Supporting Information for

Transmetallation Reactions of a Scandium Complex Supported by a Ferrocene Diamide Ligand

Wenliang Huang, Colin T. Carver, and Paula L. Diaconescu*

(pld@chem.ucla.edu)

Department of Chemistry & Biochemistry University of California, Los Angeles, CA 90095

Contents:

NMR Spectra	. S2
X-Ray Crystal Structures	S14
Computational details	S16

NMR Spectra

3

Note: The small peaks always appear in both the ¹H and the ¹³C NMR spectra of **3**. As mentioned in the article, they likely correspond to a form of **3** with two aluminum fragments. Solvent peaks for toluene and hexanes are also present.

¹H NMR (300 MHz, C₆D₆)

HMQC (500 MHz, C₆D₆)

Reaction of 2 with a sub-stoichiometric amount of AlMe₃ ¹H NMR (300 MHz or 500 MHz, C₆D₆)

5 equivalents AlMe₃

Note: The conversion percentage showed by integration was not exactly 20, 40, 60, 80, and 100%, likely due to a measuring error.

3b

¹H NMR (300 MHz, C₆D₆)

Note: **3b** is not very soluble in C_6D_6 (the spectrum shown is for a saturated sample); solvent peaks for toluene and hexanes as well as peaks for some impurities are also present.

Reaction of 1-Me(AlMe₃)₂ with 1-methylimidazole

Note: Initially, **1-Me(mi)**_x and AlMe₃(mi) were formed.

70 °C 24 h: All peaks belonging to compound 2 were confirmed by their chemical shifts as well as their relative integration.

DEPT 135 (126, 500 MHz, C₆D₆):

Variable-Temperature ¹H NMR (500 MHz, C₆D₆)

Reaction of 4 with benzophenone at 50 °C

¹H NMR (300 MHz, C_6D_6): When the integration of 1,1-diphenylethylene was calibrated to 1 equiv, the product containing the ferrocene diamide tetraanionic ligand also integrated to 1 equiv. This 1:1 ratio supported the formation of 1,1-diphenylethylene as resulting from transferring the methylidene group of 4.

Figure SX1. Thermal-ellipsoid (50% probability) representation of 3.

Figure SX2. Thermal-ellipsoid (50% probability) representation of **4**; irrelevant hydrogen atoms omitted for clarity.

Computational details

Figure SX3. HOMO (left) and HOMO-1 (right) for 4'.

Figure SX4. LUMO (left) and LUMO+1 (right) for 4'.

Optimized geometry for 4'

1.Sc	-0.549129	8.155330 20.803559
2.Fe	-3.154456	8.634850 21.260019
3.Al	-1.936855	5.343497 20.496124
4.Al	-0.419456	10.360925 19.269101
5.Al	0.084639	9.721267 22.905221
6.Si	-1.440192	6.452848 17.474374
7.Si	-0.568459	5.375384 23.450602
8.N	-1.704808	6.848363 19.223083
9.N	-1.290976	6.333881 22.090723
10.C	-2.648719	7.927400 19.365941
11.C	-4.076332	7.860331 19.556899
12.H	-4.676243	6.956781 19.534501
13.C	-4.547880	9.191090 19.790111
14 H	-5 581560	9 472644 19 977132
15 C	-3 419386	10 076916 19 780978
16 H	-3 469692	11 150767 19 946440
17 C	-2 215203	9 322502 19 501599
18 C	-2 188496	7 346697 22 586038
10.C	-3 617099	7 274448 22 770723
20 H	-4 227244	6 387064 22 635876
20.11 21 C	-4 074979	8 576559 23 148110
21.C 22 H	-5 106746	8 849027 23 357357
22.11 23 C	-2 947480	9 463799 23 159959
23.С 24 Н	-2.947460	10 524515 23 398535
24.11 25 C	-2.991304 -1.747043	8 724834 22 827112
25.C	0 279037	5 736554 17 155831
20.C 27 Н	1.081621	6 450365 17 355803
27.11 28 H	0.341582	5 461025 16 001020
20.11 20 Ц	0.341382	A 822200 17 744006
29.П 20 С	0.4/43/2	4.832309 17.744990
30.C 21 Ц	-1.093734	2 707226 16 617022
27 LI	-0.969233	8.797220 10.017933 9.201017 16.496522
32.П 22 Ц	-2./114/0	8.59191/ 10.480522 7.606512 15.220000
33.П 24.С	-1.342034	7.090313 13.339099 5.171020 16.052106
24.U	-2./30/30	5.1/1939 10.932100
33.H	-3./38010	5.541995 17.125162
30.H	1.18/21/	/.8300/4 19.23/100
3/.H	1.943212	9.40/409 19.125414
38.H	0.950324	8.762794 17.803190
39.П	-2.02/483	4.220101 17.491860
40.C	1.503814	8.290/25 22.36/33/
41.H	1.590430	7.509360 21.587116
42.H	1./21246	/./48630 23.298350
43.H	-2.635264	4.95/2/1 15.8/6014
44.H	2.361083	8.955084 22.164489
45.C	0.473950	10.538668 24.658628
46.H	1.465186	11.020361 24.673685
47.C	-0.450628	6.422941 25.022789
48.H	0.186724	/.310215 24.905029
49.H	-0.014917	5.803711 25.825049
50.H	-1.439921	6.765390 25.362784
51.C	1.141538	4.700796 23.010917
52.H	1.879098	5.494688 22.840332
53.H	1.121402	4.048546 22.128973
54.H	1.496368	4.096751 23.860337

55.C	-1.717596	3.913565	23.824989
56.H	-2.726240	4.258283	24.099900
57.H	0.448189	9.809467	25.483188
58.H	-0.266219	11.320402	24.896729
59.C	-0.455492	11.729983	17.848840
60.H	-1.321802	3.332730	24.672937
61.H	0.502947	12.269487	17.777393
62.H	-1.232590	12.484532	18.051539
63.H	-0.671096	11.305892	16.856054
64.H	-1.814958	3.228569	22.970039
65.C	-0.044575	10.759584	21.195564
66.H	0.939598	11.271110	21.151264
67.H	-0.809569	11.526372	21.434629
68.C	-0.611020	3.924930	20.053561
69.H	-0.879123	3.432160	19.104880
70.H	-0.632333	3.130402	20.817264
71.H	0.436528	4.248003	19.959814
72.C	-3.763361	4.551653	20.626861
73.H	-3.989177	4.000509	19.696748
74.H	-4.607080	5.233468	20.805631
75.H	-3.784946	3.800205	21.436475
76.C	1.005851	8.874944	18.895858