## SUPPORTING INFORMATION

1. NMR and ESI-MS spectra of new compounds
2. Synthesis of 2,2'-O-anhydro-1-( $\beta$-D-arabinofuranosyl)uracil 7
3. Synthesis of 2'-azido-2'-deoxyuridine 8
4. Chemical synthesis of dinucleoside 24
5. LC-MS spectrum of the reaction mixture of dinucleoside $\mathbf{2 7}$
6. HPLC-spectra of the synthesized oligonucleotides
7. ESI-MS data of the synthesized oligonucleotides
8. HPLC-spectra of the crosslinking and aromatization reactions
9. MS-data of crosslinked duplexes
10. Melting temperatures of the crosslinked duplexes

## 1. NMR and ESI-MS spectra of new compounds



Figure S1: ${ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{MeOD}, 300 \mathrm{MHz})$ of nucleoside 13


Figure S2: ${ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{MeOD}, 75 \mathrm{MHz})$ of nucleoside 13


Figure S3: ESI-MS of nucleoside 13


Figure S4: ${ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{MeOD}, 300 \mathrm{MHz})$ of the DMTr-protected form of nucleoside 13


Figure S5: ${ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{MeOD}, 125 \mathrm{MHz})$ of the DMTr-protected form of nucleoside 13


Figure S6: ESI-MS of the DMTr-protected form of nucleoside 13


Figure $\mathrm{S} 7:{ }^{31} \mathrm{P}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 121 \mathrm{MHz}\right)$ of nucleoside 14


Figure S8: ESI-MS of nucleoside 14

## 2. Synthesis of 2,2'-O-anhydro-1-( $\beta$-D-arabinofuranosyl)uracil 7

Uridine ( $4.99 \mathrm{~g}, 25.6 \mathrm{mmol}$ ) was added to a solution of diphenylcarbonate $(5.49 \mathrm{~g}, 25.6$ mmol ) in dry DMF. The mixture was heated to $80^{\circ} \mathrm{C}$ until a white turbid solution was obtained. Then $\mathrm{NaHCO}_{3}(0.046 \mathrm{~g}, 0.55 \mathrm{mmol})$ was added and the reaction mixture was stirred at $115^{\circ} \mathrm{C}$. Shortly after, the solution became clear yellow and gas evolution could be observed. After about 4 h , gas evolution subsided and a white precipitate was formed. The reaction mixture was allowed to cool to room temperature and the white precipitate was filtered and washed with methanol. Partial evaporation of the filtrate resulted in further precipitation, the product could again be filtrated and the same protocol was repeated twice more. Ultimately, the product was obtained as a white powder in $74 \%$ yield. See ref 44 for analytical data.

## 3. Synthesis of 2'-azido-2'-deoxyuridine 8

A solution of LiF $(0.620 \mathrm{~g}, 23.9 \mathrm{mmol})$ in dry DMF ( 13.3 ml ) was heated until $105^{\circ} \mathrm{C}$, after which $\mathrm{Me}_{3} \mathrm{SiN}_{3}(3.2 \mathrm{ml}, 38.0 \mathrm{mmol})$ and TMEDA ( 16.6 ml ) were added. The solution was allowed to stir for $30^{\prime}$ after which nucleoside $7(3.00 \mathrm{~g}, 13.3 \mathrm{mmol})$ was added and the mixture was stirred for another 64 h . After allowing the reaction mixture to cool to room temperature, it was concentrated by rotary evaporation and the residue was redissolved in $\mathrm{MeOH}(10 \mathrm{ml})$. The majority of the salts and starting material were then precipitated with ethylacetate $(40 \mathrm{ml})$. The residue was filtered off and washed with $\mathrm{MeOH}: E t O A c(1: 4)$. The filtrate was evaporated on silica ( 50 ml ) and a first rudimentary purification is performed by flash chromatography (EtOAc:MeOH 4:1). The resulting brown foam is again purified by flash chromatograpy using DCM:MeOH 9:1 after which the product is obtained as an offwhite foam ( $2.59 \mathrm{~g}, 9.62 \mathrm{mmol}$ ) in $72 \%$ yield. See ref 45 for analytical data.

## 4. Synthesis of crosslinked dinucleoside 24

## 3',5'-O-bisacetyl-2'-deoxy-2'-[3-(2-furyl)propanamido)]uridine 19

Acetic anhydride ( $80 \mu \mathrm{l}, 0.846 \mathrm{mmol}$ ) was added to a solution of nucleoside $9(49.5 \mathrm{mg}$, $0.136 \mathrm{mmol})$, DMAP ( $2.6 \mathrm{mg}, 0.021 \mathrm{mmol}$ ) and TEA ( $130 \mu \mathrm{l}, 0.925 \mathrm{mmol}$ ) in acetonitrile $(1.5 \mathrm{ml})$ upon which the turbid solution rapidly turned clear. The reaction was allowed to stir for 2 h at room temperature before it was taken up in $\operatorname{EtOAc}(20 \mathrm{ml})$ and washed twice with saturated $\mathrm{NaHCO}_{3, \mathrm{aq}}(2 \times 20 \mathrm{ml})$ and once with saturated $\mathrm{NaCl}_{\mathrm{aq}}(20 \mathrm{ml})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The residue was purified by flash chromatography with DCM:MeOH 98:2 after which the product ( $40.7 \mathrm{mg}, 0.091 \mathrm{mmol}$ ) was obtained in $67 \%$ yield. Rf: 0.53 (DCM:MeOH 9:1); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (MeOD, 300 Hz ): 6.16 (d, J $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~m}, 1 \mathrm{H}), 4.28(\mathrm{~d}, \mathrm{~J}=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{dd}, \mathrm{J}=11.3$ and $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H})$, $1.38(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{~m}, 2 \mathrm{H}), 0.63(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (MeOD, 75 MHz$): 175.3,172.3,166.0$, $155.6,152.6,141.9,111.2,106.2,103.5,88.1,85.2,82.8,73.9,71.6,65.3,56.1,54.2,35.0$, 24.8, 20.7; HRMS (+ESI): Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{9}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 450.1507; found: 450.1506.

## 3',5'-O-bisacetyl-2'-deoxycytidine 21

Acetic anhydride ( $250 \mu \mathrm{l}, 2.64 \mathrm{mmol}$ ) was added to a solution of $2^{\prime}$-deoxycytidine 20 $(0.301 \mathrm{~g}, 1.32 \mathrm{mmol})$, DMAP $(14.8 \mathrm{mg}, 0.121 \mathrm{mmol})$ and TEA $(410 \mu \mathrm{l}, 2.92 \mathrm{mmol})$ in acetonitrile ( 15 ml ). The reaction mixture was stirred overnight at room temperature, then quenched with $\mathrm{MeOH}(100 \mu \mathrm{l})$ and concentrated by rotary evaporation. The residue was purified by flash chromatography with $\mathrm{DCM}: \mathrm{MeOH} 95: 5$. The product $(0.278 \mathrm{mg}, 0.894$ mmol) was obtained in 68\% yield. Rf: 0.31 (DCM:MeOH 9:1), ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ : $7.48(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dd}, \mathrm{J}=7.6$ and $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~m}$, $1 \mathrm{H}), 4.26(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ :
$176.5,170.3,165.8,155.5,139.8,95.3,86.4,82.1,74.2,63.8,38.2,20.7$; HRMS (+ESI): Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{6}\left(\mathrm{M}+\mathrm{H}^{+}\right): 312.1190$; found: 312.1191.

## Crosslinked dinucleoside 24

Protected nucleoside 19 ( $20.1 \mathrm{mg}, 0.045 \mathrm{mmol}$ ) was dissolved in THF:acetone: $\mathrm{H}_{2} \mathrm{O}$ 5:4:2 $(1 \mathrm{ml})$ after which pyridine $(11 \mu 1,0.136 \mathrm{mmol})$ and NBS $(8.5 \mathrm{mg}, 0.048 \mathrm{mmol})$ were added. The reaction was followed by TLC, after 1 h the starting nucleoside was completely consumed and protected cytidine $21(13.8 \mathrm{mg}, 0.045 \mathrm{mmol})$ was added. The reaction was allowed to stir overnight at room temperature, then quenched by the addition of acetone (2 ml ) and evaporated to dryness. The resulting mixture was purified by flash chromatography using a gradual elution from DCM:MeOH 99:1 to 9:1. The desired product ( $26.0 \mathrm{mg}, 0.0334$ mmol) was obtained together with the partially deprotected product. LC-MS (negative mode): $\mathrm{t}_{\mathrm{r}}: 10.92 \mathrm{~min}$. (nucleoside 22 - Ac, calculated for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{6} \mathrm{O}_{15}$ : 734.2, found: 733.2 [M] ${ }^{-}$), tr : 11.61 min. (nucleoside 22, calculated for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{16}$ : 776.3, found: 775.1 [M] $]^{-}$)

Crosslinked dinucleoside 22 ( 26.0 mg ; 0.034 mmol ) was then dissolved in methanolic ammonia ( $1.25 \mathrm{ml}, 1.4 \mathrm{~N}$ ) and was allowed to react overnight at room temperature. After evaporation to dryness, the product ( $22.0 \mathrm{mg}, 0.036 \mathrm{mmol}$ ) was obtained in high enough purity to proceed with the next reaction. The overall yield of the crosslinking and deprotection reactions was $80 \%$. The purity of the material was checked by HPLC and the identity checked by ESI-MS.

RP-HPLC showed the presence of two diastereomers with $\mathrm{t}_{\mathrm{r}}: 10.1 \mathrm{~min}$. and $\mathrm{t}_{\mathrm{r}}: 10.5 \mathrm{~min}$. However under the conditions used for LC-MS both diastereomers eluted together. HRMS (+ESI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{6} \mathrm{O}_{12}\left(\mathrm{M}+\mathrm{H}^{+}\right)$: 609.2151; found: 609.2144.

Subsequently, dinucleoside $23(10 \mathrm{mg}, 0.016 \mathrm{mmol})$ was dissolved in $0.1 \mathrm{M}_{\mathrm{HCl}}^{\mathrm{aq}}$ ( 10 ml ). The reaction was stirred at room temperature and followed by RP-HPLC. After 9 days the
reaction mixture was diluted with $40 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ and lyophilized to dryness. The product was purified by RP-HPLC, allowing unambiguous characterization by NMR.

HRMS (+ESI): Calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{6} \mathrm{O}_{11}\left(\mathrm{M}+\mathrm{H}^{+}\right): 591.2046$; found: 591.2040; Calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{11} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)$: 613.1895; found: 613.1863; Calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{11} \mathrm{~K}\left(\mathrm{M}+\mathrm{K}^{+}\right)$: 629.1605; found: 629.1584
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 700 \mathrm{MHz}\right)$ :

| structuur | atomen | $\delta$ (ppm) | integratie | multipliciteit | J (Hz) |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | a | 7.88 | , | d | 7.9 |
|  | b | 7.56 | 1 | d | 7.9 |
|  | c | 7.22 | 1 | S |  |
|  | d | 6.73 | 1 | d | 7.9 |
|  | e | 6.44 | 1 | t | 6.8 |
|  | f | 6.04 | 1 | d | 8.4 |
|  | g | 5.91 | 1 | d | 8.3 |
|  | h | 4.63 | 1 | dd | 8.1 and 5.9 |
|  | i | 4.53 | 1 | m |  |
|  | j | 4.37 | 1 | dd | 5.7 and 2.2 |
|  | k | 4.28 | 2 | d | 4.0 |
|  | 1 | 4.22 | 1 | m |  |
|  | m | 4.11 | 1 | dd | 8.8 and 4.0 |
|  | n | 3.86 | 4 | m |  |
|  | o | 3.00 | 2 | m |  |
|  | p | 2.62 | 2 | m |  |
|  | q | 2.43 | 2 | m |  |



Figure S9: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 700 \mathrm{MHz}\right)$ of crosslinked dinucleoside 24
${ }^{13} \mathbf{C}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 176 \mathrm{MHz}\right)$ :

| structuur | atomen | $\delta$ (ppm) | atomen | $\delta$ (ppm) |
| :---: | :---: | :---: | :---: | :---: |
|  <br> 24 | A | 210.3 | K | 102.8 |
|  | B | 175.6 | L | 99.2 |
|  | C | 166.0 | M | $86.9+86.8$ |
|  | D | 151.9 | N | $86.4+85.8$ |
|  | E | 148.0 | O | $70.6+70.1$ |
|  | F | 146.8 | P | $61.5+61.4$ |
|  | G | 141.8 | Q | 55.0 |
|  | H | 132.3 | R | 39.2 |
|  | I | 128.7 | S | 39.1 |
|  | J | 122.6 | T | $36.9+29.2$ |



Figure $\mathrm{S} 10:{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 176 \mathrm{MHz}\right)$ of crosslinked dinucleoside 24

## ESI-MS:



Figure S11: ESI-MS spectrum for crosslinked dinucleoside 24

## 5. LC-MS spectrum of the reaction mixture of dinucleoside 27








| $\operatorname{Tr}$ (min.) | compound | Chemical formula | Calculated mass | Mass found |
| :--- | :--- | :--- | :--- | :--- |
| 10.38 | nucleoside 21 | $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{6}$ | 311.1 | 310.0 |
| 10.61 | nucleoside 26 - 2Ac | $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{9}$ | 398.1 | 397.0 |
| 11.24 | nucleoside 26 | $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{11}$ | 482.1 | 480.0 |
| $11.37,11.60$ | nucleosides 27 \& 30 | $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{~N}_{7} \mathrm{O}_{16}$ | 777.3 | 776.1 |
| 11.77 | nucleoside 25 | $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{9}$ | 450.1 | 449.0 |
| $12.22,12.40$ | nucleosides 28 \& 31 | $\mathrm{C}_{32} \mathrm{H}_{37} \mathrm{~N}_{7} \mathrm{O}_{15}$ | 759.2 | 758.1 |

Figure S12: A. LC-chromatogram at 260 nm , B. LC-chromatogram at 310 nm, C. total ion abundance chromatogram in negative mode

## 6. HPLC-spectra of the synthesized modified oligonucleotides

ODN-synthesis was carried out as described in the experimental section. To save precious material, the modified phosphoramidites were introduced manually. If desired for convenience they can also be included in the automated synthesis cycles.


Figure S13: RP-HPLC chromatograms of furan-modified ODN1-8

## 7. ESI-MS data of the synthesized oligonucleotides

| Modified sequence | Calculated mass | Mass found (Da) |
| :---: | :---: | :---: |
| ODN1: 5'-CTG ACG G1G TGC-3' | 3800.5 | 3799.7 (M-H) ${ }^{-1}$ |
| ODN2: 5'-CTG ACG G2G TGC-3' | 3801.5 | 3800.4 (M-H) ${ }^{-}, 3838.0$ (M-2H+K) ${ }^{-}$ |
| ODN3: 5'-CTG ACG T1T TGC-3' | 3750.5 | 3749.6 (M-H) ${ }^{-}$ |
| ODN4: 5'-CTG ACG T2T TGC-3' | 3751.5 | 3750.6 (M-H), 3788.6 (M-2H+K) ${ }^{-}$ |
| ODN5: 5'-CTG ACG C1C TGC-3' | 3720.5 | 3719.8 (M-H) ${ }^{-}$ |
| ODN6: 5'-CTG ACG C2C TGC-3' | 3721.5 | 3720.4 (M-H), $3758.7(\mathrm{M}-2 \mathrm{H}+\mathrm{K})^{-}$ |
| ODN7: ${ }^{\prime}$ '-CTG ACG A1A TGC-3' | 3768.5 | 3768.0 (M-H) ${ }^{-1}$ |
| ODN8: ${ }^{\text {' }}$-CTG ACG A2A TGC-3' | 3769.5 | 3768.6 (M-H)-, 3806.4 (M-2H+K) ${ }^{-}$ |

Table S1: ESI-MS data of ODN1-8

## 8. RP-HPLC spectra of the crosslinking and aromatization reactions

Crosslinking reactions and aromatization reactions are carried out as described in the Experimental Section.


Figure S14: RP-HPLC of the crosslinking and aromatization reactions

| Modified sequence | Complementary sequence |
| :--- | :--- |
| ODN1: 5'-CTG ACG G1G TGC-3' | ODN9a-d: 3'-GAC TGC CNC ACG-5' |
| ODN2: 5'-CTG ACG G2G TGC-3' |  |
| ODN3: 5'-CTG ACG T1T TGC-3' | ODN10a-d: 3'-GAC TGC ANA ACG-5' |
| ODN4: 5'-CTG ACG T2T TGC-3' |  |
| ODN5: 5'-CTG ACG C1C TGC-3' |  |
| ODN6: 5'-CTG ACG C2C TGC-3' |  |
| ODN11a-d: $3 '-$-GAC TGC GNG ACG-5' ${ }^{\prime}$ '-CTG ACG A1A TGC-3' |  |
| ODN8: 5'-CTG ACG A2A TGC-3' |  |

Table S1: Modified ODN sequences and their complements
( $\mathrm{a}: \mathrm{N}=\mathrm{A}, \mathrm{b}: \mathrm{N}=\mathrm{C}, \mathrm{c}: \mathrm{N}=\mathrm{G}, \mathrm{d}: \mathrm{N}=\mathrm{T}$ )
9. ESI-MS-data of crosslinked duplexes



Figure S15: ESI-MS spectra of the crosslinked duplexes. Because of cation adduction $\left(\mathrm{Na}^{+}\right.$and $\left.\mathrm{K}^{+}\right)$, the molecular ions are dispersed among several different species of different $m / z$ values. For each cluster the $z$-value is shown. For clarity reasons only the mass of the most abundant ion of the cluster has been indicated on the spectrum. From the different $\mathrm{m} / \mathrm{z}$ values, the mass of the parent molecular adduct can be calculated by computational deconvolution using the Agilent LC/MSD ChemStation software. The obtained values are shown in Table S2.

| Crosslinked duplex | Calculated mass (Da) | Observed Mass (Da) |
| :---: | :---: | :---: |
| $\begin{gathered} \hline \text { ODN1:ODN9b } \\ \text { XL1 } \\ \hline \end{gathered}$ | 7407.9 | 7406.3 (M-H) ${ }^{-}$ |
| $\begin{gathered} \hline \text { ODN1:ODN9b } \\ \text { XI? } \end{gathered}$ | 7407.9 | 7406.4 (M-H)-, 7484.1 (M-3H+2K) ${ }^{-}$ |
| $\begin{gathered} \hline \text { ODN1:ODN9b } \\ \text { XLa } \\ \hline \end{gathered}$ | 7389.8 | 7387.3 (M-H) ${ }^{-}, 7408.6(\mathrm{M}-2 \mathrm{H}+\mathrm{Na})^{-}, 7427.6$ (M-2H+K) ${ }^{-}$ |
| $\begin{gathered} \text { ODN2:ODN9b } \\ \text { XL } \end{gathered}$ | 7408.8 | $7483.5(\mathrm{M}-3 \mathrm{H}+2 \mathrm{~K})^{-}, 7523.4(\mathrm{M}-4 \mathrm{H}+3 \mathrm{~K})^{-}, 7503.5(\mathrm{M}-4 \mathrm{H}+\mathrm{Na}+2 \mathrm{~K})^{-}$, $7469.4(\mathrm{M}-3 \mathrm{H}+\mathrm{Na}+\mathrm{K})^{-}, 7445.4(\mathrm{M}-2 \mathrm{H}+\mathrm{K})^{-}, 7406.0(\mathrm{M}-\mathrm{H})^{-}, 7563.8$ $(\mathrm{M}-5 \mathrm{H}+4 \mathrm{~K})^{-}$ |
| $\begin{gathered} \hline \text { ODN3:ODN10b } \\ \text { XL1 } \\ \hline \end{gathered}$ | 7405.9 | $\begin{aligned} & 7404.6(\mathrm{M}-\mathrm{H})^{-}, 7442.2(\mathrm{M}-2 \mathrm{H}+\mathrm{K})^{-}, 7480.0(\mathrm{M}-3 \mathrm{H}+2 \mathrm{~K})^{-}, 7425.1(\mathrm{M}- \\ & 2 \mathrm{H}+\mathrm{Na})^{-} \end{aligned}$ |
| $\begin{gathered} \hline \text { ODN3:ODN10b } \\ \text { XL2 } \\ \hline \end{gathered}$ | 7405.9 | 7480.5 (M-3H+2K) ${ }^{-}$, 7404.5 ( $\mathrm{M}-\mathrm{H}^{-}$, $7442.7(\mathrm{M}-2 \mathrm{H}+\mathrm{K})^{-}$ |
| $\begin{gathered} \text { ODN3:ODN10b } \\ \text { XLa } \end{gathered}$ | 7387.9 | $\begin{aligned} & 7386.5(\mathrm{M}-\mathrm{H})^{-}, 7423.1(\mathrm{M}-2 \mathrm{H}+\mathrm{K})^{-}, 7405.4(\mathrm{M}-2 \mathrm{H}+\mathrm{Na})^{-}, 7465.3(\mathrm{M}- \\ & 3 \mathrm{H}+2 \mathrm{~K})^{-}, 7443.7(\mathrm{M}-3 \mathrm{H}+\mathrm{Na}+\mathrm{K})^{-} \\ & \hline \end{aligned}$ |
| $\begin{gathered} \text { ODN4:ODN10b } \\ \text { XL } \end{gathered}$ | 7406.9 | $\begin{aligned} & 7557.2(\mathrm{M}-5 \mathrm{H}+4 \mathrm{~K})^{-}, 7481.2(\mathrm{M}-3 \mathrm{H}+2 \mathrm{~K})^{-}, 7443.1(\mathrm{M}-2 \mathrm{H}+\mathrm{K})^{-}, 7596 \\ & (\mathrm{M}-6 \mathrm{H}+5 \mathrm{~K})^{-}, 7404.8(\mathrm{M}-\mathrm{H})^{-} \end{aligned}$ |
| $\begin{gathered} \hline \text { ODN5:ODN11b } \\ \text { XL1 } \\ \hline \end{gathered}$ | 7407.9 | $\begin{aligned} & 7444.3(\mathrm{M}-2 \mathrm{H}+\mathrm{K})^{-}, 7407.5(\mathrm{M}-\mathrm{H})^{-}, 7483.5(\mathrm{M}-3 \mathrm{H}+2 \mathrm{~K})^{-}, 7465.4(\mathrm{M}- \\ & 3 \mathrm{H}+\mathrm{Na}+\mathrm{K})^{-} \end{aligned}$ |
| ODN5:ODN11b XL2 | 7407.9 | $\begin{array}{\|lll\|} \hline 7481.4(\mathrm{M}-3 \mathrm{H}+2 \mathrm{~K})^{-}, 7520.4(\mathrm{M}-4 \mathrm{H}+3 \mathrm{~K})^{-}, 7444.3(\mathrm{M}-2 \mathrm{H}+\mathrm{K})^{-}, 7467.0 \\ (\mathrm{M}-3 \mathrm{H}+\mathrm{Na}+\mathrm{K})^{-}, \quad 7504.8 \quad(\mathrm{M}-4 \mathrm{H}+\mathrm{Na}+2 \mathrm{~K})^{-}, 7425.9 \quad(\mathrm{M}-2 \mathrm{H}+\mathrm{Na})^{-}, \\ 7559.4(\mathrm{M}-5 \mathrm{H}+4 \mathrm{~K})^{-}, 7544.0(\mathrm{M}-5 \mathrm{H}+\mathrm{Na}+3 \mathrm{~K})^{-} & \\ \hline \end{array}$ |
| $\begin{gathered} \hline \text { ODN5:ODN11b } \\ \text { XLa } \\ \hline \end{gathered}$ | 7389.8 | 7388.2 (M-H) ${ }^{-}$, 7425.7 (M-2H+K) ${ }^{-}$, $7407.8(\mathrm{M}-2 \mathrm{H}+\mathrm{Na})^{-}$ |
| $\begin{gathered} \text { ODN6:ODN11b } \\ \text { XL1 } \end{gathered}$ | 7407.9 | $7483.3(\mathrm{M}-3 \mathrm{H}+2 \mathrm{~K})^{-}, 7445.3(\mathrm{M}-2 \mathrm{H}+\mathrm{K})^{-}, 7521.0(\mathrm{M}-4 \mathrm{H}+3 \mathrm{~K})^{-}, 7467.3$ $(\mathrm{M}-3 \mathrm{H}+\mathrm{Na}+\mathrm{K})^{-}, 7504.6(\mathrm{M}-4 \mathrm{H}+\mathrm{Na}+2 \mathrm{~K})^{-}, 7428.6(\mathrm{M}-2 \mathrm{H}+\mathrm{Na})^{-}$ |
| $\begin{gathered} \hline \text { ODN6:ODN11b } \\ \text { XL2 } \\ \hline \end{gathered}$ | 7407.9 | $\begin{aligned} & 7482.3(\mathrm{M}-3 \mathrm{H}+2 \mathrm{~K})^{-}, 7519.2(\mathrm{M}-4 \mathrm{H}+3 \mathrm{~K})^{-}, 7468.6(\mathrm{M}-3 \mathrm{H}+\mathrm{Na}+\mathrm{K})^{-}, \\ & 7448.6(\mathrm{M}-2 \mathrm{H}+\mathrm{K})^{-} \end{aligned}$ |
| $\begin{gathered} \hline \text { ODN7:ODN12b } \\ \text { XL1 } \\ \hline \end{gathered}$ | 7405,9 | 7404.2 (M-H)-, 7443.2 (M-2H+K) ${ }^{-}$, 7425.8 (M-2H+Na) ${ }^{-}$ |
| $\begin{gathered} \hline \text { ODN7:ODN12b } \\ \text { XL2 } \end{gathered}$ | 7405,9 | $\begin{aligned} & \hline 7404.4(\mathrm{M}-\mathrm{H})^{-}, 7441.8(\mathrm{M}-2 \mathrm{H}+\mathrm{K})^{-}, 7425.6(\mathrm{M}-2 \mathrm{H}+\mathrm{Na})^{-}, 7484.6(\mathrm{M}- \\ & 3 \mathrm{H}+2 \mathrm{~K})^{-}, 7461,4(\mathrm{M}-3 \mathrm{H}+\mathrm{Na}+\mathrm{K})^{-} \\ & \hline \end{aligned}$ |
| $\begin{gathered} \hline \text { ODN7:ODN12b } \\ \text { XLa } \\ \hline \end{gathered}$ | 7387,9 | $\begin{aligned} & 7424.9(\mathrm{M}-2 \mathrm{H}+\mathrm{K})^{-}, 7387.0(\mathrm{M}-\mathrm{H})^{-}, 7445.0(\mathrm{M}-3 \mathrm{H}+\mathrm{Na}+\mathrm{K})^{-}, 7461.8 \\ & (\mathrm{M}-3+2 \mathrm{~K})^{-}, 7409.6(\mathrm{M}-2+\mathrm{Na})^{-} \end{aligned}$ |
| $\begin{gathered} \text { ODN8:ODN12b } \\ \text { XL1 } \end{gathered}$ | 7406.9 | $7443.2(\mathrm{M}-2 \mathrm{H}+\mathrm{K})^{-}, 7480.7 \quad(\mathrm{M}-3 \mathrm{H}+2 \mathrm{~K})^{-}, 7465.9 \quad(\mathrm{M}-3 \mathrm{H}+\mathrm{Na}+\mathrm{K})^{-}$, $7405.9(\mathrm{M}-\mathrm{H})^{-}, 7518.6(\mathrm{M}-4 \mathrm{H}+3 \mathrm{~K})^{-}, 7501.3(\mathrm{M}-3 \mathrm{H}+\mathrm{Na}+\mathrm{K})^{-}, 7428.1$ $(\mathrm{M}-2 \mathrm{H}+\mathrm{Na})^{-}$ |
| $\begin{gathered} \text { ODN8:ODN12b } \\ \text { XL2 } \end{gathered}$ | 7406.9 | $7481.2(\mathrm{M}-3 \mathrm{H}+2 \mathrm{~K})^{-}, 7442.6(\mathrm{M}-2 \mathrm{H}+\mathrm{K})^{-}, 7519.7(\mathrm{M}-4 \mathrm{H}+3 \mathrm{~K})^{-}, 7465.7$ $(\mathrm{M}-3 \mathrm{H}+\mathrm{Na}+\mathrm{K})^{-}, 7503.8(\mathrm{M}-4 \mathrm{H}+\mathrm{Na}+2 \mathrm{~K})^{-}, 7405.8(\mathrm{M}-\mathrm{H})^{-}, 7428.1(\mathrm{M}-$ $2 \mathrm{H}+\mathrm{Na})^{-}$ |

Table S2: ESI-MS analysis of crosslinked duplexes

## 10. Melting temperatures of the crosslinked duplexes



Figure S16: Comparison of duplex stability for modified versus crosslinked duplexes as observed through Tm determination

