4.65-4.05(5 \mathrm{H}, \mathrm{m}), 2.80-2.43(4 \mathrm{H}, \mathrm{m}), 1.49(9 \mathrm{H}, \mathrm{s}), 1.44(9 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}(75 \mathrm{MHz}$; CDCl_{3}) 173.7 170.4, 156.0, 155.7, 144.3, 143.9, 141.6, 141.5, 127.9, 127.3, 125.6, 125.4, 120.2, 83.0, 80.5, 78.4, 78.2, 67.2, 53.0, 52.1, 47.3, 28.5, 28.2, 23.7, 23.5. m / z LRMS (ESI) $601.3\left(\mathrm{M}+\mathrm{Na}^{+}, 100\right)$; Anal. Calc. for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{8}$: C, 66.42 ; H, 6.62; N, 4.84. Found: C, 66.17; H, 6.52; N, 4.79\%.
(2S,7S)-2-(9H-Fluoren-9-ylmethoxycarbonylamino)-7-methoxycarbonyl-7-(phthalimido)hept-4-ynoic acid, 14

Trifluoroacetic acid (5.2 mL) was added dropwise to a stirred solution of compound $\mathbf{6}$ (120 $\mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{DCM}(0.3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 4 hours at 0 ${ }^{\circ} \mathrm{C}$. After this time, the solvent was removed in vacuo to give the crude deprotected product. Anhydrous toluene (20 mL) was then added followed by phthalic anhydride ($33 \mathrm{mg}, 0.22$ $\mathrm{mmol})$ and triethylamine ($0.085 \mathrm{~mL}, 61 \mathrm{mg}, 0.61 \mathrm{mmol}$). The mixture was refluxed under Dean-Stark conditions for 2.5 hours. The volatiles were evaporated in vacuo and the residue dissolved in ethyl acetate (ca. 60 mL). The organic phase was washed with 10% citric acid $_{(\mathrm{aq})}$ (ca. 15 mL), water (ca. 15 mL), saturated $\mathrm{NaHCO}_{3(\text { aq) }}(\mathrm{ca}$.15 mL) and brine (ca. 15 mL), dried over anhydrous sodium sulphate and concentrated in vacuo. The crude product was purified via flash column chromatography (19:1 chloroform:methanol) to yield carboxylic acid 14 ($59 \mathrm{mg}, 51 \%$) as a pale yellow foam. $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3374$ (br.), 3065, 2953, 2925, $1776,1748,1716,1518,1450,1436,1390,1340,1251,1213,1110,1057,977,760,741$,
$720 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.88-7.20(13 \mathrm{H}, \mathrm{m}), 5.79(1 \mathrm{H}, \mathrm{d}, J 5.1), 5.04(1 \mathrm{H}, \mathrm{t}, J 7.5), 4.50-$ $4.10(4 \mathrm{H}, \mathrm{m}), 3.69(3 \mathrm{H}, \mathrm{s}), 3.19-2.98(2 \mathrm{H}, \mathrm{m}), 2.80-2.42(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 174.6$, $168.5,167.8,156.2,144.1,143.9,141.4,134.6,131.8,127.9,127.3,125.51,125.46,124.4$, $124.0,120.2,78.9,77.5,67.5,53.2,52.9,51.2,47.3,22.8,20.2 ; m / z$ LRMS (EI) $566\left(\mathrm{M}^{+}, 5\right)$, 316 (15), 178 (100), 147 (75); HRMS (EI) $566.1697\left(\mathrm{M}^{+} . \mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{8}\right.$ requires 566.1689).

(2S,7S,Z)-tert-Butyl 7-(tert-butoxycarbonylamino)-2-(9H-fluoren-9-

 ylmethoxycarbonylamino)-7-(methoxycarbonyl)hept-4-enoate, 15^{6}

To a solution of compound $\mathbf{6}(100 \mathrm{mg}, 0.17 \mathrm{mmol})$ in a $1: 1$ mixture of hexane/ethyl acetate (4 mL) was added palladium/barium sulphate (10% palladium by weight, 30 mg) under argon. A balloon fitted with a glass tap attachment was filled with argon and evacuated. The balloon was then filled with hydrogen and attached to the top of the flask. The inert atmosphere was then exchanged for hydrogen by briefly exposing the reaction vessel to vacuum (1-2 seconds) and filling the vessel with hydrogen through the balloon on the top. The evacuation of the atmosphere and filling with hydrogen was performed twice. The reaction was then left open to the balloon and stirred vigorously for 2 hours at room temperature. After this time, the balloon was removed and the reaction mixture diluted with ethyl acetate (ca. 15 mL), filtered through a celite pad, washing with ethyl acetate (ca. 40 mL), and reduced in vacuo. The crude product was purified via flash column chromatography (5:1 hexane:ethyl acetate) to yield alkene $15(88 \mathrm{mg}, 88 \%)$ as a colourless oil. $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3363$ (br.), 3004, 2978, 2954, $2934,1718,1516,1451,1393,1368,1353,1250,1222,1159,1050,1024,846,760,741 ; \delta_{\mathrm{H}}$ ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $7.76(2 \mathrm{H}, \mathrm{d}, J 7.4), 7.61(2 \mathrm{H}, \mathrm{m}), 7.40(2 \mathrm{H}$, ap.t, $J 7.3), 7.31(2 \mathrm{H}$, ap.t, J
7.4), $5.58-5.37(3 H, m), 5.14(1 \mathrm{H}, \mathrm{d}, J 7.8), 4.52-4.16(5 \mathrm{H}, \mathrm{m}), 3.72(3 \mathrm{H}, \mathrm{s}), 2.68-2.35(4 \mathrm{H}$, m), $1.47(9 \mathrm{H}, \mathrm{s}), 1.45(9 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 172.6,170.9,155.9,155.3,144.1,141.5$, $127.9,127.74,127.69,127.3,125.4,120.2,82.6,80.4,67.3,54.0,53.2,52.6,47.4,30.71$, 30.67, 28.5, 28.3; m/z LRMS (EI) 594 ($\mathrm{M}^{+}, 10$), 351 (25), 271 (35), 243 (100); Anal. Calc. for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{8}$: C, 66.65; H, 7.12; N, 4.71. Found: C, $66.44 ; \mathrm{H}, 7.06 ; \mathrm{N}, 4.35 \% ;[\alpha]_{\mathrm{D}}=+5.8$ $(c 0.5, \mathrm{MeOH})$.

(2S,7S)-tert-Butyl 7-(tert-butoxycarbonylamino)-2-(9H-fluoren-9-

ylmethoxycarbonylamino)-7-(methoxycarbonyl)heptanoate, 16

To a solution of compound $\mathbf{6}(42 \mathrm{mg}, 0.07 \mathrm{mmol})$ in ethyl acetate $(2 \mathrm{~mL})$ was added palladium on carbon (10% palladium by weight, 14 mg) under argon. A balloon fitted with a glass tap attachment was filled with argon and evacuated. The balloon was then filled with hydrogen and attached to the top of the flask. The inert atmosphere was then exchanged for hydrogen by briefly exposing the reaction vessel to vacuum (1-2 seconds) and filling the vessel with hydrogen through the balloon on the top. The evacuation of the atmosphere and filling with hydrogen was performed twice. The reaction was then left open to the balloon and stirred for 20 hours at room temperature. After this time, the reaction mixture was diluted with ethyl acetate (ca. 15 mL), filtered through a celite pad, washing with ethyl acetate (ca. 40 mL), and reduced in vacuo. The crude product was purified via flash column chromatography (5:1 hexane:ethyl acetate) to yield alkane $16(42 \mathrm{mg}, 99 \%)$ as a colourless oil. ${ }^{7} v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3347$ (br.), 3003, 2977, 2935, 2865, 1717, 1517, 1451, 1392, 1367, 1248, 1223, 1162, 1106, 1078, 1048, 848, 760, $741 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.76(2 \mathrm{H}, \mathrm{d}, J$
$7.4), 7.60(2 \mathrm{H}, \mathrm{d}, J 7.3), 7.40(2 \mathrm{H}$, ap. t, $J 7.4), 7.31(2 \mathrm{H}$, ap.t, $J 7.3), 5.34(1 \mathrm{H}, \mathrm{d}, J 8.1), 5.03$ $(1 \mathrm{H}, \mathrm{d}, J 8.0), 4.50-4.15(5 \mathrm{H}, \mathrm{m}), 3.73(3 \mathrm{H}, \mathrm{s}), 1.90-1.55(4 \mathrm{H}, \mathrm{m}), 1.47(9 \mathrm{H}, \mathrm{s}), 1.44(9 \mathrm{H}, \mathrm{s})$, $1.43-1.26(4 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 173.5,171.8,156.1,155.6,144.2,144.1,141.5$, $127.9,127.3,125.3,120.2,82.4,80.1,67.1,54.4,53.5,52.5,47.4,32.9,32.8,28.5,28.3$, 25.2, 24.9; m/z LRMS (EI) $596\left(\mathrm{M}^{+}, 5\right), 364$ (20), 273 (100); Anal. Calc. for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{8} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 64.48 ; \mathrm{H}, 7.54$; N, 4.56. Found: C, $64.63 ; \mathrm{H}, 7.33 ; \mathrm{N}, 4.38 \% ;[\alpha]_{\mathrm{D}}=-$ $14.4(c 0.5, \mathrm{MeOH})$.
(S)-tert-Butyl 2-(9H-fluoren-9-ylmethoxycarbonylamino)pent-4-enoate, 17

A solution of tert-butyl trichloroacetimidate ($7.772 \mathrm{~g}, 35.6 \mathrm{mmol}$) in cyclohexane (25 mL) was added to a solution of (S)-2-(9H-fluoren-9-ylmethoxycarbonylamino)pent-4-enoic acid $(3.000 \mathrm{~g}, 8.89 \mathrm{mmol})$ in ethyl acetate $(54 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 67 hours. After this time, the reaction mixture was concentrated in vacuo and purified via flash column chromatography (9:1 hexane:ethyl acetate) to yield alkene $\mathbf{1 7}$ $(3.169 \mathrm{~g}, 91 \%)$ as a colourless oil. $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.77(2 \mathrm{H}, \mathrm{d}, J 7.4), 7.60(2 \mathrm{H}, \mathrm{dd}, J$ $7.4,0.6), 7.40(2 \mathrm{H}$, ap. td, $J 7.4,0.6), 7.31(2 \mathrm{H}$, ap. td, $J 7.4,1.1), 5.80-5.64(1 \mathrm{H}, \mathrm{m}), 5.36$ $(1 \mathrm{H}, \mathrm{d}, J 7.9), 5.15(2 \mathrm{H}$, ap. d, $J 11.8), 4.48-4.29(3 \mathrm{H}, \mathrm{m}), 4.23(1 \mathrm{H}, \mathrm{t}, J 7.1), 2.66-2.45(2 \mathrm{H}$, $\mathrm{m}), 1.48(9 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 171.0,155.8,144.1,144.0,141.5,132.4,127.9,127.2$, $125.3,120.2,119.3,82.5,67.2,53.8,47.4,37.2,28.3$. Data consistent with literature. ${ }^{8}$

(2S,7S,E)-tert-Butyl 7-(tert-butoxycarbonylamino)-2-(9H-fluoren-9-

 ylmethoxycarbonylamino)-7-(methoxycarbonyl)hept-4-enoate, 19^{9}

Compound $\mathbf{1 7}(335 \mathrm{mg}, 0.852 \mathrm{mmol})$ and compound $\mathbf{1 8}(216 \mathrm{mg}, 0.942 \mathrm{mmol})$ were added to an oven dried round bottomed flask under argon. DCM (8.5 mL) and Grubbs second generation catalyst (20) ($73 \mathrm{mg}, 0.085 \mathrm{mmol}$) were added and the reaction was refluxed for 6.5 hours under argon. The reaction mixture was allowed to cool to room temperature and $\mathrm{Pb}(\mathrm{OAc})_{4}(112 \mathrm{mg}, 0.252 \mathrm{mmol})$ was added. The reaction mixture was stirred for 16 hours at room temperature. After this time, the reaction mixture was diluted with DCM (ca. 15 mL), filtered through a celite/silica (1:1) pad, washing with DCM (ca. 100 mL), and reduced in vacuo. The crude product was purified via flash column chromatography ($9: 1$ toluene:diethyl ether) to yield alkene 19 ($287 \mathrm{mg}, 57 \%$) as a colourless oil. $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3354$ (br.), 3065, 3041, 2978, 2934, 1716, 1508, 1451, 1367, 1352, 1249, 1221, 1161, 1081, 972, 847, 760, 740,$703 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.76(2 \mathrm{H}, \mathrm{d}, J 7.4), 7.63(2 \mathrm{H}, \mathrm{d}, J 7.3), 7.40(2 \mathrm{H}$, ap.t, $J 7.4)$, $7.31(2 \mathrm{H}$, ap. td, $J 7.3,1.1), 5.52-5.35(3 \mathrm{H}, \mathrm{m}), 5.18(1 \mathrm{H}, \mathrm{d}, J 9.5), 4.50-4.18(5 \mathrm{H}, \mathrm{m}), 3.72$ $(3 \mathrm{H}, \mathrm{s}), 2.57-2.37(4 \mathrm{H}, \mathrm{m}), 1.47(9 \mathrm{H}, \mathrm{s}), 1.44(9 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 172.7,170.9$, $155.9,155.4,144.1,141.5,128.8,128.6,127.9,127.3,125.4,120.2,82.5,80.2,67.2,54.0$, 53.3, 52.5, 47.4, 35.83, 35.78, 28.5, 28.3; m/z LRMS (EI) 594 (${ }^{+}, 20$), 550 (35), 494 (40), 465 (40), 393 (100), 351 (45); Anal. Calc. for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{8} \cdot 1.2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 64.31$; H, 7.26; N, 4.55. Found: C, $64.13 ; \mathrm{H}, 7.33 ; \mathrm{N}, 4.38 \% ;[\alpha]_{\mathrm{D}}=+1.2(c 0.5, \mathrm{MeOH})$.

Assignment of alkene geometry for compounds 15 and 19

Alkene carbon shifts in ${ }^{13} \mathrm{C}$ NMR spectra are, in general, higher for (E)-alkenes than the equivalent (Z)-alkenes. Kremminger and Undheim have shown this to be the case for the unprotected analogues of $\mathbf{1 5}$ and $\mathbf{1 9}$ (128.85 ppm for the (E)-isomer and 126.84 ppm for the (Z)-isomer of ($2 S, 7 S$)-2,7-diamino-4-octenedioic acid dihydrochloride). ${ }^{10}$ The ppm values of the alkene carbons are 127.74 and 127.69 for compound $\mathbf{1 5}$ and 128.77 and 128.62 for compound 19 (Figure 1).

Additionally, the IR spectra of compounds 15 and 19 can be used to assign the alkene stereochemistry (see Figure 2). The IR spectrum of compound 19 clearly shows a double bond absorption at $972 \mathrm{~cm}^{-1}$. This peak corresponds to a C-H out of plane deformation of an (E)-alkene. ${ }^{11}$ As predicted, this absorption is not present in the IR spectra of compound $\mathbf{1 5}$.

Figure 1. A section of the ${ }^{13} \mathrm{C}$ NMR spectra for compounds 15 and 19 with the alkene carbon peaks highlighted.

Figure 2. IR spectra for compounds 15 and 19.

References

1. S. Collet, P. Bauchat, R. Danion-Bougot, D. Danion, Tetrahedron: Asymmetry 1998, 9, 2121.
2. M. D. Middleton, B. P. Peppers, S. T. Diver, Tetrahedron 2006, 62, 10528.
3. J. A. Bajgrowicz, A. El Hallaoui, R. Jacquier, C. Pigiere, P. Viallefont, Tetrahedron 1985, 41, 1833. This compound is commercially available from Sigma-Aldrich.
4. Procedure adapted from: K. R. West, K. D. Bake, S. Otto, Org. Lett. 2005, 7, 2615.
5. Procedure adapted from: K. C. Nicolaou, A. A. Estrada, M. Zak, S. H. Lee, B. S. Safina, Angew. Chem. Int. Ed. 2005, 44, 1378. Note: Nicolaou and co-workers reported that this method for the selective hydrolysis of methyl esters proceeds with nearly complete retention of stereochemistry (the least selective reaction reported yielded a product with a 94:6 diastereomeric ratio). Careful inspection of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 3}$ only indicates the formation of one diastereomer.
6. For the assignment of the alkene geometry in compound $\mathbf{1 5}$ see page 15 .
7. We did not observe the deprotection of the Fmoc group under these conditions (T. Maegawa, Y. Fujiwara, T. Ikawa, H. Hisashi, Y. Monguchi, H. Sajiki, Amino Acids 2009, 36, 493).
8. M. J. O'Donnell, F. Delgado, Tetrahedron 2001, 57, 6641.
9. For the assignment of the alkene geometry in compound $\mathbf{1 9}$ see page 15 .
10. P. Kremminger and K. Undheim, Tetrahedron 1997, 53, 6925.
11. D. H. Williams, I. Fleming, Spectroscopic methods in organic chemistry (Fourth edition revised), 1989, page 41.

[^0]: ${ }^{a}$ Division of Pharmaceutical Chemistry, Faculty of Pharmacy, PO Box 56, FI-00014, University of Helsinki, Helsinki, Finland.

