## Supporting Information for

# Total Synthesis of Phorboxazole A via de novo Oxazole Formation: Convergent Total Synthesis 

Bo Wang, T. Matthew Hansen, Lynn Weyer, Dimao Wu, Ting Wang, Mathias Christmann, Yingtao Lu, Lu Ying, Mary M. Engler, Russell D. Cink, Chi-Sing Lee, Feryan Ahmed, and Craig J. Forsyth*

Department of Chemistry, The Ohio State University, 100 West $18^{\text {th }}$ Avenue, Columbus, Ohio 43210, USA
*email: forsyth@chemistry.ohio-state.edu
Phone: (614) 688-5347
Fax: (614) 292-1685
Contents: Page
General Methods ..... S-2
Experimentals for synthetic compounds ..... S-3 to S-34
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of synthetic compounds ..... S-35 to S-98

## General Methods

All air and moisture sensitive reactions were carried out under argon in oven-dried glassware using standard syringe, cannula and septa techniques. Unless otherwise noted, all reactions were carried out at room temperature $\left(20-25^{\circ} \mathrm{C}\right)$. Molecular sieves were activated by heating at $120^{\circ} \mathrm{C}$ for 24 hours. Tetrahydrofuran (THF), methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, diethyl ether (diethyl ether), toluene and dimethylformamide (DMF) were either purified using a Pure Solv solvent purification system or by the following methods: THF and diethyl ether were distilled from $\mathrm{Na} /$ benzylphenone ketyl under nitrogen. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, toluene, benzene, acetonitrile $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$, triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$, $N, N$-diisopropylethylamine $\left(i-\mathrm{Pr}_{2} \mathrm{NEt}\right)$, hexanes, and $n$-pentane were distilled from $\mathrm{CaH}_{2}$ under nitrogen. Dimethylsulfoxide (DMSO) and DMF were dried over activated $4 \AA$ molecular sieves. Methanol was dried over activated $3 \AA$ molecular sieves. Trifluoroacetic acid (TFA) was distilled under argon. Deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ was neutralized with anhydrous potassium carbonate. Other reagents were used as received from commercial sources unless otherwise noted. Flash column chromatography was performed using Baker Flash silica gel 60 or Silicylce Silicaflash P60 silica gel. Analytical TLC was performed with $25 \mu \mathrm{~m}$ Merck Kieselgel (EM Science) silica gel $60 \mathrm{~F}_{254}$ plates, visualized by fluorescence upon 254 nm irradiation and/or staining with anisaldehyde reagent ( 450 mL of $90 \%$ ethanol, 25 mL of sulfuric acid, 15 mL of acetic acid, and 25 mL of anisaldehyde). The solvent combinations for flash column chromatography, TLC, and recystalization are shown in volume ratio. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were obtained in $\mathrm{CDCl}_{3}$ and referenced to the residual $\mathrm{CDCl}_{3}$ at $7.27 \mathrm{ppm}\left({ }^{1} \mathrm{H}\right)$ and $77.0 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right)$ unless otherwise indicated, using 300 or 500 MHz Varian instruments, and 300, 400, or 500 MHz Bruker instruments. Optical rotations were obtained using a JASCO, DIP-370 digital polarimeter at sodium D line ( 589 nm ) using 3.5 i.d. $\times 50 \mathrm{~mm}$ cylindrical glass cell and were reported in concentration $(c=\mathrm{g} / 100 \mathrm{~mL})$ at $23{ }^{\circ} \mathrm{C}$. Infrared (IR) spectra of neat compounds were obtained as thin films on 5 mm NaCl plates using a MIDAC Prospect FT-IR spectrophotometer. Highresolution mass spectrametric analyses were performed on Bruker Biotof II or Bruker Microtof (ESI) mass spectrometers using methanol as the solvent.


## Amide 8.

To a solution of carboxylic acid $7^{1}(149 \mathrm{mg}, 262 \mu \mathrm{~mol})$ and amino-alcohol $\mathbf{6}^{1}(176 \mathrm{mg}, 261 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(25 \mathrm{~mL})$ were added EDCI•MeI $(116 \mathrm{mg}, 390 \mu \mathrm{~mol})$ and $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(6 \mathrm{mg}, 40 \mu \mathrm{~mol})$. The mixture was stirred for 3 h then concentrated by rotary evaporation. The residue was purified by silica gel chromatography (hexanes-ethyl acetate, 1:1) to afford $8\left(278 \mathrm{mg}, 227 \mu \mathrm{~mol}, 87 \%\right.$ ) as an amorphous solid: $\mathrm{mp} 60-67{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f}$ 0.55 (hexanes-ethyl acetate, 1:1); $[\alpha]_{\mathrm{D}}{ }^{23}-1.2$ (c 1.73, $\mathrm{CHCl}_{3}$ ); IR 3440, 3080, 2960, 1695, 1515, 1385, 1245 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz ) $\delta 7.63(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.25(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{ddd}, J=14.9,7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~m}, 1 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H})$, $4.27(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 3 \mathrm{H}), 3.96(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.67(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.45$ (ddd, $J=14.4,7.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=13.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~m}, 4 \mathrm{H}), 1.77-1.17(\mathrm{~m}$, $11 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{~s}, 6 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~m}, 12 \mathrm{H}), 0.75(\mathrm{~m}, 3 \mathrm{H}), 0.59(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz$) \delta$ $165.9,159.1,141.6,141.4,135.64,135.60,134.0,133.5,130.4,129.8,129.7,129.1,127.7,127.6,125.2,113.7$, $110.5,79.6,75.3,72.7,71.1,70.3,69.9,66.9,65.83,65.76,55.2,54.6,52.3,40.4,40.2,39.0,38.7,35.7,35.4$, 34.1, 32.4, 28.5, 27.0, 19.3, 6.9, 5.8, 5.0; HRMS calcd for $\mathrm{C}_{70} \mathrm{H}_{106} \mathrm{O}_{12} \mathrm{~N}_{2} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$1245.7182, found 1245.7175. . Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{8}$ are included below.

[^0]

Oxazole 10.
To a solution of amide $\mathbf{8}(145 \mathrm{mg}, 118 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ were added $t$-butanol $(0.25 \mathrm{~mL}), \mathrm{NaHCO}_{3}$ $(120 \mathrm{mg}, 1.4 \mathrm{mmol})$ and Dess-Martin periodinane ${ }^{2}(140 \mathrm{mg}, 470 \mu \mathrm{~mol})$. The mixture was stirred for 20 min then filtered through a plug of silica gel, eluting with hexanes : ethyl acetate ( $5: 1$ to $3: 2$, $\mathrm{v} / \mathrm{v}$ ). The eluent solution was concentrated to afford the aldehyde. This was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and $\mathrm{Ph}_{3} \mathrm{P}(151 \mathrm{mg}$, $0.59 \mathrm{mmol}), i-\mathrm{Pr}_{2} \mathrm{NEt}(630 \mu \mathrm{~L}, 2.4 \mathrm{mmol})$ and 1,2-dibromo-1,1,2,2-tetrachloroethane $\left[\left(\mathrm{BrCCl}_{2}\right)_{2}, 187 \mathrm{mg}, 0.59\right.$ $\mathrm{mmol}]$ were added sequentially. The resulting mixture was stirred for 30 min before diethyl ether and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ were added. The separated aqueous phase was extracted with diethyl ether. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and purified by flash chromatography (hexanes-ethyl acetate, $4: 1$ ) to give $10(129 \mathrm{mg}, 107 \mu \mathrm{~mol}, 91 \%$ for two steps) as an amorphous solid: mp 53-59 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f} 0.65$ (hexanes-ethyl acetate, $2: 1$ ); $[\alpha]_{\mathrm{D}}{ }^{23}+1.9\left(c 0.83, \mathrm{CHCl}_{3}\right.$ ); IR 3080, $2960,1700,1515,1385,1245 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz ) $\delta 7.67(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.39(\mathrm{~m}, 7 \mathrm{H}), 7.23(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{ddd}, J=15.5,8.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~m}$, $1 \mathrm{H}), 5.01(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{ddd}, J=11.0,6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{dddd}, J=8.0,8.0,4.0,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{ddd}, J=7.0,7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J$ $=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{ddd}, J=14.0,6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=13.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.33$ $(\mathrm{m}, 21 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~m}, 12 \mathrm{H}), 0.77(\mathrm{~m}, 3 \mathrm{H}), 0.62(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta 161.0$, $159.0,142.9,142.1,136.0,135.7,135.6,134.1,134.0,133.8,130.6,129.7,129.6,129.1,127.62,127.60,118.4$, $113.7,110.2,79.6,77.3,72.6,69.3,69.0,68.7,67.5,66.7,65.8,55.2,54.6,40.1,39.2,39.0,38.8,38.4,37.7$, $36.4,34.4,34.1,28.5,27.0,19.3,6.9,5.8,5.0$; HRMS calcd for $\mathrm{C}_{70} \mathrm{H}_{102} \mathrm{O}_{11} \mathrm{~N}_{2} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 1225.6920$, found 1225.6926. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 0}$ are included below.

[^1]

## Alcohol 11.

To a solution of $\mathbf{1 0}(129 \mathrm{mg}, 107 \mu \mathrm{~mol})$ in THF $(10 \mathrm{~mL})$ was added TBAF ( 1.0 M in THF, $214 \mu \mathrm{~L}, 214 \mu \mathrm{~mol})$. The solution was stirred for 2 h before diethyl ether and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ were added. The separated aqueous phase was extracted with diethyl ether. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and purified by flash chromatography (hexanes-ethyl acetate, 2:1) to give $11(110 \mathrm{mg}, 101 \mu \mathrm{~mol}$, $94 \%$ ) as an amorphous solid: $\mathrm{mp} 65-69^{\circ} \mathrm{C} ; \mathrm{R}_{f} 0.20$ (hexanes-ethyl acetate, $2: 1$ ); $[\alpha]_{\mathrm{D}}{ }^{23}+2.3\left(c 1.03, \mathrm{CHCl}_{3}\right)$; IR 3470, 3070, 2930, 1730, 1690, 1380, $1240 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz ) $\delta 7.67(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.42(\mathrm{~m}$, $3 \mathrm{H}), 7.37(\mathrm{~m}, 4 \mathrm{H}), 7.22(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{ddd}, J=16.0,8.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.33$ $(\mathrm{d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J$ $=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, $3.77(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~m}, 3 \mathrm{H}), 3.42(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{ddd}, J=13.5,6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (dd, $J=13.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=13.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.33(\mathrm{~m}, 22 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.10$ $(\mathrm{s}, 9 \mathrm{H}), 0.96(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz ) $\delta 160.9,159.0,142.9,142.1,135.73$, $135.66,135.5,134.2,134.0,133.9,130.6,129.71,129.66,129.2,127.6,118.6,113.7,110.2,79.7,77.3,76.7$, $72.6,69.3,69.0,68.8,67.5,66.8,65.8,60.4,55.2,54.6,40.1,39.0,38.9,38.4,37.9,37.8,36.1,34.4,33.8,28.5$, 27.0, 19.3, 14.2, 5.4; HRMS calcd for $\mathrm{C}_{64} \mathrm{H}_{88} \mathrm{O}_{11} \mathrm{~N}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$1111.6055, found 1111.6047. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 1}$ are included below.


## Phosphonate 12.

To a solution of alcohol $11(214 \mathrm{mg}, 196 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ were added bis-(2,2,2-trifluoroethoxy)phosphono-acetic $\mathrm{acid}^{3}(597 \mathrm{mg}, 1.96 \mathrm{mmol})$, EDCI $\cdot \mathrm{HCl}(583 \mathrm{mg}, 1.96 \mathrm{mmol})$ and $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}$ ( $15 \mathrm{mg}, 10 \mu \mathrm{~mol}$ ). The mixture was stirred for 12 h before diethyl ether and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ were added. The separated aqueous phase was extracted with diethyl ether. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and purified by flash chromatography (hexanes-ethyl acetate, $2: 1$ ) to give 12 (248 mg, $183 \mu \mathrm{~mol}, 93 \%$ ) as an amorphous solid: mp $50-55^{\circ} \mathrm{C} ; \mathrm{R}_{f} 0.67$ (hexanes-ethyl acetate, $1: 1$ ); $[\alpha]_{\mathrm{D}}{ }^{23}$ +1.3 (c 1.59, $\mathrm{CHCl}_{3}$ ); IR 3070, 2940, 1735, 1690, 1510, $1385 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(500 \mathrm{MHz}) \delta 7.67(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $4 \mathrm{H}), 7.39(\mathrm{~m}, 7 \mathrm{H}), 7.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{ddd}, J=15.5,8.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.32$ (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{~m}$, $4 \mathrm{H}), 4.40(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{ddd}, J=10.5,6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.04(\mathrm{~m}, 2 \mathrm{H}), 3.90$ (dddd, $J=8.0,8.0,4.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~m}, 1 \mathrm{H}), 3.57$ (ddd, $J=6.8,6.8,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.51(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 1 \mathrm{H}), 2.53$ (ddd, $J=14.0,6.8,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.40(\mathrm{dd}, J=13.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 2 \mathrm{H}), 2.12-1.33(\mathrm{~m}, 21 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.75(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz ) $\delta 163.9,160.7$, 159.0, 151.7, 142.9, 142.0, 135.7, 135.6, 134.9, $134.2,134.0,133.8,130.6,129.65,129.60,129.1,127.6,124.2,124.1,120.5,120.4,118.8,113.6,110.1,81.0$, $79.6,76.7,72.5,69.3,69.0,68.7,67.9,67.4,66.7,65.8,63.3,63.2,62.74,62.67,62.24,62.17,61.73,61.66$, $60.3,55.1,54.5,40.0,39.0,38.8,38.3,37.7,35.9,35.2,34.9,34.4,33.0,31.3,28.4,27.0,20.9,19.2,14.1,5.9$; HRMS calcd for $\mathrm{C}_{70} \mathrm{H}_{93} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{15} \mathrm{PSi}[\mathrm{M}+\mathrm{Na}]^{+}$1397.5879, found 1397.5882. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 2}$ are included below.

[^2]

## Alcohol 12a.

To a solution of $\mathbf{1 2}(140 \mathrm{mg}, 102 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(23 \mathrm{~mL})$ were added $t$ - $\mathrm{BuOH}(2.3 \mathrm{~mL})$, aqueous phosphate buffer ( $\mathrm{pH} 7,226 \mu \mathrm{~L}$ ) and DDQ ( $230 \mathrm{mg}, 1.04 \mathrm{mmol}$ ). The mixture was immersed in an aqueous sonication bath and sonicated for 1.5 min before additional phosphate buffer $(226 \mu \mathrm{~L}, \mathrm{pH} 7)$ and $\operatorname{DDQ}(230 \mathrm{mg}, 1.04$ mmol ) were added and sonication continued for 2 min . Diethyl ether ( 80 mL ) was added to the reaction mixture then it was washed with aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$, water $(30 \mathrm{~mL})$, and brine ( 30 mL ). The combined aqueous washes were extracted with diethyl ether ( 40 mL ). The combined organic phases were dried over $\mathrm{MgSO}_{4}$, filtered through a plug of silica gel and concentrated by rotary evaporation. Flash chromatography (hexanes-ethyl acetate, $1: 1$ to $2: 3$ ) of the residue afforded 12a ( $117 \mathrm{mg}, 102 \mu \mathrm{~mol}, 100 \%$ ) as an amorphous solid: mp $65-70{ }^{\circ} \mathrm{C} ; \mathrm{R}_{f} 0.18$ (hexanes-ethyl acetate, $1: 1$ ); $[\alpha]_{\mathrm{D}}{ }^{23}+2.9\left(c 1.37, \mathrm{CHCl}_{3}\right)$; IR 3490, 3070, 2940, 1740, 1695, $1390 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz ) $\delta 7.65(\mathrm{t}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}$ ), $7.39(\mathrm{~m}, 7 \mathrm{H}), 6.58$ (ddd, $J=15.5,8.5$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{dd}, J=11.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~m}, 1 \mathrm{H})$, $4.71(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{~m}, 1 \mathrm{H}), 4.45(\mathrm{~m}, 4 \mathrm{H}), 4.32(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{ddd}, J=10.8,5.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 2 \mathrm{H}), 3.96$ (dddd, $J=8.4,8.4,4.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 1 \mathrm{H}), 2.89(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{ddd}, J=14.0,6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dd}, J=13.2$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 4 \mathrm{H}), 1.96-1.38(\mathrm{~m}, 17 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.75(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz ) $\delta 163.9,160.9,151.7,142.6,141.8,135.65,135.63,135.1,134.3$, $134.1,133.8,129.7,127.6,124.2,124.1,120.5,120.4,118.7,110.3,81.1,79.7,76.7,70.3,69.9,69.7,67.2$, $65.8,63.3,63.2,62.8,62.7,62.3,62.2,61.8,61.7,60.0,54.5,40.0,39.0,38.6,38.5,37.3,36.2,35.9,35.3,35.0$, 33.1, 31.3, 28.4, 27.0, 19.3, 6.0; HRMS calcd for $\mathrm{C}_{62} \mathrm{H}_{85} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{14} \mathrm{PSi}[\mathrm{M}+\mathrm{Na}]^{+}$1277.5310, found 1277.5315. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 2 a}$ are included below.


## Aldehyde 5.

To a stirred, $0{ }^{\circ} \mathrm{C}$ solution of $\mathbf{1 2 a}(100 \mathrm{mg}, 800 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ were added $\mathrm{NaHCO}_{3}(500 \mathrm{mg}, 6.0$ $\mathrm{mmol})$ and Dess-Martin periodinane ${ }^{4}(460 \mathrm{mg}, 1.1 \mathrm{mmol})$. The cold bath was removed and the mixture was stirred for 20 min . The mixture was filtered through silica gel, eluting with hexanes-EtOAc (4:1), and the eluant was concentrated to give the derived aldehyde $5(100 \mathrm{mg}, 80 \mu \mathrm{~mol}, 100 \%)$ as an amorphous solid: mp 68-72 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f} 0.21$ (hexanes-ethyl acetate, 2:1); IR 3070, 2930, 2860, 2730, 1725, 1695, $1385 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 500 $\mathrm{MHz}) \delta 9.71(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.42(\mathrm{~m}, 3 \mathrm{H}), 7.37(\mathrm{~m}, 4 \mathrm{H}), 6.59(\mathrm{ddd}, J=15.6,8.4$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}), 4.75$ $(\mathrm{m}, 1 \mathrm{H}), 4.62(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{~m}, 4 \mathrm{H}), 4.31(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 3.57 (ddd, $J=7.0,7.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 1 \mathrm{H}), 3.17$ (s, 1H), 2.57 (ddd, $J=$ $16.0,7.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{ddd}, J=16.5,6.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=13.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (dd, $J=13.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{ddd}, J=14.3,7.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-1.86(\mathrm{~m}, 7 \mathrm{H}), 1.80-1.31(\mathrm{~m}, 12 \mathrm{H}), 1.43(\mathrm{~s}$, $9 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.75(\mathrm{~m}, 3 \mathrm{H})$; HRMS calcd for $\mathrm{C}_{62} \mathrm{H}_{83} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{14} \mathrm{PSi}[\mathrm{M}+\mathrm{Na}]^{+}$ 1275.5153, found 1275.5155 . A copy of the ${ }^{1} \mathrm{H}$ NMR spectrum compound $\mathbf{5}$ is included below.


Macrolides 14 and $\mathbf{1 5}(\mathbf{1 4 : 1 5 = 4 : 1 )}$.
To a solution of 18 -crown-6 ( $307 \mathrm{mg}, 1.13 \mathrm{mmol}$ ) in toluene ( 98 mL ) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(80 \mathrm{mg}, 0.47 \mathrm{mmol})$, and the resulting suspension was stirred for 3 h , before a solution of $5(120 \mathrm{mg}, 95.7 \mu \mathrm{~mol})$ in toluene $(98 \mathrm{~mL})$ was added. After stirring for 9 h , the mixture was diluted by diethyl ether $(50 \mathrm{~mL})$, washed with water ( 30 mL ), and brine $(30 \mathrm{~mL})$. The separated aqueous phase was extracted with diethyl ether $(3 \times 50 \mathrm{~mL})$ and the combined
organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate- $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3: 1: 1$ ) to afford a $4: 1$ mixture of ( $2 Z$ ) $\mathbf{- 1 4 / ( 2 E ) - \mathbf { 1 5 } ( 8 8 \mathrm { mg } , 8 8 . 7}$ $\mu \mathrm{mol}, 93 \%$ ): $\mathrm{R}_{f} 0.21$ (hexanes-ethyl acetate, 2:1); HRMS calcd for $\mathrm{C}_{58} \mathrm{H}_{78} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 1013.5318$, found 1013.5324. A copy of the ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture of compounds $\mathbf{1 4}$ and $\mathbf{1 5}(\mathbf{1 4}: \mathbf{1 5}=4: 1)$ is included below.



## Alcohols 16 and 17.

To a solution of $\mathbf{1 4}$ and $\mathbf{1 5}(\mathbf{1 4 : 1 5}=4: 1,73.4 \mathrm{mg}, 74.0 \mu \mathrm{~mol})$ in methanol $(50 \mathrm{~mL})$ was added $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ ( $58.3 \mathrm{mg}, 250 \mu \mathrm{~mol}$ ). The resulting solution was stirred for 3 h . Ethyl acetate ( 180 mL ) was added and the resulting mixture was washed with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, and brine $(20 \mathrm{~mL})$, and the combined aqueous phases were extracted with ethyl acetate $(2 \times 20 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{MgSO}_{4}$, filtered, and concentrated by rotary evaporation. The residue was eluted through a pad of silica gel, with ethyl acetate to afforded a mixture of (2Z)-16 and (2E)-17 (16:17 = 4: 1, 57 mg, $60.0 \mu \mathrm{~mol}, 81 \%)$. Compounds 16 and 17 were initially purified by flash column chromatography then separated by preparative TLC (hexanes-ethyl acetate- $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2: 2: 1$ ). A sample of $\mathbf{1 6}$ was recrystallized from hexanes-ethyl acetate (4:1) for X-ray analysis. ${ }^{4}$
Analytical data for 16: $\mathrm{mp} 182-184{ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f} 0.31$ (hexanes-ethyl acetate, $\left.1: 1\right) ;[\alpha]_{\mathrm{D}}{ }^{23}+20.8\left(c 1.50, \mathrm{CHCl}_{3}\right)$; IR 3390, 3070, 2920, $1705 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz ) $\delta 7.64(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.40(\mathrm{~m}, 7 \mathrm{H}), 6.71$ (ddd, $J=16.0$, $10.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~m}, 2 \mathrm{H}), 5.32(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.96(\mathrm{~m}, 1 \mathrm{H})$, $4.91(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=11.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~m}, 1 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~m}$, $2 \mathrm{H}), 3.98(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~m}, 5 \mathrm{H}), 2.77(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~m}, 3 \mathrm{H}), 2.29(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~d}, J$ $=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~m}, 3 \mathrm{H}), 1.84(\mathrm{ddd}, J=12.5,12.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~d}, J=$ $15.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.73(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz ) $\delta 165.8,161.3,144.7,142.2,141.8,137.0,135.7,134.1,133.9,133.8,129.80,129.76,127.7$, $126.9,120.9,119.3,110.1,89.2,79.6,78.1,73.4,69.0,67.3,65.8,65.3,50.6,41.2,39.2,38.9,37.0,35.1,34.4$,

[^3]$32.5,31.1,30.3,28.3,27.0,19.3,13.3,11.8,6.0$.; HRMS calcd for $\mathrm{C}_{55} \mathrm{H}_{74} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 973.5005$, found 973.5009. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{1 6}$ are included below.

Analytical data for 17: $\mathrm{R}_{f} 0.35$ (hexanes-ethyl acetate, 1:1); $[\alpha]_{\mathrm{D}}{ }^{23}+13.3$ (c $1.9, \mathrm{CHCl}_{3}$ ); IR 3385, 3062, 2913, $1702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz ) $\delta 7.68(\mathrm{~m}, 4 \mathrm{H}), 7.44(\mathrm{~m}, 7 \mathrm{H}), 7.00(\mathrm{~m}, 1 \mathrm{H}), 6.66(\mathrm{~m}, 1 \mathrm{H}), 6.25(\mathrm{~d}, J=16.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.93(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{dd}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dd}, J=11.1,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.93(\mathrm{~m}, 2 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.54(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.40(\mathrm{~m}, 5 \mathrm{H}), 2.64(\mathrm{~d}, J=12.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.53(\mathrm{dd}, J=12.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~m}, 4 \mathrm{H}), 2.04(\mathrm{~m}, 4 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H})$, $1.47(\mathrm{~m}, 12 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz ) $\delta 167.3$, $161.3,155.7,147.8,141.9,141.6,135.5,135.3,134.0,133.8,133.7,129.7,128.4,127.6,127.59,125.4,122.2$, 117.7, 111.0, $90.1,78.8,77.1,70.4,69.9,68.4,67.4,66.1,65.4,65.0,56.0,49.6,40.6,40.1,38.6,37.9,36.8$, $34.9,34.9,34.8,31.3,30.2,29.6,28.3,27.0,19.3,13.2,11.5,5.7$; HRMS calcd for $\mathrm{C}_{55} \mathrm{H}_{74} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$ 973.5005 , found 973.5005 . Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 17 are included below.


## Alcohol 51.

To a solution of PMB ether $\mathbf{2 0}{ }^{1}(171 \mathrm{mg}, 210 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ were added $t$ - $\mathrm{BuOH}(0.2 \mathrm{~mL})$, aqueous phosphate buffer ( $\mathrm{pH} 7,0.2 \mathrm{~mL}$ ) , and DDQ ( $95 \mathrm{mg}, 0.42 \mathrm{mmol}$ ). The mixture was immersed in an aqueous sonication bath and sonicated for 5 min before saturated aqueous $\mathrm{NaHCO}_{3}$ and diethyl ether were added. The separated aqueous phase was extracted with diethyl ether and the combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 3:2) to give $51(140 \mathrm{mg}, 202 \mu \mathrm{~mol}, 96 \%)$ as a colorless oil. $\mathrm{R}_{f} 0.26$ (hexanes-ethyl, 7:3 acetate $) ;[\alpha]_{\mathrm{D}}{ }^{23}+1.1\left(c 0.93, \mathrm{CHCl}_{3}\right)$; IR 3490, 3072, 2933, 2858, 1700, 1398, $1105 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, a mixture of carbamate rotamers) $\delta 7.63(\mathrm{~m}, 4 \mathrm{H}), 7.37(\mathrm{~m}, 6 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 4.41-4.30(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{dd}, J=6.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~m}$, $2 \mathrm{H}), 2.41(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dt}, J=13.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{dt}, J=7.5,6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.63-1.43(\mathrm{~m}, 21 \mathrm{H}), 1.32(\mathrm{q}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.08(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, a mixture of carbamate rotamers) $\delta 152.6,141.8,135.8,135.6,133.8,110.4,93.9,93.4,80.3,79.9,71.1,70.3$, $69.8,65.9,63.6,63.4,60.8,60.3,59.3,56.6,40.3,39.5,38.7,38.4,36.5,36.3,32.7,32.4,28.4,27.1,27.0,26.7$, 25.9, 23.9, 22.5, 21.9, 19.4, 19.3, 14.2 1.1; HRMS calc. for $\mathrm{C}_{40} \mathrm{H}_{59} \mathrm{NO}_{7} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 716.3959$, found 716.3961. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 1}$ are included below.


Alkene 21.
Alcohol $51(140 \mathrm{mg}, 202 \mu \mathrm{~mol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. $\mathrm{NaHCO}_{3}(125 \mathrm{mg}, 1.50$ mmol ) and Dess-Martin periodinane $(300 \mathrm{mg}, 700 \mu \mathrm{~mol})$ were added. The cold bath was removed and the mixture was stirred for 20 min . Then the mixture was filtered through silica gel, eluted with hexanes and ethyl acetate (hexanes-ethyl acetate, $4: 1$ ), and the filtrate was concentrated to give the aldehyde as a colorless oil. To a $0{ }^{\circ} \mathrm{C}$ suspension of $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}(536 \mathrm{mg}, 1.45 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ was added a solution of $n$-BuLi ( 0.57 $\mathrm{mL}, 1.4 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane) dropwise. The resulting orange mixture was stirred for 5 min before being warmed to rt then stirred for 30 min . A solution of the aldehyde in THF ( 2.5 mL ) was added via cannula. The reaction mixture was stirred at rt for 10 min before saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and diethyl ether were added. The separated aqueous phase was extracted with diethyl ether. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, $9: 1$ ) to give $21(131 \mathrm{mg}, 190 \mu \mathrm{~mol}, 94 \%)$ as a colorless oil: $\mathrm{R}_{f} 0.42$ (hexanes-ethyl acetate, $9: 1$ ); $[\alpha]_{\mathrm{D}}{ }^{23}$ -4.0 (c 4.9, $\mathrm{CHCl}_{3}$ ); IR 3072, 2933, 2858, 1700, 1386, 1365, $1094 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz , a mixture of carbamate rotamers) $\delta 7.65(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{~m}, 6 \mathrm{H}), 5.79(\mathrm{ddt}, J=18.5,10.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=18.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.03(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.46-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-$ $3.96(\mathrm{~m}, 4 \mathrm{H}), 3.85(\mathrm{dd}, J=9.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.78(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=13.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.23(\mathrm{~m}$, $2 \mathrm{H}), 2.23(\mathrm{dt}, J=14.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{dd}, J=12.5,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{dt}, J=14.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.78(\mathrm{~m}$, $1 \mathrm{H}), 1.64(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.58(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.43(\mathrm{~m}, 15 \mathrm{H}), 1.33-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$ NMR ( 125 MHz , a mixture of carbamate rotamers) $\delta 152.4,142.2,135.9,135.7,134.9,134.1,133.8,129.6$, $129.5,127.8,127.6,116.9,110.3,93.9,93.4,81.1,80.6,80.1,79.8,79.1,73.2,71.6,71.3,70.9,69.8,69.3,69.0$, $66.0,63.5,63.3,59.4,39.2,39.1,39.0,38.7,38.4,32.7,32.3,28.4,27.1,27.0,25.9,23.8,22.4,19.4,19.3$; HRMS calc. for $\mathrm{C}_{41} \mathrm{H}_{59} \mathrm{NO}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 712.4009$, found 712.4010. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 21 are included below.


Amide 23.
To $\mathrm{MeOH}(0.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, was added acetyl chloride $(20 \mu \mathrm{~L})$. After stirring for 20 min , this mixture was added to diene $21(35 \mathrm{mg}, 50 \mu \mathrm{~mol})$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 2 h , the solvent was removed under a gentle flow of $\mathrm{N}_{2}$. The residue was dried in high vacuum for 1 h , dissolved $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ and treated with $i-\mathrm{Pr}_{2} \mathrm{NEt}(30$ $\mu \mathrm{L}, 110 \mu \mathrm{~mol})$. Then carboxylic acid $7^{1}(28 \mathrm{mg}, 50 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added followed by EDCI $\cdot \mathrm{HCl}(14 \mathrm{mg}, 75 \mu \mathrm{~mol})$ and $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{mg}, 9 \mu \mathrm{~mol})$. The resulting mixture was stirred for 10 h . Separation of this mixture directly by flash chromatography (hexanes-ethyl acetate, $4: 1$ to $1: 1$ ) to give compound 23 ( $44 \mathrm{mg}, 40 \mu \mathrm{~mol}, 80 \%$ ) as a colorless oil: $\mathrm{R}_{f} 0.58$ (hexanes-ethyl acetate, $1: 1$ ); $[\alpha]_{\mathrm{D}}{ }^{23}-1.4$ (c $0.86, \mathrm{CHCl}_{3}$ ); IR 3436, 3073, 2956, 2877, 1700, 1387, 1105, $1077 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz , a mixture of carbamate rotamers) $\delta 7.66(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 7 \mathrm{H}), 6.80(\mathrm{dt}, J=15.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.87(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~m}, 1 \mathrm{H}), 5.36-5.28(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.63-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{~m}, 3 \mathrm{H})$, $3.96(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=11.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dt}, J=7.5,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.36(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=13.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~d}, J=14.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.19(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.36(\mathrm{~m}, 12 \mathrm{H}), 1.43(\mathrm{~s}$, $9 \mathrm{H}), 1.36-1.25(\mathrm{~m}, 3 \mathrm{H}), 1.19(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~m}, 12 \mathrm{H}), 0.77(\mathrm{~m}, 3 \mathrm{H}), 0.59(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz , a mixture of carbamate rotamers) (partial) $\delta 165.8,141.7,141.3,135.7,135.6,135.2,134.1$, 133.7, 129.8, 129.7, 125.3, 116.7, 110.6, 80.4, 80.0, 79.9, 79.7, 75.6, 72.0, 71.4, 70.5, 66.1, 65.9, 54.6, 52.2, $41.0,40.7,39.5,39.1,38.8,38.1,36.5,35.8,35.4,34.1,29.7,28.6,27.0,23.6,22.7,19.3,14.2,11.6,7.1,7.0$, 6.1, 5.8, 5.7, 5.1, 5.0. HRMS calc. for $\mathrm{C}_{63} \mathrm{H}_{98} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$1121.6658, found 1121.6654. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 23 are included below.


## Oxazole 24.

To a solution of amide $23(44 \mathrm{mg}, 40 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ were added $t-\mathrm{BuOH}(0.1 \mathrm{~mL}), \mathrm{NaHCO}_{3}(32 \mathrm{mg}$, 0.38 mmol ) and Dess-Martin periodinane ${ }^{2}(48 \mathrm{mg}, 0.16 \mathrm{mmol})$. The mixture was stirred for 20 min then filtered through a plug of silica gel, eluting with hexanes-ethyl acetate (5:1 to 3:2). Concentration of the eluent gave an $N$-acyl- $\alpha$-aminoaldehyde, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}) . \mathrm{Ph}_{3} \mathrm{P}(52 \mathrm{mg}, 0.20 \mathrm{mmol}), i-\operatorname{Pr} 2 \mathrm{NEt}(220 \mu \mathrm{~L}$, $0.83 \mathrm{mmol})$ and $\left(\mathrm{BrCCl}_{2}\right)_{2}(65 \mathrm{mg}, 0.20 \mathrm{mmol})$ were added sequentially. The resulting mixture was stirred for 30 min before diethyl ether and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ were added. The separated aqueous phase was extracted with diethyl ether. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and purified by flash chromatography (hexanes-ethyl acetate, $4: 1$ ) to give compound 24 ( 38 mg , $35 \mu \mathrm{~mol}, 87 \%$ ) as an oil: $\mathrm{R}_{f} 0.57$ (hexanes-ethyl acetate, $4: 1$ ); $[\alpha]_{\mathrm{D}}{ }^{23}-19.1$ (c $2.8, \mathrm{CHCl}_{3}$ ); IR 3072, 3048, 2955, 2876, 2861, 1700, 1387, 1105, $1078 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz , a mixture of carbamate rotamers) $\delta 7.67$ (m, 4H), $7.38(\mathrm{~m}, 6 \mathrm{H}), 6.62(\mathrm{ddd}, J=15.0,8.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}) ; 5.78$ (ddd, $J=18.5,10.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.39-5.32(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=18.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~s}$, $1 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 4.66-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H}), 4.23(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{ddt}, J=$ $19.0,11.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=13.5,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.35-2.27 (m, 4H), $2.22(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~m}, 4 \mathrm{H}), 1.78-1.22(\mathrm{~m}, 23 \mathrm{H}), 1.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 9 \mathrm{H}), 0.96(\mathrm{~m}, 12 \mathrm{H})$, $0.79(\mathrm{~m}, 3 \mathrm{H}), 0.62(\mathrm{~m}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ( 75 MHz , a mixture of carbamate rotamers) $\delta 161.0,151.7,142.8$, $142.0,136.0,135.7,135.6,134.7,134.1,133.9,133.7,129.6,127.6,118.3,116.8,110.2,93.7,88.4,82.6,80.8$, $79.6,79.1,71.7,71.5,70.9,69.2,68.9,68.0,67.2,65.6,54.5,42.4,40.3,39.1,39.0,38.9,38.7,38.1,38.0,37.5$, $36.3,34.0,33.5,28.4,26.9,24.9,23.4,19.2,13.8,13.6,13.1,11.4,6.9,6.8,5.6,5.5,4.8$; HRMS calc. for $\mathrm{C}_{63} \mathrm{H}_{94} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$1101.6396, found 1101.6625. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 24 are included below.


## Acrylate 19.

To a solution of oxazole $24(10 \mathrm{mg}, 9.5 \mu \mathrm{~mol})$ in THF $(0.2 \mathrm{~mL})$ was added TBAF ( $50 \mu \mathrm{~L}, 50 \mu \mathrm{~mol}, 1 \mathrm{M}$ in THF). The mixture was stirred for 10 min and then filtered through a plug of silica gel, eluting with hexanesethyl acetate (3:1) to give an alcohol. To a solution of acryloyl chloride ( $40 \mu \mathrm{~L}, 0.5 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, at $0{ }^{\circ} \mathrm{C}$, was added $i-\mathrm{Pr}_{2} \mathrm{NEt}(180 \mu \mathrm{~L}, 1 \mathrm{mmol})$, and stirred 5 min . Then the alcohol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ was added. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min before saturated aqueous $\mathrm{NaHCO}_{3}$ was added. The separated aqueous phase was extracted with diethyl ether, and the combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and purified by flash chromatography to give compound 19 (9.5 $\mathrm{mg}, 9.3 \mu \mathrm{~mol}, 98 \%$ ) as an oil: $\mathrm{R}_{f} 0.60$ (hexanes-ethyl acetate, 7:3); $[\alpha]_{\mathrm{D}}{ }^{23}+5.6\left(c 0.43, \mathrm{CHCl}_{3}\right.$ ); IR 3073, 2933, $2859,1726,1696,1390,1367,1265,1190,1105 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz , a mixture of carbamate rotamers) $\delta$ $7.67(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 7 \mathrm{H}), 6.60(\mathrm{ddd}, J=15.5,8.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.32$ $(\mathrm{d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=17.5,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{ddt}, J=17.0,9.5,7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.43-5.32(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.65-4.58$ $(\mathrm{m}, 1 \mathrm{H}), 4.31(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{~m}, 1 \mathrm{H}), 4.06(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=13.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~m}, 1 \mathrm{H})$, $3.42(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=13.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{q}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.88(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.63(\mathrm{~m}, 6 \mathrm{H}), 1.43(\mathrm{~m}, 12 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H})$, $1.10(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.78-0.66(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, a mixture of carbamate rotamers) $\delta 165.3,160.8,142.8,142.0,135.7,135.6,135.2,134.7,134.1,133.9,133.8,130.8,129.6,128.4,127.5,118.6$, $116.8,79.6,79.0,78.6,76.7,70.9,69.2,68.9,67.2,65.6,54.5,39.9,39.1,39.0,38.6,38.0,37.5,35.9,35.1$, $31.8,31.4,30.2,29.5,28.4,28.2,26.9,24.9,22.5,19.2,14.0,12.7,11.1,6.0,0.8 . ;$ HRMS calc. for $\mathrm{C}_{60} \mathrm{H}_{82} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$1041.5636, found 1041.5633. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 19 are included below.


Macrolides 14 and 15 ( $\mathbf{1 4}: 15>10: 1)$
Preparation of $\mathbf{1 4}$ and $\mathbf{1 5}$ in hexane: To a solution of acrylate $19(2.9 \mathrm{mg}, 2.7 \mu \mathrm{~mol})$ in argon-purged $n$-hexane $(29 \mathrm{~mL})$ at reflux was added a solution of Grubbs' second generation catalyst ( $0.6 \mathrm{mg}, 0.7 \mu \mathrm{~mol}$ ) in hexane ( 1 mL ) dropwise over 45 min . The solution was maintained at reflux for an additional 15 min before it was cooled to $0{ }^{\circ} \mathrm{C}$ and filtered through a pad of silica gel. The filtrate was concentrated and chromatographed (hexanesethyl acetate, $6: 1$ to $4: 1)$ to give a mixture of $\mathbf{1 4}$ and $\mathbf{1 5}(1.9 \mathrm{mg}, 1.7 \mu \mathrm{~mol}, 65 \%,>10: 1$ ratio of $\mathbf{1 4}: \mathbf{1 5}$ as assayed by ${ }^{1} \mathrm{H}$ NMR spectroscopy). IR 3073, 2933, 2859, 1726, 1696, 1390, 1367, 1190, $1105 \mathrm{~cm}^{-1}$; HRMS calc. for $\mathrm{C}_{60} \mathrm{H}_{82} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$1041.5636, found 1041.5633; A copy of the ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture of $\mathbf{1 4}$ and $\mathbf{1 5}(\mathbf{1 4 : 1 5 > 1 0 : 1 )}$ thus prepared is included below.


## (2Z)-Amide (26).

To a solution of (2Z)-macrolide $16(2.0 \mathrm{mg}, 2.1 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added TFA $(50 \mu \mathrm{~L})$. The solution was stirred for 30 min before the volatile components were removed under a stream of dry nitrogen. The residue was concentrated under high vacuum for 1 h before an aqueous phosphate buffer ( $\mathrm{pH} 5.7,0.5 \mathrm{~mL}$ ) was added. The mixture was stirred for 30 min before it was extracted with diethyl ether ( $5 \times 2 \mathrm{~mL}$ ). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give the crude ammonium salt. To a stirred solution of acid $7^{1}(1.3 \mathrm{mg}, 2.1 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added (7-azabenzotriazol-1-yloxy)$\operatorname{tris}($ pyrrolidino)phosphonium hexafluorophosphate (PyAOP, $1.1 \mathrm{mg}, 2.1 \mu \mathrm{~mol})$ and $i-\operatorname{Pr}_{2} \mathrm{NEt}(1.1 \mu \mathrm{~L}, 6.2$ $\mu \mathrm{mol})$. The mixture was stirred for 1 min before a solution of the crude ammonium salt in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$
was added. The reaction mixture was stirred for 1 h before diethyl ether ( 1 mL ) was added and the resultant mixture washed with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$. The aqueous phase was extracted with diethyl ether (2 $\times 1 \mathrm{~mL}$ ), and the combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Silica gel column chromatography (hexanes-ethyl acetate, $1: 1$ to $1: 2$ ) of the residue gave hydroxy amide $26(2.5 \mathrm{mg}, 1.8 \mu \mathrm{~mol}$, $85 \%$ ) as white film: $R_{f} 0.51$ (ethyl acetate); $[\alpha]_{\mathrm{D}}{ }^{23}+19$ (c $0.25, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( 500 MHz ) $\delta 7.65(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 4 \mathrm{H}), 7.40(\mathrm{~m}, 7 \mathrm{H}), 6.86(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{ddd}, J=16.0,10.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.19(\mathrm{~m}, 2 \mathrm{H}), 6.10(\mathrm{dd}, J=13.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~m}, 2 \mathrm{H}), 5.48(\mathrm{dd}, J=15.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~m}, 1 \mathrm{H})$, $5.03(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=9.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=$ $11.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=11.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 2 \mathrm{H}), 3.60$ $(\mathrm{m}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 3 \mathrm{H}), 3.43(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.74(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~m}, 5 \mathrm{H}), 2.08(\mathrm{~d}, J=$ $15.0 \mathrm{~Hz} 1 \mathrm{H}), 1.91(\mathrm{~m}, 5 \mathrm{H}), 1.80(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~d}, J=14.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.36(\mathrm{~m}, 3 \mathrm{H}), 1.12(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.72(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$; HRMS calc. for $\mathrm{C}_{76} \mathrm{H}_{109} \mathrm{~N}_{2} \mathrm{O}_{14} \mathrm{Si}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{Na}]^{+}$1431.6498, found 1431.6597. A copy of ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 6}$ is included below.

(2Z)-Bisoxazole (27).
$\mathrm{NaHCO}_{3}(100 \mathrm{mg}, 127 \mu \mathrm{~mol})$, Dess-Martin periodinane ${ }^{2}(50 \mathrm{mg}, 80 \mu \mathrm{~mol}$ ), and $t$-butanol ( $25 \mu \mathrm{~L}$ ) were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.85 \mathrm{~mL})$ for 5 min then cooled to $0{ }^{\circ} \mathrm{C}$. A pre-cooled solution of amide $26(5.7 \mathrm{mg}, 4.0 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added. After stirring for 45 min , approximately one-half of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solvent was evaporated from the reaction mixture with a stream of $\mathrm{N}_{2}$, and the volume was made up with diethyl ether. Dissolution was ensured by use of sonication. Flash column chromatography (diethyl ether) of the mixture gave the aldehyde free of Dess-Martin periodinane derived impurities. The diethyl ether was removed under a stream of $\mathrm{N}_{2}$, and the aldehyde was placed on the high vacuum for 30 min . To this crude aldehyde in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was sequentially added $\mathrm{Ph}_{3} \mathrm{P}(10 \mathrm{mg}, 12.2 \mu \mathrm{~mol}), i-\operatorname{Pr} \operatorname{NEt}(28 \mu \mathrm{~L}, 159 \mu \mathrm{~mol})$ and $\left(\mathrm{BrCCl}_{2}\right)_{2}(12.7 \mathrm{mg}, 12.2$ $\mu \mathrm{mol})$. The mixture was stirred for 9 h before additional $i-\operatorname{Pr}_{2} \mathrm{NEt}(50 \mu \mathrm{~L})$ was added. After 2.5 h , the solution
was diluted with diethyl ether and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The separated aqueous phase was extracted with diethyl ether $(3 \times 5 \mathrm{~mL})$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and purified by flash chromatography (hexanes-ethyl acetate, 2:1) to give bisoxazole $27(4.0 \mathrm{mg}, 2.8 \mu \mathrm{~mol}, 71 \%$ for two steps) as a white film: $R_{f} 0.33$ (hexanes-ethyl acetate, $3: 2$ ); $[\alpha]_{\mathrm{D}}{ }^{23}+43.0\left(\mathrm{c} 0.07, \mathrm{CHCl}_{3}\right.$ ); IR 3070, 2925, 2850, 1735, 1715, 1180, $1090 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz ) $\delta 7.65(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~m}, 7 \mathrm{H})$, 6.72 (ddd, $J=16.0,10.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~m}, 2 \mathrm{H}), 6.10(\mathrm{dd}, J=13.5$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~m}, 2 \mathrm{H}), 5.46(\mathrm{dd}, J=15.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=11.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=9.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}), 4.20$ (m, 2H), $3.99(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~m}, 3 \mathrm{H}), 3.34(\mathrm{~s}$, $3 \mathrm{H}), 3.32(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.55(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~m}, 5 \mathrm{H}), 2.09(\mathrm{~d}, J=13.0 \mathrm{~Hz} 1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~m}, 4 \mathrm{H})$, $1.79(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~m}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H}), 1.04(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.76(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 125 MHz ) $\delta 165.6,161.4,159.3$, $144.3,142.4,141.8,137.9,137.3,136.2,135.7,134.2,134.1,133.9,133.7,132.4,129.8,128.1,127.7,125.5$, $121.0,119.3,110.1,106.3,99.8,89.3,81.2,79.5,78.0,73.6,73.5,72.1,70.0,69.1,68.9,67.2,66.0,56.6,55.3$, $55.6,47.9,41.4,39.3,39.1,39.0,38.9,37.0,35.6,35.3,34.4,32.6,31.8,30.5,30.3,27.0,25.8,22.7,21.1,19.3$, $18.2,15.2,14.2,13.4,13.4,6.0,-4.5,-4.6$; HRMS calc. for $\mathrm{C}_{76} \mathrm{H}_{105} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{Si}_{2} \mathrm{Br}[\mathrm{M}+\mathrm{Na}]^{+}$1411.6236, found 1411.6245. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 27 are included below.

(2Z)-45,46-Dehydrobromo-amide (32).
To a solution of (2Z)-macrolide $\mathbf{1 6}(9.2 \mathrm{mg}, 9.6 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.3 \mathrm{~mL})$ was added TFA $(0.23 \mathrm{~mL})$. The solution was stirred for 30 min and the volatile components were removed under a stream of $\mathrm{N}_{2}$. The residue was dried under vacuum for 1 h before an aqueous phosphate buffer ( $\mathrm{pH} 5.7,2.4 \mathrm{~mL}$ ) was added. The mixture was stirred for 1 h , then extracted with diethyl ether $(5 \times 4 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated by rotary evaporation to give the crude ammonium salt. To a stirred solution of carboxylic acid $\mathbf{3 1}^{1}(5.0 \mathrm{mg}, 10 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.4 \mathrm{~mL})$ was added PyAOP $(5.1 \mathrm{mg}, 10 \mu \mathrm{~mol})$ and $i$ -
$\operatorname{Pr}_{2} \mathrm{NEt}(51 \mu \mathrm{~L}, 0.32 \mathrm{mmol})$. The solution was stirred for 1 min before a solution of the crude ammonium salt of the macrolide in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.3 \mathrm{~mL})$ was added. After stirring for 9 h , the reaction mixture was diluted with diethyl ether $(5 \mathrm{~mL})$ and washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The aqueous phase was extracted with diethyl ether ( $5 \times 5 \mathrm{~mL}$ ), and the combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. Flash column chromatography (hexanes-ethyl acetate, $1: 1$ to $1: 2$ ) gave 32 ( $12.1 \mathrm{mg}, 9.1 \mu \mathrm{~mol}$, $92 \%$ ) as a white film: $R_{f} 0.3$ (hexanes-ethyl acetate, $1: 2$ ); $[\alpha]_{\mathrm{D}}{ }^{23}+9.3$ (c $0.22, \mathrm{CHCl}_{3}$ ); IR 3374, 3311, 3070, 2927, 2856, 1717, 1653, 1521, 1461, 1428, 1360, 1302, 1248, 1188, 1158, 1092, 1052, 971, 938, 913, 887, 846, $776,740,702 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}(500 \mathrm{MHz}) \delta 7.64(\mathrm{t}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.40(\mathrm{~m}, 7 \mathrm{H}), 6.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70$ (ddd, $J=16.0,10.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{dd}, J=12.0,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 5.62(\mathrm{dd}, J=15.7,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.40(\mathrm{dd}, J=21.5,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~m}, 2 \mathrm{H}), 4.95(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~m}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J$ $=9.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=11.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\operatorname{app~s}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=13.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~m}$, $1 \mathrm{H}), 3.65(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}$, $3 \mathrm{H}), 2.77(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{~m} 1 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~m}, 5 \mathrm{H}), 2.08(\mathrm{~d}, J$ $=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~m}, 5 \mathrm{H}), 1.80(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.79(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~d}, J=14.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.36(\mathrm{~m}, 3 \mathrm{H}), 1.12(\mathrm{~m}, 1 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.72(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}(75 \mathrm{MHz}) \delta 168.8,165.5,161.2,144.3,142.1,141.6,137.8,136.9$, $135.6,134.1,133.9,133.6,132.1,129.6,127.6,126.1,125.3,120.9,119.1,109.9,99.4,88.8,80.1,79.3,77.1$, $73.7,73.3,73.0,71.9,69.9,68.9,68.8,67.1,65.8,65.4,56.5,55.4,49.1,47.5,43.8,41.2,39.2,38.9,37.8,36.9$, $35.1,34.2,31.1,30.2,29.6,26.9,25.7,25.5,22.6,21.1,19.2,18.1,13.3,13.2,11.9,5.9,-4.5,-4.7$; HRMS calcd for $\mathrm{C}_{76} \mathrm{H}_{108} \mathrm{~N}_{2} \mathrm{O}_{14} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{K}]^{+}$1367.6971, found 1367.6978. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 2}$ are included below.

(2Z)-45,46-Dehydrobromo-bisoxazole (33).
$\mathrm{NaHCO}_{3}$ ( $400 \mathrm{mg}, 4.8 \mathrm{mmol}$ ), Dess-Martin periodinane ${ }^{2}(381 \mathrm{mg}, 0.9 \mathrm{mmol})$, and $t$-butanol ( $83 \mu \mathrm{~L}, 0.9 \mathrm{mmol}$ ) were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ for 5 min then cooled to $0{ }^{\circ} \mathrm{C}$. A pre-cooled solution of amide $\mathbf{3 2}(19 \mathrm{mg}, 14.1$ $\mu \mathrm{mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.55 \mathrm{~mL})$ was added. After stirring for 45 min , one-half of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated under a
stream of $\mathrm{N}_{2}$ and the original volume was made up with diethyl ether. Suspension of the resulting mixture was accomplished with sonication. Flash column chromatography (diethyl ether) of the mixture, followed by concentration gave the aldehyde free of Dess-Martin periodinane derived impurities. The diethyl ether was removed under a stream of $\mathrm{N}_{2}$, and the residual aldehyde was placed under high vacuum for 30 min . The aldehyde was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, and $\mathrm{Ph}_{3} \mathrm{P}(50 \mathrm{mg}, 0.19 \mathrm{mmol}), i-\mathrm{Pr}_{2} \mathrm{NEt}(135 \mu \mathrm{~L}, 0.77 \mathrm{mmol})$ and $\left(\mathrm{BrCCl}_{2}\right)_{2}(62 \mathrm{mg}, 0.19 \mathrm{mmol})$ were sequentially added. The mixture was stirred for 9 h before additional $i$ $\mathrm{Pr}_{2} \mathrm{NEt}\left(135 \mu \mathrm{~L}, 0.77 \mathrm{mmol}\right.$ ) was then added. After 2 h , diethyl ether and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ were added. The separated aqueous phase was extracted with diethyl ether ( $3 \times 5 \mathrm{~mL}$ ). The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and purified by flash chromatography (hexanes-ethyl acetate, 2:1) to give bisoxazole 33 ( $12.6 \mathrm{mg}, 9.6 \mu \mathrm{~mol}, 71 \%$ for two steps) as a white film: $R_{f} 0.4$ (hexanes-ethyl acetate, 2:1); $[\alpha]_{\mathrm{D}}{ }^{23}+56.5\left(\mathrm{c} 0.17, \mathrm{CHCl}_{3}\right) ;$ IR $3640,3310,3071,3049,2927,2855,2358,2121,1719,1657,1640,1579$, $1553,1462,1428,1379,1359,1320,1300,1259,1188,1156,1092,1052,938,914,887,836,813,778,739$, $702,665,636,609 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}(500 \mathrm{MHz}) \delta 7.65(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~m}, 7 \mathrm{H}), 6.72(\mathrm{ddd}, J$ $=16.0,10.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~m}, 2 \mathrm{H}), 5.60(\mathrm{dd}, J=15.8,7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.40(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 4.91(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=11.3,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.43 (dd, $J=9.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=14.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60$ (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~d}, J=15.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.78(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~m}, 4 \mathrm{H}), 2.29(\mathrm{~m}, 3 \mathrm{H}), 2.09(\mathrm{~d}, J=13.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~m}, 4 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.6-1.5(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~m}, 3 \mathrm{H}), 0.19(\mathrm{~s}$, $9 \mathrm{H}), 0.99(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.76(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}(125$ $\mathrm{MHz}) \delta 165.6,161.4,159.3,144.4,142.2,141.7,137.6,137.1,136.3,135.7,134.2,134.0,133.9,133.8,132.5$, $129.8,127.7,127.4,125.5,121.0,119.4,119.2,110.2,99.8,89.3,80.6,80.3,79.4,78.0,73.6,73.5,72.1,71.7$, $71.5,71.4,70.0,69.1,68.9,67.2,65.9,56.6,55.7,47.9,41.3,39.3,39.1,38.9,37.0,35.6,35.2,34.4,32.6,31.8$, $30.5,30.3,29.7,27.0,25.8,25.7,19.3,18.2,14.2,13.5,13.3,6.0,-4.5,-4.6$; HRMS calcd for $\mathrm{C}_{76} \mathrm{H}_{104} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{Si}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}$1331.6973, found 1331.6976. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 33 are included below.

(2E)-45,46-Dehydrobromo-amide (38).
To a solution of $(2 E)$-macrolide $17(37 \mathrm{mg}, 39 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.5 \mathrm{~mL})$ was added TFA $(1.0 \mathrm{~mL})$. The solution was stirred for 40 min before the volatile components were removed under a stream of $\mathrm{N}_{2}$. The residue was dried under vacuum for 1 h before an aqueous phosphate buffer $(\mathrm{pH} 5.7,11 \mathrm{~mL})$ was added. The mixture was stirred for 1 h , then extracted with diethyl ether $(5 \times 10 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated by rotary evaporation to give the crude ammonium salt. To a stirred solution of carboxylic acid $\mathbf{3 1}^{1}(23 \mathrm{mg}, 44 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.5 \mathrm{~mL})$ was added PyAOP ( $24 \mathrm{mg}, 229 \mu \mathrm{~mol}$ ) and $i$ $\operatorname{Pr}_{2} \operatorname{NEt}(230 \mu \mathrm{~L}, 1.3 \mathrm{mmol})$. The solution was stirred for 1 min before a solution of the crude ammonium salt of the macrolide $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.5 \mathrm{~mL})$ was added. After stirring for 9 h , the reaction mixture was diluted with diethyl ether ( 20 mL ) and washed with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The aqueous phase was extracted with diethyl ether ( $5 \times 20 \mathrm{~mL}$ ), and the combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. Flash column chromatography (hexanes-ethyl acetate, $1: 1$ to $1: 2$ ) gave $38(52 \mathrm{mg}, 37 \mu \mathrm{~mol}, 96 \%)$ as a white film: $R_{f} 0.25$ (hexanes-ethyl acetate, 1:2); $[\alpha]{ }_{\mathrm{D}}{ }^{23}-45.5$ (c $0.25, \mathrm{CHCl}_{3}$ ); IR 3374, 3311, 3071, 2930, 2856, 1709, 1654, 1526, 1461, 1427, 1379, 1359, 1324, 1308, 1248, 1153, $1089 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}(500 \mathrm{MHz}) \delta 7.64(\mathrm{t}, J$ $=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.42(\mathrm{~m}, 7 \mathrm{H}), 6.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{ddd}, J=16.0,10.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dd}, J=15.5$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{dd}, J=16.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J=19.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~m}$, $1 \mathrm{H}), 4.92(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.84-4.77(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{dd}, J=8.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~m}, 1 \mathrm{H})$, $3.85(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.43(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{~m}, 1 \mathrm{H}), 2.70(\mathrm{~m} \mathrm{1H}), 2.50-2.40(\mathrm{~m}, 2 \mathrm{H})$, 2.40-2.22 (m, 4H), 2.00-1.40(m, 10H), $1.36(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~m}, 1 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.72(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}(75 \mathrm{MHz}) \delta 168.9,167.00$, $161.1,146.9,142.3,141.4,137.9,137.0,135.5,134.1,133.8,132.1,129.7,127.6,126.0,125.4,122.8,118.6$, $111.1,99.4,88.9,80.4,80.1,78.3,74.6,73.6,73.0,71.9,70.4,70.2,70.0,68.4,66.0,65.7,65.5,56.6,56.1$, $55.5,49.1,47.6,43.7,40.3,38.9,38.2,37.8,36.5,34.2,31.3,30.2,29.6,26.9,25.7,25.5,19.2,18.1,13.3,13.2$, 11.9, 5.8, -4.5, -4.7; HRMS calcd for $\mathrm{C}_{76} \mathrm{H}_{108} \mathrm{~N}_{2} \mathrm{O}_{14} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$1351.7231, found 1351.7239. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 8}$ are included below.


## (2E)- 45,46-Dehydrobromo-bisoxazole (39).

$\mathrm{NaHCO}_{3}(800 \mathrm{mg}, 9.5 \mathrm{mmol})$, Dess-Martin periodinane ${ }^{2}$ ( $790 \mathrm{mg}, 1.9 \mathrm{mmol}$ ), and $t$-butanol ( $173 \mu \mathrm{~L}, 1.9 \mathrm{mmol}$ ) were stirred in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ for 5 min then cooled to $0{ }^{\circ} \mathrm{C}$. A pre-cooled solution of amide $38(38 \mathrm{mg}, 28$ $\mu \mathrm{mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ was added. After stirring for 45 min , one-half of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated under a stream of $\mathrm{N}_{2}$ and the volume was made up with diethyl ether. The resulting mixture was briefly sonicated. Flash column chromatography (diethyl ether) of the mixture gave the aldehyde free of Dess-Martin periodinane derived impurities. The diethyl ether was removed under a stream of $\mathrm{N}_{2}$, and the aldehyde was placed under high vacuum for 30 min . To this crude aldehyde in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(21 \mathrm{~mL})$ was added $\mathrm{Ph}_{3} \mathrm{P}(102 \mathrm{mg}, 125 \mu \mathrm{~mol})$, $i$ $\operatorname{Pr}_{2} \mathrm{NEt}(300 \mu \mathrm{~L}, 1.7 \mathrm{mmol})$ and $\left(\mathrm{BrCCl}_{2}\right)_{2}(127.3 \mathrm{mg}, 0.19 \mathrm{mmol})$ sequentially. The mixture was stirred for 9 h before additional $i-\operatorname{Pr}_{2} \operatorname{NEt}(300 \mu \mathrm{~L}, 125 \mu \mathrm{~mol})$ was added. After 2 h , the solution was diluted with diethyl ether $(10 \mathrm{~mL})$ and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The separated aqueous phase was extracted with diethyl ether $(3 \times 10$ mL ). The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and purified by flash chromatography (hexanes-ethyl acetate, 2:1) to give bisoxazole 39 ( $25 \mathrm{mg}, 19 \mu \mathrm{~mol}, 68 \%$ for two steps) as a white film: $R_{f} 0.5$ (hexanes-ethyl acetate, $2: 1$ ); $[\alpha]_{\mathrm{D}}{ }^{23}-11.4$ (c $0.35, \mathrm{CHCl}_{3}$ ); IR 2934, 1717, 1654, 1640, 1463, 1357, 1098, $911,839 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}(500 \mathrm{MHz}) \delta 7.65(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~m}, 7 \mathrm{H}), 6.72$ (ddd, $J=16.0,10.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~m}, 2 \mathrm{H}), 5.46(\mathrm{dd}, J=15.8,7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.40(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~s}, 2 \mathrm{H}), 4.91(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=11.3,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.43(\mathrm{dd}, J=9.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}), 4.20(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=14.0,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.60(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{~d}, J=15.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~m}, 5 \mathrm{H}), 2.29(\mathrm{~m}, 4 \mathrm{H}), 2.09(\mathrm{~d}, J=13.0$ Hz, 1H), $2.04(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~m}, 4 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.6-1.5(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~m}, 3 \mathrm{H})$, $0.19(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.76(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}$ ( 75 MHz ) $\delta 166.9,161.1,159.1,146.8,142.3,141.4,137.7,137.5,137.0,136.1,135.5,134.5,134.0,133.8$, 133.7, 132.3, 129.7, 127.2, 125.4, 122.8, 119.2, 118.7, 110.0, 99.7, 89.3, 80.5, 80.2, 78.3, 76.7, 73.4, 73.3, 70.4, $69.9,68.4,66.0,65.6,56.5,55.6,47.9,40.5,40.3,39.0,38.9,38.3,37.5,36.5,35.5,34.5,34.3,32.5,32.0,30.2$,
29.6, 25.7, 25.6, 19.2, 18.1, 14.2, 13.4, 13.1, 5.9, -4.65, -4.71; HRMS calcd for $\mathrm{C}_{76} \mathrm{H}_{104} \mathrm{~N}_{2} \mathrm{O}_{13} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$ 1331.6973, found 1331.6979. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 39 are included below.

(2E)-33-O-Methyl-45,46-Dehydrobromo-phorboxazole A (40).
To bisoxazole $39(0.7 \mathrm{mg}, 0.5 \mu \mathrm{~mol})$ in ethyl acetate $(0.5 \mathrm{~mL})$ was added TBAF ( 1.0 M in THF, $0.2 \mathrm{~mL}, 0.2$ $\mathrm{mmol})$. The mixture was stirred for 5 d then washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(0.5 \mathrm{~mL})$. The aqueous phase was extracted with ethyl acetate $(5 \times 1 \mathrm{~mL})$, and the combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and purified by flash chromatography (EtOAc) to give $40(0.4 \mathrm{mg}, 0.4 \mu \mathrm{~mol}, 80 \%$ ) as a white film: $\mathrm{R}_{f} 0.46$ (ethyl acetate); $[\alpha]_{\mathrm{D}}{ }^{23}-31.7$ (c $1.2, \mathrm{CHCl}_{3}$ ); IR 3447, 2929, 1643, 1456, 1371, 1180, 1156, $1092,1040 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz ) $\delta 7.58(\mathrm{~s}, 1 \mathrm{H}$ ), $7.43(\mathrm{~s}, 1 \mathrm{H}), 6.61(\mathrm{ddd}, J=16.5,10.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.31$ (d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~m}, 2 \mathrm{H}), 5.64(\mathrm{dd}, J=15.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{dd}, J=11.0$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{t}$, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=11.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\operatorname{app} \mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H})$, 3.55-3.49 (m, 3H), $3.36(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H})$, $2.65(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{appq}, ~ J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=12.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{bd}, J=13.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.01(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{ddd}, J=13.0,10.0,3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.37(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 $\mathrm{MHz}) \delta 161.0,158.8,142.0,140.4,137.7,137.2,137.0,136.8,136.3,134.3,134.1,129.8,128.2,119.3,118.9$, $11.5,99.9,89.1,80.4,80.1,79.4,77.1,75.0,73.0,72.8,71.0,69.9,69.1,67.4,65.5,64.3,64.0,57.7,53.3,49.4$, $48.1,43.5,39.5,39.0,36.5,35.5,34.8,34.6,34.4,32.7,32.2,29.6,25.6,20.6,14.1,13.9,13.4,13.1,5.8$; HRMS calc. for $\mathrm{C}_{54} \mathrm{H}_{72} \mathrm{~N}_{2} \mathrm{O}_{13}[\mathrm{M}+\mathrm{Na}]^{+} 979.4927$, found 979.4933. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 40 are included below.


## (2E)-45,46-Dehydrobromo-phorboxazole A (41).

To $40(2.4 \mathrm{mg}, 2.4 \mu \mathrm{~mol})$ in THF ( 3.0 mL ) was added $6 \%$ aqueous $\mathrm{HCl}(0.7 \mathrm{~mL})$. The mixture was stirred for 30 h , and washed with saturated aqueous $\mathrm{NaHCO}_{3}(5.0 \mathrm{~mL})$. The aqueous phase was extracted with ethyl acetate ( $5 \times 2 \mathrm{~mL}$ ), and the combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and purified by flash chromatography (ethyl acetate) to give $41(1.6 \mathrm{mg}, 1.6 \mu \mathrm{~mol}, 67 \%)$ as a white film: $R_{f} 0.2$ (ethyl acetate); $[\alpha]_{\mathrm{D}}{ }^{23}-10.0\left(\mathrm{c} 0.7, \mathrm{CHCl}_{3}\right.$ ); IR 3414, 2961, 1744, 1650, 1411, 1357, 1323, 1260, 1188, 1091, 1015, $903,871,800 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( $800 \mathrm{MHz}, \mathrm{CHCl}_{3}$ ) $\delta 7.58(\mathrm{~m}, 1 \mathrm{H}$ ) $), 7.45(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{ddd}, J=16.5,10.5,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.31(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 2 \mathrm{H}), 5.64(\mathrm{dd}, J=15.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=10.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{dd}, J=12.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~m}$, $2 \mathrm{H}), 4.32(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.74(\mathrm{~m}, 5 \mathrm{H}), 3.67(\mathrm{dd}, J$ $=11.5,5.5 \mathrm{~Hz}, 4 \mathrm{H}), 3.60(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H})$, $3.32(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 5 \mathrm{H}), 2.35(\mathrm{~m}, 4 \mathrm{H})$, $2.25(\mathrm{dd}, J=12.5,4.0 \mathrm{~Hz} 1 \mathrm{H}), 2.04(\mathrm{bd}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~m}, 2 \mathrm{H})$, $1.79(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{ddd}, J=13.0,10.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.77(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$; HRMS calc. for $\mathrm{C}_{54} \mathrm{H}_{72} \mathrm{~N}_{2} \mathrm{O}_{13}[\mathrm{M}+\mathrm{Na}]^{+} 965.4771$, found 965.4763 ; A copy of ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 1}$ is included below.


Aldehyde 52.
Alcohol $51(100 \mathrm{mg}, 144 \mu \mathrm{~mol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.8 \mathrm{~mL})$ and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. $\mathrm{NaHCO}_{3}(89 \mathrm{mg}, 1.0 \mathrm{mmol})$ and Dess-Martin periodinane ( $214 \mathrm{mg}, 0.5 \mathrm{mmol}$ ) were added. The cold bath was removed and mixture was stirred for 20 min . Then the mixture was filtered through silica gel, eluted with hexanes-ethyl acetate (4:1), and the eluent was concentrated to give $\mathbf{5 2}$ ( $99 \mathrm{mg}, 0.14 \mathrm{mmol}, 99 \%$ ) as a colorless
oil: $\mathrm{R}_{f} 0.60$ (hexanes-ethyl acetate, 7:3); $[\alpha]_{\mathrm{D}}{ }^{23}-0.3\left(c 4.43, \mathrm{CHCl}_{3}\right.$ ); IR 3071, 2934, 2859, 1727, 1671, 1386, 1366, 1256, 1105, $1064 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz , a mixture of carbamate rotamers) $\delta 9.75(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~m}$, $4 \mathrm{H}), 7.65(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{~m}, 6 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.44-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26$ (d, $J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-3.95(\mathrm{~m}, 4 \mathrm{H}), 3.86(\mathrm{dd}, J=9.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dt}, J=15.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~m}$, $1 \mathrm{H}), 2.40(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{ddd}, J=14.5,7.5,6.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.74(\mathrm{ddd}, J=13.5,7.5,6.5 \mathrm{~Hz}, 0.5 \mathrm{H})$, 1.59-1.42(m, 17H), $1.29(\mathrm{~m}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz}$, a mixture of carbamate rotamers) $\delta$ 201.0, 200.7, 152.5, 152.4, 141.0, 135.8, 135.7, 135.6, 134.4, 134.0, 133.8, 129.8, 129.7, 129.6, $127.8,127.7,127.6,112.7,111.2,11.1,93.9,93.4,77.4,77.1,76.8,71.0,70.0,69.5,69.2,69.0,67.4,67.3,65.9$, $63.6,63.3,59.4,47.9,39.7,39.6,39.2,39.0,38.7,38.6,32.7,32.4,29.7,28.4,27.0,26.7,25.9,23.9,22.5,19.4$, 19.3; HRMS calc. for $\mathrm{C}_{40} \mathrm{H}_{57} \mathrm{NO}_{7} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 714.3802$, found 714.3816. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{5 2}$ are included below.


S1


## $t$-Butyl ester 48

To a solution of ester $\mathbf{S} \mathbf{1}^{1}(445 \mathrm{mg}, 801 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added diisobutylaluminum hydride $(150 \mu \mathrm{~L}, 840 \mu \mathrm{~mol})$ dropwise. The resulting solution was allowed to stir for 5 h at $-78{ }^{\circ} \mathrm{C}$, before methanol ( 0.1 mL ) was slowly added, followed by $10 \%$ aqueous $\mathrm{HCl}(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. Upon warming to rt , the aqueous layer was separated and extracted by diethyl ether ( $3 \times 10 \mathrm{~mL}$ ). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated by rotary evaporation to give the crude aldehyde. To a portion of this aldehyde $(69.2 \mathrm{mg}, \quad 131 \mu \mathrm{~mol})$ in $\mathrm{CH}_{3} \mathrm{CN}(0.65 \mathrm{~mL})$ was added freshly prepared ( $t$ -butoxycarbonyl)methylene-triphenylphosphorane ( $86 \mathrm{mg}, 228 \mu \mathrm{~mol}$ ). After heating at $60{ }^{\circ} \mathrm{C}$ for 14 h , the reaction mixture was cooled to rt, diluted with diethyl ether $(10 \mathrm{~mL})$ and washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(10 \mathrm{~mL})$. The aqueous phase was extracted with diethyl ether $(3 \times 10 \mathrm{~mL})$, and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was subjected to flash column chromatography (hexanes-ethyl acetate, $5: 1$ ) to give $48(55 \mathrm{mg}, 98 \mu \mathrm{~mol}, 75 \%)$ as a colorless oil: $\mathrm{R}_{f} 0.4$ (hexanes-ethyl acetate, 5:1); $[\alpha]_{D}{ }^{23}+10.4$ (c 2.8, $\mathrm{CHCl}_{3}$ ); IR 2976, 2961, 2875, 1698, 1653, 1457, 1385, 1365, 1250, 1155, 1105, 1076 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 300 MHz , a mixture of carbamate rotamers) $\delta 6.84$ (ddd, $J=13.8,8.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), $5.75(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{app} \mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=8.7,1.2 \mathrm{~Hz} 1 \mathrm{H}), 3.43-$
$3.34(\mathrm{~m}, 3 \mathrm{H}), 3.24(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{ddd}, J=14.0,7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{ddd}, J=14.0,7.0,7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 11 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~m}, 12 \mathrm{H}), 0.74(\mathrm{~m}, 3 \mathrm{H}), 0.56(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz , a mixture of carbamate rotamers) $\delta 165.7,151.7,145.4,143.9,129.0,127.7,124.6,105.3,93.8$, 88.5, 79.9, 79.5, 76.9, 68.8, 68.0, 54.5, 39.0, 35.4, 34.0, 28.4, 28.1, 28.0, 6.8, 5.6, 4.9; HRMS calcd. for $\mathrm{C}_{34} \mathrm{H}_{61} \mathrm{NO}_{7} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+} 646.4110$; found 646.4116. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 48 are included below.


Alcohol 53.
To a $0{ }^{\circ} \mathrm{C}$ solution of $48(90 \mathrm{mg}, 0.14 \mathrm{mmol})$ in THF ( 1 mL ) was added TBAF ( $0.16 \mathrm{~mL}, 1 \mathrm{M}$ in THF). The solution was stirred at rt for 30 min then concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 3:1) to give $53(71 \mathrm{mg}, 0.14 \mathrm{mmol}, ~ 97 \%)$ as a colorless oil: $\mathrm{R}_{f} 0.32$ (hexanes-ethyl acetate, 7:3); $[\alpha]_{\mathrm{D}}{ }^{23}+2.7$ (c 5.85, $\mathrm{CHCl}_{3}$ ); IR 3493, 2979, 2922, 2873, 1694, 1383, 1371, 1246, 1154, 1101, $1056 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz , a mixture of carbamate rotamers) $\delta 6.76$ (ddd, $J=15.5,8.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.79 $(\mathrm{d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.38-5.31(\mathrm{~m}, 1 \mathrm{H}), 4.62-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.03(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dt}, J=$ $7.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{ddd}, J=15.0,7.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{ddd}, J=$ $15.0,8.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{dq}, J=5.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.41(\mathrm{~m}, 27 \mathrm{H}), 0.92(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.84-0.79(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 125 MHz , a mixture of carbamate rotamers) $\delta 165.8,151.9,143.7,135.9$, $134.3,129.3,128.0,124.8,93.9,93.2,88.9,88.4,80.3,79.7,76.9,76.5,68.9,68.0,54.6,38.0,35.4,33.7,28.5$, 28.3, 28.2, 28.1, 28.0, 27.6, 26.8, 25.1, 23.6, 13.7, 12.8, 11.6, 11.2, 5.4; HRMS calc. for $\mathrm{C}_{28} \mathrm{H}_{47} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{Na}]^{+}$ 532.3250, found 532.3255. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{5 3}$ are included below.


Phosphonate 54.
To a solution of alcohol $53(71 \mathrm{mg}, 0.14 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.4 \mathrm{~mL})$ was added bis $(2,2,2-$ trifluoroethoxy)phosphono-acetic acid ${ }^{3}(128 \mathrm{mg}, 420 \mu \mathrm{~mol})$ followed by EDCI $\cdot \mathrm{HCl}(81 \mathrm{mg}, 0.42 \mathrm{mmol})$ and HOBt ( $6 \mathrm{mg}, 0.4 \mathrm{mmol}$ ). The mixture was stirred at rt for 20 min then chromatographed on silica gel (hexanesethyl acetate, 3:1) to give $54(105 \mathrm{mg}, 132 \mu \mathrm{~mol}, 94 \%)$ as a colorless oil: $\mathrm{R}_{f} 0.29$ (hexanes-ethyl acetate, 7:3); $[\alpha]_{\mathrm{D}}{ }^{23}+3.8\left(c 2.92, \mathrm{CHCl}_{3}\right)$; IR 2979, 2937, 1733, 1700, 1394, 1367, 1299, 1266, 1172, 1102, $1074 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz , a mixture of carbamate rotamers) $\delta 6.76(\mathrm{ddd}, J=15.5,8.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{~d}, J=15.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.42-5.36(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{dd}, J=11.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.59(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{dq}, J=8.0,1.5 \mathrm{~Hz}, 4 \mathrm{H}), 4.06$ $(\mathrm{m}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dt}, J=7.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.21\left(\mathrm{~d}, J_{P-H}=21.5\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 2.45(\mathrm{ddd}, J=15.0,7.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{ddd}, J=15.0,8.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~m}, 1 \mathrm{H})$, 1.77-1.40 (m, 27H), $0.94(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.77-0.71(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 125 MHz , a mixture of carbamate rotamers) $\delta 165.7,164.0,151.8,143.0,135.2,133.5,130.2,128.6,125.7,125.6,125.2,123.5,123.4,121.3$, $121.2,119.1,119.0,112.7,94.0,93.1,88.8,88.1,80.7,80.3,79.7,78.8,78.7,76.4,68.8,67.9,62.4,54.6,35.3$, $34.6,33.5,31.4,29.7,28.5,28.3,28.1,28.0,27.5,26.8,25.1,24.7,23.5,13.3,12.7,12.6,11.5,11.1,6.0$; HRMS calc. for $\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{~F}_{6} \mathrm{NO}_{11} \mathrm{P}[\mathrm{M}+\mathrm{Na}]^{+}$818.3080, found 818.3073. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 54 are included below.


## Acrylate (2Z)-47 and (2E)-47.

To a solution of 18 -crown-6 ( $391 \mathrm{mg}, 1.48 \mathrm{mmol}$ ) in toluene $(1.5 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(102 \mathrm{mg}, 738 \mu \mathrm{~mol})$. The mixture was stirred for 10 h before being cooled to $-40^{\circ} \mathrm{C}$. A solution of aldehyde $52(98 \mathrm{mg}, 0.12 \mathrm{mmol})$ and phosphonate $54(85 \mathrm{mg}, 0.12 \mathrm{mmol})$ in toluene $(0.5 \mathrm{~mL})$ was added. The resultant mixture was stirred at $40^{\circ} \mathrm{C}$ for 2 h , then subjected directly to silica gel chromatography (hexanes-ethyl acetate, $3: 1$ ) to give a mixture of (2Z)-47 and (2E)-47 (2Z:2E $2: 1$, as assayed by ${ }^{1} \mathrm{H}$ NMR spectroscopy, $\left.140 \mathrm{mg}, 114 \mu \mathrm{~mol}, 93 \%\right)$. Further flash chromatography provided (2Z)-47 (98 mg, $80 \mu \mathrm{~mol}, 65 \%$ ) separated from (2E)-8.
Analytical data for (2Z)-47: $\mathrm{R}_{f} 0.61$ (hexanes-ethyl acetate, 7:3); $[\alpha]_{\mathrm{D}}{ }^{23}-4.8\left(c 2.36, \mathrm{CHCl}_{3}\right)$; IR 3074, 3048, 2979, 2934, 2892, 2858, 1700, 1390, 13657, 1255, 1160, 1104, $1063 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz , a mixture of carbamate rotamers) $\delta 7.63(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{~m}, 6 \mathrm{H}), 6.77(\mathrm{ddd}, J=12.0,8.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~m}, 1 \mathrm{H}), 5.79(\mathrm{~m}$, $2 \mathrm{H}), 4.78(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{dd}, J=11.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.57(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 0.5 \mathrm{H})$, $4.32(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 2 \mathrm{H}), 3.97(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~m}, 1 \mathrm{H})$, $3.84(\mathrm{dd}, J=9.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.95$ $(\mathrm{m}, 1 \mathrm{H}), 2.81(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=13.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{appt}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~m}$, $1 \mathrm{H}), 2.06(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.41(\mathrm{~m}, 47 \mathrm{H}), 1.32-1.25(\mathrm{~m}, 3 \mathrm{H}), 1.07(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 9 \mathrm{H})$, $0.92(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.73-0.68(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 125 MHz , a mixture of carbamate rotamers) $\delta 165.8$, $152.4,151.8,147.5,143.4,141.7,135.7,135.6,134.4,134.0,133.7,129.7,129.5,128.3,127.7,127.6,125.1$, $120.6,112.4,110.6,93.9,93.4,89.0,88.4,80.3,80.1,79.7,78.0,76.6,71.3,70.9,69.9,69.5,69.3,69.1,68.9$, $68.0,67.1,65.9,63.5,63.3,59.4,54.6,40.0,39.8,39.2,38.9,35.4,33.9,33.5,32.7,32.3,31.7,31.5,30.3,29.7$, $28.6,28.4,28.2,27.6,27.0,26.7,25.9,25.1,24.7,23.9,23.6,22.7,22.4,19.4,15.3,14.1,13.5,12.8,11.7,11.2$, 6.3; HRMS calc. for $\mathrm{C}_{70} \mathrm{H}_{104} \mathrm{~N}_{2} \mathrm{O}_{14} \mathrm{SiNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$1247.7155, found 1247.7152. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of (2Z)-47 are included below.
Analytical data for (2E)-47: $\mathrm{R}_{f} 0.61$ (hexanes-ethyl acetate, $7: 3$ ); $[\alpha]_{\mathrm{D}}{ }^{23}+1.89\left(c 3.91, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz , a mixture of carbamate rotamers) $\delta 7.63(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{~m}, 6 \mathrm{H}), 6.93(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{ddd}, J=15.0,8.0,6.0$
$\mathrm{Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.42-5.35(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 4.78(\operatorname{app} \mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{dd}, J=10.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.32(\mathrm{~d}, J=10.5 \mathrm{~Hz}$, $0.5 \mathrm{H}), 4.25(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 4 \mathrm{H}), 4.00(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{t}, J=5.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.90(\mathrm{app} \mathrm{q}$, $J=4.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.85(\mathrm{dd}, J=9.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=$ $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.39(\mathrm{~m}, 4 \mathrm{H}), 2.33(\mathrm{dq}, J=14.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.02(\mathrm{~m}, 3 \mathrm{H}), 1.92(\mathrm{~m}$, $1 \mathrm{H}), 1.78-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.20(\mathrm{~m}, 44 \mathrm{H}), 1.08(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 9 \mathrm{H}), 0.93(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.75-0.70(\mathrm{~m}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 125 MHz , a mixture of carbamate rotamers) $\delta 165.8,152.4,141.5,135.8,135.7,135.6,134.0$, $129.8,129.7,127.6,127.7,127.6,125.1,93.9,93.4,80.3,80.1,79.8,79.7,78.3,77.3,76.6,71.0,70.8,69.3$, $68.9,65.9,63.5,59.4,54.7,39.2,38.9,38.5,36.7,35.4,35.3,32.4,31.6,30.3,29.7,28.4,28.2,28.1,27.0,26.7$, 26.9, 23.9, 22.7, 22.4, 19.4, 19.3, 14.1, 6.2; HRMS calc. for $\mathrm{C}_{70} \mathrm{H}_{104} \mathrm{~N}_{2} \mathrm{O}_{14} \mathrm{SiNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 1247.7155$, found 1247.7152. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of $(2 E)-47$ are included below.


## Bisamide 44.

To a solution of (2Z)-47 (38 mg, $31 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$ under argon was added freshly distilled trifluoroacetic acid (TFA, 2.5 mL ). The solution was stirred for 50 min before the TFA and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were removed under a gentle flow of nitrogen gas. The residue was further concentrated under high vacuum for 10 min and then stirred in a mixture of pH 5.7 aqueous phosphate buffer and $\mathrm{CHCl}_{3}$ for 50 min . The separated aqueous phase was extracted with $\mathrm{CHCl}_{3}$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and further dried under high vacuum for 12 h to give 46 as a solid white bis-ammonium salt. This solid was dissolved in DMF ( 33 mL ) and $i-\mathrm{Pr}_{2} \mathrm{NEt}(0.3 \mathrm{~mL})$ with the aid of sonication. A solution of pentafluorophenol diphenylphosphinate ( $30 \mathrm{mg}, 78 \mu \mathrm{~mol}$ ) in DMF ( 1 mL ) was added over 1 h . After stirring for an additional 3 h , additional pentafluorophenol diphenylphosphinate ( $6 \mathrm{mg}, 16 \mu \mathrm{~mol}$ ) in DMF ( 1 mL ) was added over 0.5 h . The mixture was stirred for an additional 3 h to completely generate lactam-lactone 49 in situ (monitored by ESI-TOF-HRMS analysis). In a separate vial, carboxylic acid $7^{1}(18 \mathrm{mg}, 31 \mu \mathrm{~mol})$ was dissolved in DMF ( 2 mL ) and $i-\operatorname{Pr}_{2} \operatorname{NEt}(50 \mu \mathrm{~L})$ before PyAOP $(16 \mathrm{mg}, 31 \mu \mathrm{~mol})$ was added. The mixture was gently shaken for 1 min before being added to the mixture of in situ generated 46. The resultant mixture was stirred for 10 min before
methanol ( 2 mL ) was added and the mixture was concentrated by rotary evaporation under high vacuum. The residue was subjected to flash chromatography $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 1: 0\right.$ to $100: 1$ to $70: 1$ to $50: 1$ to $\left.30: 1\right)$ to give 44 ( 37.5 mg ) accompanied by impurities: $\mathrm{R}_{f} 0.42\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 12: 1\right)$; HRMS calc. for $\mathrm{C}_{76} \mathrm{H}_{113} \mathrm{BrN}_{2} \mathrm{O}_{15} \mathrm{Si}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+} 1451.6755$, found 1451.6751 ; A copy of the ${ }^{1} \mathrm{H}$ NMR spectrum of crude 44 is included below.


Bisoxazole 27 (Obtained via simultaneous oxazole formation).
To a mixture of $\mathrm{NaHCO}_{3}(60 \mathrm{mg}, 0.7 \mathrm{mmol})$, Dess-Martin periodinane ${ }^{2}(54 \mathrm{mg}, 1.3 \mathrm{mmol})$ and $t-\mathrm{BuOH}(60 \mu \mathrm{~L})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ was added a solution of crude bis-amido-diol $44(5 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{~mL})$. The mixture was stirred for 20 min before a saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and $\mathrm{NaHCO}_{3}$, and diethyl ether, were added. The biphasic mixture was stirred vigorously for 5 min . The separated aqueous phase was extracted with diethyl ether. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and further dried under high vacuum for 30 min to give a crude bisamido-dialdehyde. This was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and to the solution were sequentially added $\mathrm{Ph}_{3} \mathrm{P}(37 \mathrm{mg}, 0.14 \mathrm{mmol}), i-\mathrm{Pr}_{2} \mathrm{NEt}(200 \mu \mathrm{~L})$ and $\left(\mathrm{BrCCl}_{2}\right)_{2}(46 \mathrm{mg}$, 0.14 mmol ). The mixture was stirred at rt for 4 h before the volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was reduced to about 0.5 mL . $\mathrm{CH}_{3} \mathrm{CN}(1.5 \mathrm{~mL})$ and DBU $(40 \mu \mathrm{~L})$ were added sequentially. The mixture was stirred for an additional 1 h before saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and diethyl ether were added. The separated aqueous phase was extracted with additional diethyl ether. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 9:1 to 7:3) to give bisoxazole 27 ( 2.4 mg , $1.9 \mu \mathrm{~mol}, 45 \%$ from (2Z)-47 as a white film. The analytical data of bisoxazole 27 thus prepared are identical to that obtained by sequential oxazole-formation process. A copy of ${ }^{1} \mathrm{H}$ NMR spectrum of compound 27 is included below.


## Phorboxazole A (1)

To a solution of $27(4.2 \mathrm{mg}, 3.29 \mu \mathrm{~mol})$ in ethyl acetate $(0.1 \mathrm{~mL})$ was added TBAF ( $0.5 \mathrm{~mL}, 1 \mathrm{M}$ in THF). The solution was stirred for 20 h then washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The separated aqueous phase was extracted with ethyl acetate. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and purified by flash chromatography to give the $33-O$-methyl-phorboxazole A (28, ca. 4 mg ) as a colorless oil. This was dissolved in THF ( 1.7 mL ) and aqueous $\mathrm{HCl}(0.72 \mathrm{M}, 0.59 \mathrm{~mL})$ was added. The mixture was stirred for 60 h , then neutralized by the addition of pH 7 aqueous phosphate buffer. The product was extracted with $\mathrm{CHCl}_{3}$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash chromatography $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 100: 1\right.$ to $100: 3$ to $\left.100: 5\right)$ to give $\mathbf{1}(2.0 \mathrm{mg}, 1.95 \mu \mathrm{~mol}, 59 \%)$ as an amorphous solid. $\mathrm{R}_{f} 0.59$ (HPTLC, $\mathrm{CHCl}_{3}-\mathrm{MeOH}, 20: 1$ ), co-eluted with previously prepared phorboxzole $\mathrm{A}^{4}{ }^{4}$ HRMS calc. for $\mathrm{C}_{53} \mathrm{H}_{71} \mathrm{BrN}_{2} \mathrm{O}_{13}[\mathrm{M}+\mathrm{Na}]^{+}$1047.4017, found 1047.4013. Characterization data for $\mathbf{1}$ matched those previously reported. ${ }^{5}$ A copy of ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ thus prepared is included below.


## 45,46-Dehydrobromo-bisamide 45.

To a stirred solution of (2Z)-47 (60 mg, $49 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ under argon was added freshly distilled TFA ( 4 mL ). The resulting solution was stirred for 50 min before the TFA and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were removed under a stream of nitrogen gas. The residue was further concentrated under high vacuum for 10 min and then stirred in a

[^4]mixture of aqueous pH 5.7 phosphate buffer and $\mathrm{CHCl}_{3}$ for 50 min . The separated aqueous phase was extracted with $\mathrm{CHCl}_{3}$ and the combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated, and further dried under high vacuum for 1 h to give a pale yellow solid (46). This solid was dissolved in DMF ( 50 mL ) and $i$ $\operatorname{Pr}_{2} \mathrm{NEt}(0.5 \mathrm{~mL})$ with the aid of sonication. A solution of pentafluorophenyl diphenylphosphinate ( $47 \mathrm{mg}, 0.12$ mmol) in DMF ( 1 mL ) was added over 1 h . After stirring for an additional 4 h , complete formation of macrolactam 49 was indicated by ESI-MS analysis. In a separate vial, the C31-C46 carboxylic acid $31^{1}$ ( 24 mg , $49 \mu \mathrm{~mol}$ ) was dissolved in DMF ( 2 mL ) and $i-\operatorname{Pr}_{2} \mathrm{NEt}(0.1 \mathrm{~mL})$ at rt . PyAOP ( $26 \mathrm{mg}, 49 \mu \mathrm{~mol}$ ) was added. The mixture was gently shaken for 1 min before being added to the solution of $\mathbf{4 9}$. The resultant mixture was stirred for 20 min and then concentrated by rotary evaporation under high vacuum. The residue was purified by flash chromatography $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 1: 0\right.$ to $100: 1$ to $50: 1$ to $\left.30: 1\right)$ to give $45(40 \mathrm{mg}, 29 \mu \mathrm{~mol}, 60 \%)$ as an amorphous solid: $\mathrm{R}_{f} 0.34\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 12: 1\right) ;[\alpha]_{\mathrm{D}}{ }^{23}+10.9$ (c 1.41, $\mathrm{CHCl}_{3}$ ); IR 3310, 3070, 2958, 2856, $1700,1650,1507,1462,1430,12591102,1027 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz ) $\delta 7.62(\mathrm{~m}, 4 \mathrm{H}), 7.43(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.87(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{ddd}, J=15.5,7.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=15.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dt}, J=11.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{~d}, J=11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.61(\mathrm{dd}, J=16.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~m}, 1 \mathrm{H}), 4.72$ (m, 2 H ), 4.53 (dd, $J=11.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=9.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{~m}$, $2 \mathrm{H}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{ddd}, J=15.5,7.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{ddd}, J=13.0,6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.74-3.50(\mathrm{~m}, 6 \mathrm{H}), 3.45(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H})$, $2.96(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.37(\mathrm{~m}, 7 \mathrm{H}), 2.29(\mathrm{dd}, J=13.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=13.0$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-2.00(\mathrm{~m}, 3 \mathrm{H}), 1.97(\mathrm{dd}, J=11.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H})$, $1.77-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.35(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.72(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 MHz ) $\delta 168.8$, $166.3,165.9,143.6,141.4,138.3,137.3,137.0,135.5,134.1,133.9,133.5,132.1,129.7,129.6,127.5,126.6$, $125.9,122.2,109.9,108.1,106.5,104.2,99.3,89.0,80.4,80.0,79.5,75.7,74.1,73.5,73.0,71.8,71.3,70.9$, $70.0,65.5,64.9,64.6,56.4,55.3,53.7,48.9,47.5,43.6,40.2,39.0,38.1,37.8,37.7,35.3,33.5,32.9,32.4,32.1$, $30.9,29.5,26.8,25.6,25.4,19.1,18.0,13.2,11.7,6.0,0.8,-4.7,-4.9$; HRMS calc. for $\mathrm{C}_{76} \mathrm{H}_{112} \mathrm{~N}_{2} \mathrm{O}_{15} \mathrm{Si}_{2}$ $[\mathrm{M}+\mathrm{Na}]^{+}$1371.7499, found 1371.7505; Copies of the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound 45 are included below.


45,46-dehydrobromo-bisoxazole 33 (Obtained via simultaneous oxazole formation).
To a stirred mixture of $\mathrm{NaHCO}_{3}(28 \mathrm{mg}, 0.33 \mathrm{mmol})$, Dess-Martin periodinane ${ }^{2}(25 \mathrm{mg}, 60 \mu \mathrm{~mol}), t$-BuOH ( 30 $\mu \mathrm{L})$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ was added a solution of bisamido-diol $45(4.1 \mathrm{mg}, 3.0 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{~mL})$. The resultant mixture was stirred for 25 min before saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and $\mathrm{NaHCO}_{3}$, and diethyl ether were added. The biphasic mixture was stirred vigorously for 5 min . The separated aqueous phase was extracted with diethyl ether. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated and dried further under high vacuum for 30 min to give crude the bisamido-dialdehyde. This was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL}) . \mathrm{Ph}_{3} \mathrm{P}(30 \mathrm{mg}$, $0.11 \mathrm{mmol}), i-\mathrm{Pr}_{2} \mathrm{NEt}(80 \mu \mathrm{~L})$ and $\left(\mathrm{BrCCl}_{2}\right)_{2}(37 \mathrm{mg}, 0.11 \mathrm{mmol})$ were added sequentially. The mixture was stirred for 4 h before the volume of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was reduced to about $0.5 \mathrm{~mL} . \mathrm{CH}_{3} \mathrm{CN}(1.5 \mathrm{~mL})$ and $\mathrm{DBU}(30 \mu \mathrm{~L})$ were added sequentially. The mixture was stirred for an additional 1 h before saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and diethyl ether were added. The separated aqueous phase was extracted with diethyl ether. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash chromatography (hexanes-ethyl acetate, 9:1 to 7:3) to give bisoxazole $33(3.1 \mathrm{mg}, 2.4 \mu \mathrm{~mol}, 79 \%$ ) as white film. The analytical data of bisoxazole 33 thus prepared are identical to those obtained by the sequential oxazole-formation process. Copies of the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 3}$ are included below.


## 33-O-Methyl-45,46-dehydrobromo-phorboxazole A (34).

To a solution of oxazole $33(1.75 \mathrm{mg}, 1.3 \mu \mathrm{~mol})$ in ethyl acetate $(1.4 \mathrm{~mL})$ was added TBAF ( 1.0 M in THF, $0.55 \mathrm{~mL}, 0.55 \mu \mathrm{~mol})$. The mixture was stirred for 5 d , then washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3.0 \mathrm{~mL})$. The aqueous phase was extracted with ethyl acetate $(5 \times 5 \mathrm{~mL})$, and the combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and purified by flash chromatography (ethyl acetate) to give 34 ( $1.1 \mathrm{mg}, 1.1$ $\mu \mathrm{mol}, 89 \%$ ) as a white film: $\mathrm{R}_{f} 0.45$ (ethyl acetate); $[\alpha]_{\mathrm{D}}{ }^{23}+12.0$ (c $1.0, \mathrm{CHCl}_{3}$ ); IR 3444, 2930, 1645, 1456, 1378, 1188, 1156, 1089, $1040 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ( 500 MHz ) $\delta 7.57$ ( $\mathrm{s}, 1 \mathrm{H}$, ), $7.42(\mathrm{~s}, 1 \mathrm{H}), 6.69$ (ddd, $J=16.0,9.5$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J=16.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{app} \mathrm{s}, 2 \mathrm{H}), 5.92(\mathrm{~m}, 2 \mathrm{H}), 5.64(\mathrm{dd}, J=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.49(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{dd}, J=10.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=11.0,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.40(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{app} \mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{ddd}, J=7.0$, $6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.45(\mathrm{~m}, 4 \mathrm{H}), 3.58(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~d}, J$ $=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=5.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J$ $=6.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=6.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=6.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H})$, $2.32(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{dd}, J=13.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 1 \mathrm{H}), 2.01(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~s}$, $3 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 5 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.72(\operatorname{app~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{ddd}, J=14.0,2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.47-$ $1.37(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{q}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 125 MHz ) $\delta 165.6,161.3,159.0,144.4,142.1,141.7,137.9,137.3,137.2,136.3,134.2,133.7,130.0,128.3,121.0,119.3$, $110.1,100.0,89.2,80.5,80.2,79.4,78.0,76.8,73.5,73.1,72.9,71.1,70.0,69.2,68.6,66.9,64.4,56.6,55.7$, $48.2,41.3,39.1,39.0,39.0,37.0,35.6,35.0,34.4,32.9,32.6,31.8,30.5,29.7,25.8,14.3,13.5,13.3,6.0$; HRMS calc. for $\mathrm{C}_{54} \mathrm{H}_{72} \mathrm{~N}_{2} \mathrm{O}_{13}[\mathrm{M}+\mathrm{Na}]^{+} 979.4932$, found 979.4939. Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compound $\mathbf{3 4}$ are included below.


## 45,46-Dehydrobromo-phorboxazole A (35).

To a solution of $\mathbf{3 4}(3.5 \mathrm{mg}, 3.6 \mu \mathrm{~mol})$ in THF $(4.4 \mathrm{~mL})$ was added $6 \%$ aqueous $\mathrm{HCl}(0.9 \mathrm{~mL})$. The mixture was stirred for 30 h , then washed with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. The aqueous phase was extracted with ethyl acetate ( $5 \times 5 \mathrm{~mL}$ ), and the combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated and purified by flash chromatography (ethyl acetate) to give $35(2.3 \mathrm{mg}, 2.4 \mu \mathrm{~mol}, 68 \%)$ as a white film: $R_{f} 0.45$ (ethyl acetate); $[\alpha]_{\mathrm{D}}{ }^{23}+32.9$ (c $0.85, \mathrm{CHCl}_{3}$ ); IR 3567, 3331, 2924, 1773, 1718, 1684, 1654, 1647, 1636, 1577, $1570,1559,1542,1534,1508,1498,1490,1458,1434,1376,1260,1188,1090,885,812 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (800 $\left.\mathrm{MHz}, \mathrm{CHCl}_{3}\right) \delta 7.58(\mathrm{~s}, 1 \mathrm{H}),, 7.43(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{ddd}, J=16.0,10.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~m}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H})$, $5.93(\mathrm{~m}, 2 \mathrm{H}), 5.62(\mathrm{dd}, J=16.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=12.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{app} \mathrm{s}, 1 \mathrm{H}), 4.32(\operatorname{app~t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ $(\mathrm{m}, 1 \mathrm{H}), 4.07(\operatorname{appt} \mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{ddd}, J=12.3,7.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ (dddd, $J=11.8$, $11.8,4.6,4.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.58(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=12.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.32$ ( $\mathrm{s}, 3 \mathrm{H}$ ), $3.15(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{bd}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~m}$, $2 \mathrm{H}), 2.34(\mathrm{~m}, 4 \mathrm{H}), 2.04(\mathrm{bd}, J=13.0 \mathrm{~Hz} 1 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~s}$, $3 \mathrm{H}), 1.73(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.6-1.5(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{ddd}, J=13.2,10.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.37(\mathrm{ddd}, J=11.8$, $11.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{q}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 75 $\mathrm{MHz}) \delta 165.6,161.2,159.9,144.3,141.9,141.6,137.8,137.5,137.4,137.2,135.8,134.0,133.6,129.6,128.6$, $128.1,120.9,119.2,118.4,110.0,96.5,89.1,80.4,80.1,79.2,77.9,77.1,73.4,72.9,72.4,70.8,69.9,69.0,68.5$, $66.8,64.3,56.5,55.7,41.1,40.4,39.6,38.9,36.8,34.9,34.3,32.9,32.4,31.6,30.4,25.7,14.1,13.4,13.2,5.9$; HRMS calc. for $\mathrm{C}_{54} \mathrm{H}_{72} \mathrm{~N}_{2} \mathrm{O}_{13}[\mathrm{M}+\mathrm{Na}]^{+} 965.4771$, found 965.4763 ; Copies of ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of 35 are included below.









$-115.925$
$\qquad$

N
$\underset{0}{\square}$
$\qquad$








$$
\begin{aligned}
& \mathrm{Se} \cdot \mathrm{o} \\
& \mathrm{OL}
\end{aligned}
$$




GH

$$
7 \dot{n}
$$

ís

$$
\begin{array}{cc}
27.42 & 1.494 \\
15 & 1 H
\end{array}
$$

1.713.
udd !




LI punoduoo sof un.ңpods yWN $\mathrm{H}_{\mathrm{I}}$


1 -

$\infty$


$\qquad$

9
$9 \quad L$
S








6I punoduoo rof unıoads yWN $\mathrm{H}_{\mathrm{I}}$




Pulse Sequence: s2pulu b 7.651
7.846
7.469
7.445
7.880
7.415
7.400
7.385
7.366
7.350
7.266
6.724
6.704
6.672

いNONか
6.282
-5.919
$-5.028$
$\sqrt{-} \begin{array}{r}5.028 \\ -4.917 \\ -4.893\end{array}$

-4.68
-4.64
4.645
4.599
$\qquad$
$-4.499$
4.468
-4.330
4.222

### 4.222 -4.198

$\begin{array}{r}4.176 \\ -4.133 \\ \hline\end{array}$
$]^{4.133}$
$\left[\begin{array}{r}3.983 \\ 3.776 \\ -3.503\end{array}\right.$
$\sqrt{\Gamma^{3}} \mathbf{3 . 4 7 9}$
$\begin{array}{r}3.452 \\ -3.432 \\ \hline\end{array}$
2.75
2.533
-2.513

- 2.447
.420
.403
2.348
2.315
2.094
2.068
2.050

0.834
-0.797
-0.730
9 punoduoo roł un.ңoəds yWN $\mathrm{H}_{\mathrm{I}}$



## LZ punoduoo rof unıŋəods yNN $\mathrm{H}_{\mathrm{I}}$







8\& punoduoo rof wnıəəds yWN $\mathrm{H}_{\mathrm{I}}$



























 $\qquad$ |  |
| :--- | :--- |
| I | $180 \quad 160$

$00 \tau \quad 0$ T
0 OOL


 OBSERPLE H1, 300.1698406 MHZ Width 18867.9 Hz
2624 repetitions
OBSERVE C13, 75 Pulse 67.5 degrees
Acq. time 0.801 sec
 UNITYplus-300 "visoo"
Ambient temperature Starting acq. time 3.4 hours Solvent: ${ }^{\text {cdcla }}$
File:
Starting Time:
Starb-simu or
22:48:18
$\qquad$ Indzs :aวuanbas astnd
Department
VI-300
University of


00S-I^ 'ezosaukiw to Alun








[^0]:    ${ }^{1}$ Wang, B.; Hansen, T. M.; Wang, T.; Wu, D.; Weyer, L.; Ying, L.; Engler, M. M.; Sanville, M.; Leitheiser, C.; Christmann, M.; Lu, Y.; Chen, J.; Zunker, N.; Cink, R. D.; Ahmed, F.; Lee, C. S.; Forsyth, C. J. J. Am. Chem. Soc. 2010, 132, xxx.

[^1]:    ${ }^{2}$ Dess-Martin periodinane was prepared following the procedure described in: Boeckman, Jr., R. K.; Shao, P.; Mullins, J. J. Org. Synth. 2004, Coll. Vol. 10, 696.

[^2]:    ${ }^{3}$ Bis-(2,2,2-trifluoroethoxy)phosphonoacetic acid was prepared in quantitative yield by hydrogenation of the corresponding benzyl ester. The benzyl ester was prepared by substituting benzyl chloroformate in the procedure described in: Patois, C.; Savignac, P.; About-Jaudet, E.; Collignon, N. Org. Synth. 1995, 73, 152-158.

[^3]:    ${ }^{4}$ Forsyth, C. J.; Ahmed, F.; Cink, R. D.; Lee, C. S. J. Am. Chem. Soc. 1998, 120, 5597-5598.

[^4]:    ${ }^{5}$ (a) Searle, P. A.; Molinski, T. F. J. Am. Chem. Soc. 1995, 117, 8126-8131. (b) Searle, P. A.; Molinski, T. F.; Brzeinski, L. J.; Leahy, J. W. J. Am. Chem. Soc. 1996, 118, 9422-9423. (c) Molinski, T. F. Tetrahedron Lett. 1996, 37, 7879-7980

