Nucleation Control in the Aggregative Growth of Bismuth Nanocrystals

Vernal N. Richards, Shawn P. Shields, and William E. Buhro*

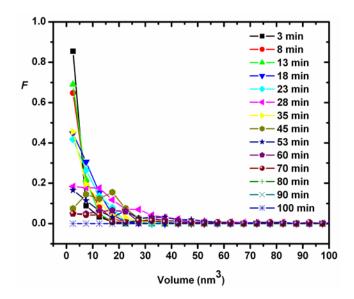

Department of Chemistry and Center for Materials Innovation, Washington University, St. Louis, Missouri 63130-4899.

Table of Contents:

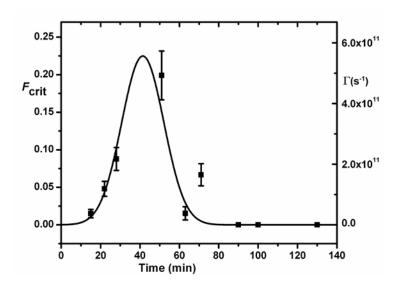
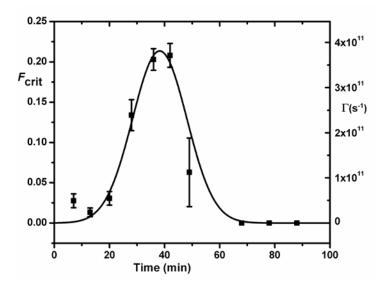
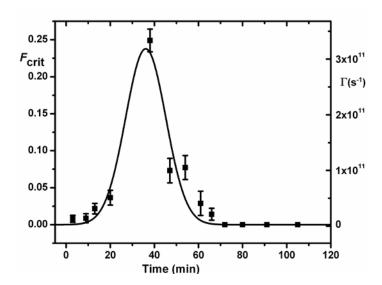
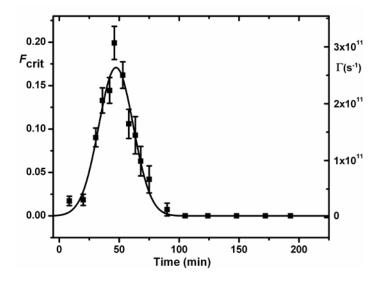
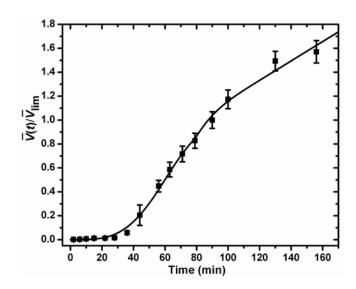

Table S1. List of abbreviations and their definitions.	S2
Figure S1. CSDs for the Bi-nanocrystal growth conducted at a Na[N(SiMe ₃) ₂] concentration of 0.049 M	S2
Figure S2. Nucleation function and Gaussian fit for nanocrystal growth conducted at a Na[N(SiMe ₃) ₂] concentration of 0.062 M	S3
Figure S3. Nucleation function and Gaussian fit for nanocrystal growth conducted at a Na[N(SiMe ₃) ₂] concentration of 0.076 M	S 3
Figure S4. Nucleation function and Gaussian fit for nanocrystal growth conducted at a Na[N(SiMe ₃) ₂] concentration of 0.087 M.	S4
Figure S5. Nucleation function and Gaussian fit for nanocrystal growth conducted at a Na[N(SiMe ₃) ₂] concentration of 0.099 M.	S4
Figure S6. Kinetic data and the eq-1 fit for nanocrystal growth conducted at a Na[N(SiMe ₃) ₂] concentration of 0.063 M.	S5
Figure S7. Kinetic data and the eq-1 fit for nanocrystal growth conducted at a Na[N(SiMe ₃) ₂] concentration of 0.076 M.	S5
Figure S8. Kinetic data and the eq-1 fit for nanocrystal growth conducted at a Na[N(SiMe ₃) ₂] concentration of 0.087 M.	S6
Figure S9. Kinetic data and the eq-1 fit for nanocrystal growth conducted at a Na[N(SiMe ₃) ₂] concentration of 0.099 M	S6

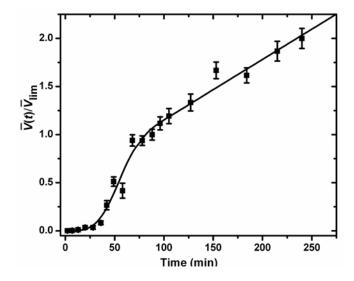
Table S1. List of abbreviations and their definitions.

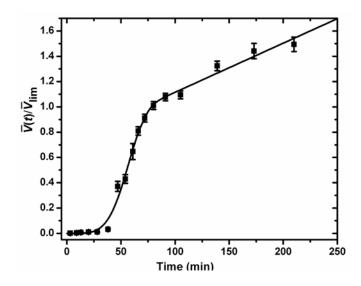

CSD	Nanocrystal size distribution
Γ	Nucleation rate (in s ⁻¹)
$\Gamma_{ m max}$	Maximum nucleation rate (in s ⁻¹)
$\Delta t_{ m n}$	Time window for nucleation (in min)
τ_{n}	Time at which Γ_{max} is achieved (in min)
$ au_{ m OR}$	Onset time for Ostwald Ripening (in min)
$V_{ m crit}$	Volume of the critical aggregate (in nm ³)
$F_{ m crit}$	Fraction of the aggregates in the CSD having the critical
	volume
$\overline{V}(t)$	Nanocrystal mean volume at time t (in nm ³)
$\overline{V_{ m lim}}$	Final mean nanocrystal volume (in nm ³), at the end of the
11111	active-growth regime
$k_{ m g}$	Growth rate (in s ⁻¹)
k_{OR}	Ostwald Ripening rate (in s ⁻¹)
n	Avrami exponent (unitless)


Figure S1. CSDs for the Bi nanocrystal growth conducted at $Na[N(SiMe_3)_2]$ concentration of 0.049 M, at the times indicated in the inset legend. The data were binned using a bin size of 5 nm³. Peaks at the critical-aggregate size are not readily evident.


Figure S2. Nucleation function and Gaussian fit for the synthesis conducted at a Na[N(SiMe₃)₂] concentration of 0.063 M. The left and right axes correspond to the critical-aggregate fraction F_{crit} and the scaled nucleation rate Γ, respectively.


Figure S3. Nucleation function and Gaussian fit for the synthesis conducted at a Na[N(SiMe₃)₂] concentration of 0.076 M. The left and right axes correspond to the critical-aggregate fraction F_{crit} and the scaled nucleation rate Γ, respectively.


Figure S4. Nucleation function and Gaussian fit for the synthesis conducted at a Na[N(SiMe₃)₂] concentration of 0.087 M. The left and right axes correspond to the critical-aggregate fraction F_{crit} and the scaled nucleation rate Γ , respectively.


Figure S5. Nucleation function and Gaussian fit for the synthesis conducted at a Na[N(SiMe₃)₂] concentration of 0.099 M. The left and right axes correspond to the critical-aggregate fraction F_{crit} and the scaled nucleation rate Γ, respectively.

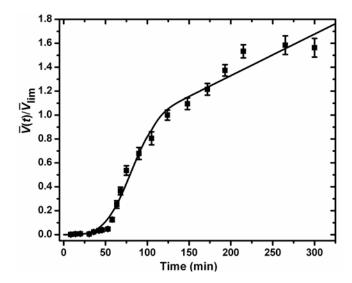

Figure S6. Kinetic data and the eq-1 fit for nanocrystal growth conducted at a $Na[N(SiMe_3)_2]$ concentration of 0.063 M.

Figure S7. Kinetic data and the eq-1 fit for nanocrystal growth conducted at a $Na[N(SiMe_3)_2]$ concentration of 0.076 M.

Figure S8. Kinetic data and the eq-1 fit for nanocrystal growth conducted at a $Na[N(SiMe_3)_2]$ concentration of 0.087 M.

Figure S9. Kinetic data and the eq-1 fit for nanocrystal growth conducted at a $Na[N(SiMe_3)_2]$ concentration of 0.099 M.