Supporting Information

Synthesis and Structure-Activity Relationships of Benzothienothiazepinone Inhibitors of Protein Kinase D

Karla Bravo-Altamirano, ${ }^{\dagger}$ Kara M. George, ${ }^{\dagger}$ Marie-Céline Frantz, ${ }^{\dagger}$ Courtney R. LaValle, ${ }^{\dagger}$ Manuj Tandon, ${ }^{\dagger}$
${ }^{\dagger}$ Department of Chemistry, ${ }^{\dagger}$ Department of Pharmacology and Chemical Biology, and ${ }^{8}$ Drug Discovery Institute, University of Pittsburgh, Pittsburgh PA 15260, United States of America

Contents

General Information 2
3-Piperidin-1-yl-1,5,6,7-tetrahydroazepin-2-one (1) 2
(4-(Benzyloxy)phenyl)hydrazine hydrochloride (2) 3
3,4,5,10-Tetrahydro-7-benzyloxy-azepino[3,4-b]indol-1(2 H)-one (3) 3
3,4,5,10-Tetrahydro-7-hydroxy-azepino[3,4-b]indol-1 $(2 H)$-one (kb-NB123-57) 4
(E)-3-(3-(Benzyloxy)phenyl)prop-2-enoic acid (4) 4
Methyl 5-(benzyloxy)-3-chlorobenzo[b]thiophene-2-carboxylate (5) 4
3,4-Dihydro-9-benzyloxy-[1]benzothieno[2,3-f]-1,4-thiazepin-5(2H)-one (6) 5
3,4-Dihydro-9-hydroxy-[1]benzothieno[2,3-f]-1,4-thiazepin-5($2 H$)-one (kb-NB142-70) 5
3,4-Dihydro-9-methoxy-[1]benzothieno[2,3-f]-1,4-thiazepin-5(2H)-one (kb-NB165-09) 6
1,3-Thiazinane-2-thione (7) 6
3-Aminopropanethiol hydrochloride (8) 7
2,3,4,5-Tetrahydro-10-benzyloxybenzo[b]thieno[2,3-f]-1,5-thiazocin-6-one (9) 7
2,3,4,5-Tetrahydro-10-hydroxybenzo[b]thieno[2,3-f]-1,5-thiazocin-6-one (kb-NB165-92) 8
2,3,4,5-Tetrahydro-10-methoxybenzo[b]thieno[2,3-f]-1,5-thiazocin-6-one (kb-NB184-02) 8
Methyl 3-hydroxy-5-nitrobenzo[b]thiophene-2-carboxylate (10) 8
Methyl 5-nitro-3-(trifluoromethylsulfonyloxy)benzo[b]thiophene-2-carboxylate (11) 9
3,4-Dihydro-9-nitro-[1]benzothieno[2,3-f]-1,4-thiazepin-5(2H)-one (12) 9
3,4-Dihydro-9-amino-[1]benzothieno[2,3-f]-1,4-thiazepin-5(2H)-one (13) 10
3,4-Dihydro-9-azido-[1]benzothieno[2,3-f]-1,4-thiazepin-5(2H)-one (mcf292-08) 10
Thieno[3,2- d]pyrimidine-2,4-diol (14) 11
2,4-Dichlorothieno[3,2- d]pyrimidine (15) 11
2-Chlorothieno $3,2-d]$ pyrimidine (16) 11
2-Methoxythieno[3,2- d]pyrimidine (17) 12
7-Bromo-2-methoxythieno[3,2- d]pyrimidine (18) 12
Methyl 7-bromo-2-methoxythieno[3,2-d] pyrimidine-6-carboxylate (19) 12
2-Methoxy-7H,8H,9H-1,4-thiazepino[7',6'-5,4]thiopheno[3,2-d]pyrimidin-6-one (kmg-NB4-23) 13
Biological Assays Materials and Methods 14
Kinase Counterscreens: AKT, CAK, PLK1, and PLK2 16
Kinase Counterscreens: Selectivity Analysis for kmg-NB4-23, mcf292-08 and kb-NB123-5721
Inhibition of PMA-induced PKD1 S^{916} Autophosphorylation by kmg-NB4-23 and mcf292-08 in LNCaP Prostate Cancer Cells 22
References 24
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra 25

General information. All moisture- and air-sensitive reactions were performed using syringe-septum cap techniques under an inert atmosphere (N_{2} or argon) in glassware that was dried in an oven at $140^{\circ} \mathrm{C}$ for at least 2 h prior to use. Reactions carried out at a temperature below $0{ }^{\circ} \mathrm{C}$ employed a $\mathrm{CO}_{2} /$ acetone bath. All reagents and solvents were used as received unless otherwise specified. Triethylamine, N, N-dimethylaniline, and pyridine were distilled over CaH_{2}. THF and $\mathrm{Et}_{2} \mathrm{O}$ were distilled over sodium/benzophenone ketyl. DCM and toluene were purified using an alumina column filtration system. Anhydrous MeOH and $\mathrm{Et}_{2} \mathrm{O}$ were purchased from Acros Organics and Fisher Scientific, respectively. Anhydrous DMF was purchased from Acros Organics or distilled and stored over $4 \AA$ molecular sieves. Analytical thin-layer chromatography (TLC) was performed on pre-coated $\mathrm{SiO}_{2} 60 \mathrm{~F}_{254}$ plates ($250 \mu \mathrm{~m}$ layer thickness) available from Merck. Visualization was accomplished by UV irradiation at 254 nm and/or by staining with Vaughn's reagent (4.8 g $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \bullet 4 \mathrm{H}_{2} \mathrm{O}$ and $0.2 \mathrm{~g} \mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2} \bullet 4 \mathrm{H}_{2} \mathrm{O}$ in 100 mL of a $3.5 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution), a KMnO_{4} solution (1.5 g KMnO 4 and $1.5 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$ in 100 mL of a $0.1 \% \mathrm{NaOH}$ solution), a ninhydrin solution (2 g ninhydrin in 100 mL EtOH), a PMA solution (5 g phosphomolybdic acid in 100 mL EtOH), or a p-anisaldehyde solution ($2.5 \mathrm{~mL} p$-anisaldehyde, 2 mL AcOH and 3.5 mL conc. aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 100 mL EtOH). Preparative thin-layer chromatography was performed on pre-coated SiO_{2} GF (UV254) 1000 microns ($20 \times 20 \mathrm{~cm}$) plates available from Analtech. Flash column chromatography was performed using $\mathrm{SiO}_{2} 60$ (particle size $0.040-0.055 \mathrm{~mm}, 230-400 \mathrm{mesh}$, or Silicycle SiliaFlash ${ }^{\circledR}$ P60, $40-63 \mu \mathrm{~m}$). Melting points were determined on a Meltemp capillary melting point apparatus fitted with a Fluke 51 II digital thermometer. Infrared spectra were recorded on a Smiths IdentifyIR ATR spectrometer or a Perkin Elmer Spectrum 100 FT-IR spectrometer using the Universal ATR Sampling Accessory for both oil and solid compounds. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a Bruker Avance 300, 400 or 600 instrument at $300 / 75 \mathrm{MHz}, 400 / 100 \mathrm{MHz}$ or $600 / 150 \mathrm{MHz}$, respectively. Chemical shifts were reported in parts per million (ppm) as referenced to residual solvent. ${ }^{1} \mathrm{H}$ NMR spectra are tabulated as follows: chemical shift, multiplicity (app $=$ apparent, $b=$ broad, $s=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintuplet, sext, $=$ sextuplet, $\mathrm{m}=$ multiplet $)$, number of protons, coupling constant $(\mathrm{s}) .{ }^{13} \mathrm{C}$ NMR were obtained using a proton-decoupled pulse sequence and are tabulated by observed peak. Mass spectra were obtained on a Waters Autospec double focusing mass spectrometer (EI) or a Waters Q-Tof mass spectrometer (ESI), at the University of Pittsburgh Mass Spectrometry facility.

3-Piperidin-1-yl-1,5,6,7-tetrahydroazepin-2-one (1). ${ }^{1}$ To a solution of ε-caprolactam ($15.2 \mathrm{~g}, 133 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(400$ mL) cooled to $0-5^{\circ} \mathrm{C}$ was added $\mathrm{PCl}_{5}(55.2 \mathrm{~g}, 265 \mathrm{mmol})$ over the course of 30 min , followed by addition of anhydrous $\mathrm{ZnI}_{2}(1.53 \mathrm{~g}, 4.79 \mathrm{mmol})$ under N_{2}. The reaction mixture was slowly allowed to reach room temperature as $\mathrm{Br}_{2}(42.4 \mathrm{~g}$, 265 mmol) was added dropwise over the course of 30 min . The mixture was stirred at room temperature for 6 h and then poured into ice-water (300 mL). The aqueous layer was extracted with $\mathrm{CHCl}_{3}(3 \times 100 \mathrm{~mL}$) and the combined organic layers were washed with 0.50 M aq. $\mathrm{NaHSO}_{3}(3 \times 200 \mathrm{~mL})$ and brine $(1 \times 400 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to yield a yellow solid residue. The solid was suspended in water, filtered, and washed with water and $\mathrm{Et}_{2} \mathrm{O}$ to give 3,3-dibromoazepan-2-one ($27.5 \mathrm{~g}, 76 \%$) as a white solid: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 6.91(\mathrm{bs}, 1 \mathrm{H}), 3.39(\operatorname{app} \mathrm{dd}, 2 \mathrm{H}, J=$ $10.3,5.8 \mathrm{~Hz}$), 2.77-2.72 (m, 2 H$), 2.02-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 168.7$, 69.7, 46.2,42.8, 28.6, 28.5; HRMS (ESI) m / z calcd for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{Br}_{2} \mathrm{NONa}(\mathrm{M}+\mathrm{Na})$ 291.8949, found 291.8973.

A solution of 3,3-dibromoazepan-2-one ($15.7 \mathrm{~g}, 57.9 \mathrm{mmol}$) in piperidine (140 mL) was heated at reflux for 4.5 h under N_{2}. The solution was then allowed to reach room temperature and washed with 0.50 Maq . $\mathrm{NaHSO}_{3}(200 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CHCl}_{3}(3 \times 100 \mathrm{~mL})$ and the combined organic layers were washed with brine $(1 \times 300$ $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to afford a brown, oily solid, that crystallized upon standing. The resulting solid was suspended in water, filtered, and washed with water and $\mathrm{Et}_{2} \mathrm{O}$ to give $1(10.3 \mathrm{~g}, 91 \%)$ as a white solid: IR (ATR, neat) $3193,2950,2935,2923,2855,1655,1605 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}^{\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 6.51(\mathrm{bs}, 1 \mathrm{H}), 5.06(\mathrm{t}, 1 \mathrm{H}, J=7.6}$ $\mathrm{Hz}), 3.22(\mathrm{q}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz}), 2.78(\mathrm{app} \mathrm{t}, 4 \mathrm{H}, J=5.3 \mathrm{~Hz}), 2.15(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.76(\operatorname{app} q u i n t, 2 \mathrm{H}, J=6.8 \mathrm{~Hz})$, $1.69-1.62(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.48(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 171.5,147.6,105.4,50.1,39.5,30.2,25.5,24.5$, 21.5; HRMS (EI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ 194.1419, found 194.1422 .

(4-(Benzyloxy)phenyl)hydrazine hydrochloride (2). ${ }^{2}$ Note: The reaction mixture and all added solutions were maintained at $0{ }^{\circ} \mathrm{C}$ during this procedure. 4-Benzyloxyaniline hydrochloride ($3.00 \mathrm{~g}, 12.5 \mathrm{mmol}$) was added to conc. aq. $\mathrm{HCl}(25 \mathrm{~mL})$ and stirred for 10 min at $0^{\circ} \mathrm{C}$, followed by dropwise addition of a solution of $\mathrm{NaNO}_{2}(852 \mathrm{mg}, 12.3 \mathrm{mmol})$ in water (6 mL) over the course of 15 min . The mixture was stirred for an additional 15 min -period and then a solution of $\mathrm{SnCl}_{2}(6.40 \mathrm{~g}, 33.1 \mathrm{mmol})$ in conc. aq. $\mathrm{HCl}(7.5 \mathrm{~mL})$ was added dropwise. The reaction mixture was stirred for 1 h and filtered to yield an off-white precipitate, which was washed with water and triturated with $\mathrm{Et}_{2} \mathrm{O}$, to yield $\mathbf{2}$ ($3.01 \mathrm{~g}, 96 \%$): IR (ATR, neat) 3232, 2906 (br), 2693, 1568, 1508, 1242, $1177 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 600 \mathrm{MHz}$) $\delta 10.11$ (bs, 3 H), 7.44-7.40 (m, 2 H), 7.40-7.35 (m, 2 H), 7.33-7.29 (m, 1 H), 7.01-6.93 (m, 4 H), $5.05(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 150$ $\mathrm{MHz}) \delta 153.7,139.1,137.3,128.5,128.4,128.3,127.9,127.7,127.5,117.1,116.9,115.5,115.3,69.5$; HRMS (EI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$ 214.1106, found 214.1110 .

$\mathbf{3 , 4 , 5 , 1 0 - T e t r a h y d r o - 7 - b e n z y l o x y - a z e p i n o [3 , 4 - b] i n d o l - 1 (2 H)}$-one (3). A mixture of 2 ($632 \mathrm{mg}, 2.52 \mathrm{mmol}$) and $\mathbf{1}$ (390 $\mathrm{mg}, 2.01 \mathrm{mmol})$ in anhydrous $\mathrm{EtOH}(3 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{SO}_{4}(0.30 \mathrm{~mL})$ was heated at reflux for 5 h . The reaction was allowed to reach room temperature and the resulting black solid was filtered, washed with water and $\mathrm{Et}_{2} \mathrm{O}$, preadsorbed on SiO_{2} and purified by chromatography on $\mathrm{SiO}_{2}(7: 3, \mathrm{DCM} /$ acetone $)$ to yield $\mathbf{3}(328 \mathrm{mg}, 53 \%)$ as a light orange solid: IR (ATR, neat) $3227,3194,3033,2920,1623,1543,1478,1453,1276,1197 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\boldsymbol{d}_{6}, 600 \mathrm{MHz}$) $\delta 11.03$ (s, 1 H), 7.95 (bs, 1 H$), 7.50-7.42(\mathrm{~d}, 2 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{bs}, 1 \mathrm{H}), 6.97-6.91(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 2 \mathrm{H})$, 3.38-3.34 (m, 2 H), $2.96(\mathrm{bs}, 2 \mathrm{H}), 2.02(\mathrm{bs}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 150 \mathrm{MHz}$) $\delta 164.1,152.2$, 137.6, 131.2, 128.4, $127.8,127.7,127.6,116.4,115.6,113.0,102.2,69.7,41.6,26.8,25.4$; HRMS (EI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} 306.1368$, found 306.1366.

kb-NB123-57
$\mathbf{3 , 4 , 5 , 1 0 - T e t r a h y d r o - 7 - h y d r o x y - a z e p i n o [3 , 4 - b}]$ indol- $\mathbf{1 (2 H})$-one (kb-NB123-57). To a solution of $\mathbf{3}$ (30.0 mg, 0.0979 $\mathrm{mmol})$ in $\mathrm{MeOH}(4 \mathrm{~mL})$ was added ammonium formate $(100 \mathrm{mg}, 1.59 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(20.0 \mathrm{mg}, 0.0188 \mathrm{mmol})$, and the reaction mixture was heated at reflux for 1.5 h under N_{2}. After cooling to room temperature, the mixture was filtered through Celite \circledR^{\circledR} and the filtrate was concentrated under reduced pressure to yield a solid residue, which was dissolved in a minimum amount of MeOH , preadsorbed on SiO_{2} and purified by chromatography on $\mathrm{SiO}_{2}(1: 1, \mathrm{DCM} /$ acetone $)$ to yield kb-NB123-57 (18.9 mg, 89\%) as a light orange solid: IR (ATR, neat) $3362,3276,1600,1545,1484,1362 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6}, 300 \mathrm{MHz}\right) \delta 10.82(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{~s}, 1 \mathrm{H}), 7.86(\mathrm{t}, 1 \mathrm{H}, J=4.5 \mathrm{~Hz}), 7.19(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.79(\mathrm{~d}, 1 \mathrm{H}, J=$ $1.8 \mathrm{~Hz}), 6.73(\mathrm{dd}, 1 \mathrm{H}, J=8.7,2.3 \mathrm{~Hz}), 3.30-3.22(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}), 2.07-1.94(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 150 \mathrm{MHz}\right) \delta 164.2,150.5,130.5,128.1,127.6,115.7,115.2,112.7,102.8,41.6,26.9,25.4$; HRMS (EI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ 216.0899, found 216.0898.

(E)-3-(3-(Benzyloxy)phenyl)prop-2-enoic acid (4). ${ }^{3}$ To a stirred suspension of 3-hydroxycinnamic acid (5.00 g, 30.5 $\mathrm{mmol})$ in $\mathrm{EtOH}(100 \mathrm{~mL})$ was added $1 \mathrm{M} \mathrm{aq} . \mathrm{NaOH}(65 \mathrm{~mL})$ and the reaction mixture was stirred for 5 min , then treated with benzyl bromide ($3.72 \mathrm{~mL}, 31.1 \mathrm{mmol}$) and stirred for 14 h at room temperature under N_{2}. The mixture was concentrated under reduced pressure to yield a white solid, which was suspended in water (400 mL) and acidified with conc. aq. HCl . The mixture was filtered and the resulting solid was washed with water and $\mathrm{Et}_{2} \mathrm{O}$, then dried under high vacuum to give $4(7.10 \mathrm{~g}, 92 \%)$ as a white solid: IR (ATR, neat) 3400-2500 (br), 1691, 1629, 1577, $1260 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.d_{6}, 600 \mathrm{MHz}\right) \delta 7.49(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 7.46(\mathrm{app} \mathrm{d}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}), 7.39(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.35-7.29(\mathrm{~m}, 3$ H), $7.22(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.03(\mathrm{dd}, 1 \mathrm{H}, J=8.2,2.3 \mathrm{~Hz}), 6.56(\mathrm{~d}, 1 \mathrm{H}, J=16.0 \mathrm{~Hz}), 5.14(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO$\left.d_{6}, 150 \mathrm{MHz}\right) \delta 168.1,158.7,142.7,137.0,136.1,130.0,128.5,128.0,127.9,121.2,120.9,116.8,113.7,69.3 ;$ HRMS (EI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3} 254.0943$, found 254.0950.

5
Methyl 5-(benzyloxy)-3-chlorobenzo[b]thiophene-2-carboxylate (5). To a mixture of 4 ($8.80 \mathrm{~g}, 34.6 \mathrm{mmol}$) in chlorobenzene (50 mL), anhydrous pyridine ($0.26 \mathrm{~mL}, 3.29 \mathrm{mmol}$) and anhydrous DMF (2.60 mL) was added dropwise $\mathrm{SOCl}_{2}(12.6 \mathrm{~mL}, 173 \mathrm{mmol})$ at room temperature. The reaction mixture was heated at $120{ }^{\circ} \mathrm{C}$ for 22 h under N_{2}. The solution was concentrated by rotary evaporation and traces of pyridine were removed by azeotropic distillation with toluene. The resulting brown oil was dried under high vacuum overnight to yield a brown solid, which was suspended in $\mathrm{Et}_{2} \mathrm{O}$, filtered and dried under high vacuum to yield 3-chloro-5-(benzyloxy)-benzo[b]thiophene-2-carbonyl chloride (5.87
$\mathrm{g})$. Upon cooling the filtrate, a second crop of product (1.25 g) was collected by filtration ($7.12 \mathrm{~g}, 61 \%$ combined yield). Representative experimental data are as follows: Mp 138-143 ${ }^{\circ} \mathrm{C}$ (lit Mp 139-142 ${ }^{\circ} \mathrm{C}$); ${ }^{3}$ IR (ATR, neat) 1745, 1602, 1483, $1284,1158 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 600 \mathrm{MHz}\right) \delta 8.01(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.50(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.44(\mathrm{~d}, 1 \mathrm{H}, J=$ $2.3 \mathrm{~Hz}), 7.41(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H})$; MS (EI) m/z 338 (90), $336\left(\mathrm{M}^{+}, 100\right), 303(40), 301$ ([M-Cl] $\left.{ }^{+}, 88\right)$.

To a suspension of the precursor 3-chloro-5-(benzyloxy)-benzo[b]thiophene-2-carbonyl chloride ($516 \mathrm{mg}, 1.53 \mathrm{mmol}$) in anhydrous $\mathrm{MeOH}(30 \mathrm{~mL})$ was added anhydrous $\mathrm{Et}_{3} \mathrm{~N}(0.43 \mathrm{~mL}, 3.06 \mathrm{mmol})$ and the reaction mixture was heated at reflux for 12 h under N_{2}. The solution was concentrated under reduced pressure and the residue was purified by chromatography on $\left(\mathrm{SiO}_{2}\right.$, hexanes to $9: 1$, hexanes/EtOAc) to yield 5 ($392 \mathrm{mg}, 77 \%$) as a light yellow solid. Representative experimental data are as follows: IR (ATR, neat) 1682, 1602, 1509, 1305, $1192 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}, 600 \mathrm{MHz}\right) \delta 8.03(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.50(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.39-7.33(\mathrm{~m}, 2$ H), 5.25 (s, 2 H), $3.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 150 \mathrm{MHz}\right) \delta 160.8,157.3,137.3,136.6,130.6,128.5,128.0,127.9$, $126.4,125.2,124.7,120.3,105.4,69.7,52.8$; HRMS (EI) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClO}_{3} \mathrm{~S} 332.0274$, found 332.0268 .

6
3,4-Dihydro-9-benzyloxy-[1]benzothieno[2,3-f]-1,4-thiazepin-5(2H)-one (6). To a solution of $\mathbf{5}$ ($390 \mathrm{mg}, 1.17 \mathrm{mmol}$) in anhydrous DMF (8 mL) was added cysteamine $\cdot \mathrm{HCl}(533 \mathrm{mg}, 4.69 \mathrm{mmol})$ and $\mathrm{DBU}(1.42 \mathrm{~mL}, 9.38 \mathrm{mmol})$ at room temperature under N_{2}. The reaction mixture was stirred at room temperature for 1.5 h and heated to $70^{\circ} \mathrm{C}$ for 12 h , then diluted with $\operatorname{EtOAc}(15 \mathrm{~mL})$ and washed with 2 M aq. $\mathrm{HCl}(15 \mathrm{~mL})$ to give a white precipitate, which was filtered, triturated with water and $\mathrm{Et}_{2} \mathrm{O}$, and dried under high vacuum to yield $\mathbf{6}(260 \mathrm{mg})$ as a white solid. The layers of the filtrate were separated and the aqueous phase was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic layers were washed with brine ($1 \times 100 \mathrm{~mL}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give a yellow precipitate, which was suspended in hexanes/EtOAc (1:1), filtered, triturated with $\mathrm{Et}_{2} \mathrm{O}$ and dried under high vacuum to yield a second crop of $\mathbf{6}(90.0 \mathrm{mg})$ as an off-white solid. The overall amount obtained was $350 \mathrm{mg}(87 \%)$. Representative experimental data are as follows: Mp 247-249 ${ }^{\circ} \mathrm{C}$; IR (ATR, neat) $3165,3037,1650,1500,1282 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 600 \mathrm{MHz}$) $\delta 8.47(\mathrm{t}, 1 \mathrm{H}, J=5.6$ $\mathrm{Hz}), 7.90(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.49(\mathrm{~d}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.40(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H})$, 7.26-7.23 (m, 1 H$), 5.20(\mathrm{~s}, 2 \mathrm{H}), 3.64-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.41-3.37(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 150 \mathrm{MHz}\right) \delta 165.1,156.4$, 139.4, 136.9, 133.3, 131.2, 128.5, 127.9, 127.8, 123.8, 118.0, 105.8, 69.6, 42.4, 33.4; HRMS (EI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}_{2} 341.0544$, found 341.0543 .

3,4-Dihydro-9-hydroxy-[1]benzothieno[2,3-f]-1,4-thiazepin-5(2H)-one (kb-NB142-70). To a solution of 6 (250 mg , $0.732 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(20 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ was added a 1.0 M solution of BBr_{3} in $\mathrm{DCM}(1.10 \mathrm{~mL}, 1.10 \mathrm{mmol})$
under N_{2}. The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 0.5 h , then slowly warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 2 h . The solution was warmed to room temperature, diluted with DCM $(20 \mathrm{~mL})$ and poured into ice-water $(30 \mathrm{~mL})$ to give a white precipitate, which was filtered, triturated with water and DCM and dried under high vacuum to yield kb-NB142-70 (172 $\mathrm{mg}, 93 \%$) as a light green solid. Representative experimental data are as follows: Mp 218-220 ${ }^{\circ} \mathrm{C}$ (dec., dark brown), 235$238{ }^{\circ} \mathrm{C}$ (dec., melts); IR (ATR, neat) 3269, 1633, 1597, 1496, 1432, $1197 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 600 \mathrm{MHz}$) $\delta 9.73$ (s, $1 \mathrm{H}), 8.42(\mathrm{t}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}), 7.77(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.11(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}), 7.01(\mathrm{dd}, 1 \mathrm{H}, J=8.7,1.6 \mathrm{~Hz}), 3.64-$ $3.59(\mathrm{~m}, 2 \mathrm{H}), 3.40-3.36(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 150 \mathrm{MHz}\right) \delta 165.2,155.3$, 139.6, 132.8, 129.3, 127.1, 123.6, 117.8, 107.0, 42.5, 33.3; HRMS (EI) m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{2} \mathrm{~S}_{2}$ 251.0075, found 251.0080.

3,4-Dihydro-9-methoxy-[1]benzothieno[2,3-f]-1,4-thiazepin-5(2H)-one (kb-NB165-09). ${ }^{4}$ To a solution of kb-NB142$70(30.0 \mathrm{mg}, 0.119 \mathrm{mmol})$ in anhydrous DMF (1 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(165 \mathrm{mg}, 1.19 \mathrm{mmol})$ followed by MeI ($8.0 \mu \mathrm{~L}$, 0.128 mmol). The reaction mixture was stirred at room temperature for 12 h , excess $\mathrm{K}_{2} \mathrm{CO}_{3}$ was filtered off and the solution was concentrated under reduced pressure. The residue was purified by preparative thin-layer chromatography on $\mathrm{SiO}_{2}\left(1000 \mu \mathrm{~m}, \mathrm{EtOAc}\right.$ to $10 \% \mathrm{MeOH}$ in EtOAc) to yield kb-NB165-09 (29.0 mg, 92\%) as a white solid: Mp 202-204 ${ }^{\circ} \mathrm{C}$ (lit. 209-209.5 ${ }^{\circ} \mathrm{C}$) $;{ }^{4}$ IR (ATR, neat) $3156,3018,2916,1633,1499,1403,1284 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 600 \mathrm{MHz}\right) \delta$ $8.47(\mathrm{t}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz}), 7.89(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.19-7.15(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.38(\mathrm{~m}, 2$ H) ${ }^{13}{ }^{13}$ NMR (DMSO- $d_{6}, 150 \mathrm{MHz}$) $\delta 165.2,157.4,139.4,133.4,130.9,127.7,123.8,117.5,104.4,55.4,42.4,33.4$; HRMS (EI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}_{2} 265.0231$, found 265.0232 .

7
1,3-Thiazinane-2-thione (7). ${ }^{5}$ To a solution of 3-amino-1-propanol ($7.61 \mathrm{~mL}, 100 \mathrm{mmol}$) in $\mathrm{CCl}_{4}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise chlorosulfonic acid $(6.70 \mathrm{~mL}, 101 \mathrm{mmol})$ through an addition funnel. Warning: Reaction is very exothermic! The reaction mixture was stirred at room temperature overnight and then concentrated under reduced pressure to yield a solid residue, which was suspended in $\mathrm{MeOH}(40 \mathrm{~mL})$, filtered, triturated with MeOH , and dried under high vacuum to yield 3-aminopropyl hydrogen sulfate ($12.5 \mathrm{~g}, 80 \%$) as a white powder: ${ }^{5}$ IR (ATR, neat) 3128, 3069, 2979, $1198,1172,925 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 600 \mathrm{MHz}\right) \delta 7.65(\mathrm{bs}, 3 \mathrm{H}), 3.81(\mathrm{t}, 2 \mathrm{H}, J=6.1 \mathrm{~Hz}), 2.86(\mathrm{app} \mathrm{dq}, 2 \mathrm{H}, J=$ $12.8,6.0 \mathrm{~Hz}$), 1.83-1.77 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 150 \mathrm{MHz}\right) \delta 62.9,36.6,27.2$.

To a suspension of the precursor 3-aminopropyl hydrogen sulfate ($12.0 \mathrm{~g}, 77.3 \mathrm{mmol}$) and $\mathrm{CS}_{2}(5.60 \mathrm{~mL}, 92.8 \mathrm{mmol})$ in 50% aq. $(v / v) \mathrm{EtOH}(33 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was slowly added a solution of $\mathrm{NaOH}(6.80 \mathrm{~g}, 170 \mathrm{mmol})$ in $50 \% \mathrm{aq} .(v / v) \mathrm{EtOH}$ $(15.0 \mathrm{~mL})$. The reaction mixture was heated at reflux for 40 min and then cooled down to room temperature, resulting in the formation of off-white crystals, which were filtered, washed with ice-cold water and dried under high vacuum to yield the first crop of $7(7.85 \mathrm{~g})$. Upon cooling the filtrate to $0^{\circ} \mathrm{C}$, more crystals formed, and they were filtered, washed with ice-cold water and dried under high vacuum to yield the second crop of $7(0.790 \mathrm{~g})$. The overall amount of 7 was 8.64 g
(84%) obtained as an off-white crystalline solid: IR (ATR, neat) $3128,3039,2917,1539,1326 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $600 \mathrm{MHz}) \delta 10.22(\mathrm{~s}, 1 \mathrm{H}), 3.29\left(\mathrm{t}, 2 \mathrm{H}, J=4.9 \mathrm{~Hz}\right.$), 2.97-2.93(m,2 H), 1.99-1.94 (m, 2 H) ; ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 150$ MHz) $\delta 191.7,43.5,29.7,20.2$; MS (EI) $m / z 133\left(\mathrm{M}^{+}, 100\right), 134$ (6), 135 (9); HRMS (EI) m / z calcd for $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{NS}_{2}$ 133.0020 , found 133.0016 .

8
3-Aminopropanethiol hydrochloride (8). ${ }^{5}$ A suspension of $7(7.70 \mathrm{~g}, 57.8 \mathrm{mmol})$ in conc. aq. HCl (50 mL) was heated at reflux for 2 weeks under N_{2}. After cooling to room temperature, the residual aq. HCl was removed by vacuum distillation $(\mathrm{P}=5 \mathrm{mmHg})$ under mild heating $\left(60^{\circ} \mathrm{C}\right)$ for 1 h . The solid residue was suspended in a degassed solution of $\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOH}(9: 1,50 \mathrm{~mL})$ and stirred for 10 min at room temperature under argon, then poured into a coarse fritted Schlenk filter under argon and thoroughly washed with a degassed solution of $\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOH}(9: 1)$, to give a white solid, which was dried in the Schlenk filter under high vacuum overnight to yield the first crop of solid as a mixture of $\mathbf{8}$ and the corresponding disulfide $(4.35 \mathrm{~g})$. A second crop of solid was collected by filtration into a regular coarse fritted funnel under air to yield pure disulfide (38.0 mg). The overall yield based on mass recovery was $64 \%(4.73 \mathrm{~g})$ of a white, highly hygroscopic solid that requires storage in a vacuum dessicator containing drierite: Spectroscopic data for crop 1 [disulfide $(57 \%)+8(43 \%)]:$ IR (ATR, neat) $2894(\mathrm{br}), 2965(\mathrm{br}), 1607,1493 \mathrm{~cm}^{-1}$; major product (disulfide): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 600$ $\mathrm{MHz}) \delta$ 3.14-3.10 (m, 2 H), 2.81 (t, $2 \mathrm{H}, J=7.1 \mathrm{~Hz}$), 2.14-2.07 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 150 \mathrm{MHz}$) $\delta 40.9,36.5,28.8$; minor product (8): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 600 \mathrm{MHz}\right) \delta 3.14-3.10(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.00-1.94(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 150 \mathrm{MHz}\right) \delta 40.9,33.4,23.4$.

2,3,4,5-Tetrahydro-10-benzyloxybenzo[b]thieno[2,3-f]-1,5-thiazocin-6-one (9). To a solution of 5 (300 mg, 0.901 $\mathrm{mmol})$ in anhydrous, degassed DMF (7.5 mL) was added hydrochloride salt $\mathbf{8}(1.15 \mathrm{~g}, 3.88 \mathrm{mmol}, 43 \%$ purity) followed by degassed DBU ($1.50 \mathrm{~mL}, 9.93 \mathrm{mmol}$) under argon. The reaction mixture was stirred at room temperature for 2 h , then warmed to $70{ }^{\circ} \mathrm{C}$ and stirred for 18 h . After cooling to room temperature, the solution was diluted with EtOAc (30 mL) and washed with 2 M aq. $\mathrm{HCl}(30 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc ($3 \times 30 \mathrm{~mL}$) and the combined organic layers were washed with brine $(1 \mathrm{x} 150 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to yield a yellow oil, which was dried under high vacuum to remove residual DMF. The residue was preloaded on SiO_{2} and purified by chromatography on SiO_{2} (hexanes to $5 \% \mathrm{MeOH}$ in EtOAc) to give a yellow solid, which was suspended in $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}$ (9:1), filtered, triturated with $\mathrm{Et}_{2} \mathrm{O}$ and dried under high vacuum to yield 9 (133 mg, 42%) as a white solid: Mp 198-199 ${ }^{\circ} \mathrm{C}$; IR (ATR, neat) $3162,3033,2937,1644,1619,1600,1497,1384,1274,1193 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 600 \mathrm{MHz}$) $\delta 8.02(\mathrm{bs}, 1 \mathrm{H})$, 7.90-7.84 (m, 1 H), 7.51-7.45 (m, 2 H$)$, 7.43-7.37 (m, 2 H), 7.36-7.31 (m, 1 H$)$, 7.26-7.19 (m, 2 H$), 5.20(\mathrm{~s}, 2 \mathrm{H}), 3.50-$ 3.43 (m, 2 H), 3.30-3.24 (m, 2 H), 1.92-1.89 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 150 \mathrm{MHz}$) $\delta 164.8,156.4,138.7$, 136.9, $130.3,128.5,128.5,127.9,127.7,127.4,123.6,117.3,105.8,69.6,30.5,27.4$; MS (EI) $m / z, 355\left(\mathrm{M}^{+}, 100\right), 356(23), 357$ (12); HRMS (EI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}_{2} 355.0701$, found 355.0689.

kb-NB165-92
$\mathbf{2 , 3 , 4 , 5 - T e t r a h y d r o - 1 0 - h y d r o x y b e n z o}[b]$ thieno[2,3-f]-1,5-thiazocin-6-one (kb-NB165-92). To a suspension of 9 (54.0 $\mathrm{mg}, 0.152 \mathrm{mmol})$ in anhydrous $\mathrm{DCM}(5 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ was added a 1 M solution of BBr_{3} in $\mathrm{DCM}(0.30 \mathrm{~mL}, 0.300 \mathrm{mmol})$ under N_{2}. The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 30 min , warmed to $0^{\circ} \mathrm{C}$ and stirred for 1 h , and finally warmed to room temperature and stirred for another 30 min . The solution was diluted with $\mathrm{DCM}(5 \mathrm{~mL})$ and quenched with cold water $(10 \mathrm{~mL})$, resulting in the formation of a white solid, which was filtered, triturated with water, DCM and $\mathrm{Et}_{2} \mathrm{O}$, and dried under high vacuum to yield kb-NB165-92 (23.5 mg) as an off-white solid. The filtrate was concentrated and purified by preparative thin-layer chromatography on $\mathrm{SiO}_{2}(1000 \mu \mathrm{~m}, 5 \%$ to $15 \% \mathrm{MeOH}$ in DCM$)$ to yield $\mathbf{k b - N B 1 6 5 - 9 2}$ (13.5 mg). The overall amount of kb-NB165-92 was 37.0 mg (92%) obtained as an off-white solid: Mp 139-142 ${ }^{\circ} \mathrm{C}$; IR (ATR, neat) 3256 (br), 3169 (br), $1615,1492,1444,1182 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 600 \mathrm{MHz}$) $\delta 9.71(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{t}, 1 \mathrm{H}, J=$ $7.8 \mathrm{~Hz}), 7.74(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 3.50-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.30-3.23(\mathrm{~m}, 2 \mathrm{H}), 1.92-$ $1.85(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 150 \mathrm{MHz}\right) \delta 164.9,155.3,139.0,128.4,127.0,123.4,117.1,106.8,30.5,27.3$; MS (EI) $m / z 265\left(\mathrm{M}^{+}, 100\right), 266(15), 267(11) ;$ HRMS (EI) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}_{2} 265.0231$, found 265.0230 .

kb-NB184-02
2,3,4,5-Tetrahydro-10-methoxybenzo[b]thieno[2,3-f]-1,5-thiazocin-6-one (kb-NB184-02). To a solution of kb-NB165-92 ($19.0 \mathrm{mg}, 0.0716 \mathrm{mmol}$) in anhydrous DMF $(1.5 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(0.100 \mathrm{~g}, 0.724 \mathrm{mmol})$ followed by MeI ($4.5 \mu \mathrm{~L}, 0.0720 \mathrm{mmol}$). The reaction mixture was stirred at room temperature overnight, quenched with water (15 $\mathrm{mL})$ and extracted with EtOAc (15 mL). The aqueous phase was further extracted with EtOAc (3 x 15 mL) and the combined organic layers were washed with brine $(1 \times 50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated and purified by preparative thin-layer chromatography on $\mathrm{SiO}_{2}(1000 \mu \mathrm{~m}, 5 \%$ to $\mathbf{1 5 \%} \mathrm{MeOH}$ in EtOAc$)$ to yield $\mathbf{k b}-\mathrm{NB} 184-\mathbf{0 2}(15.5 \mathrm{mg}, 77 \%)$ as a white solid: Mp 185-188 ${ }^{\circ} \mathrm{C}$; IR (ATR, neat) 3152, 3026, 2939, 1636, 1498, 1395, $1209 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 600$ $\mathrm{MHz}) \delta 8.02(\mathrm{t}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}), 7.87(\mathrm{~d}, 1 \mathrm{H}, J=9.4 \mathrm{~Hz}), 7.16-7.13(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.50-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.30-3.26$ (m, 2 H), 1.92-1.87 (m, 2 H$){ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 150 \mathrm{MHz}\right) \delta 164.8,157.4,138.7,130.1,127.4,123.6,116.8,104.3$, 55.4, 30.5, 27.4; MS (EI) $\mathrm{m} / \mathrm{z} 279\left(\mathrm{M}^{+}, 100\right), 280(16) ;$ HRMS (EI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}_{2} 279.0388$, found 279.0379.

10
Methyl 3-hydroxy-5-nitrobenzo[b]thiophene-2-carboxylate (10). Methyl thioglycolate ($2.6 \mathrm{~mL}, 27.3 \mathrm{mmol}$) was added to a solution of methyl 2-chloro-5-nitrobenzoate ($5.00 \mathrm{~g}, 22.7 \mathrm{mmol}$) in dry $\mathrm{MeOH}(100 \mathrm{~mL})$, followed by addition of
$\mathrm{Et}_{3} \mathrm{~N}(9.6 \mathrm{~mL}, 68.2 \mathrm{mmol})$ with stirring over a period of $c a .5 \mathrm{~min}$. The resulting yellow solution was vigorously stirred at room temperature under N_{2}, becoming rapidly red then dark red. A precipitate formed after 30 min . The mixture was heated to $40-50^{\circ} \mathrm{C}$ and stirred for 4 h , then poured into a stirred mixture of ice and $1 \mathrm{Naq} . \mathrm{HCl}(300 \mathrm{~mL})$. The resulting pale yellow precipitate was filtered, rinsed with water and dried by forming an azeotrope with toluene. Recrystallization from toluene (ca. 200 mL) afforded $10(5.08 \mathrm{~g}, 88 \%)$ as a yellow cristalline powder. Representative experimental data are as follows: Mp 221.4-222.0 ${ }^{\circ} \mathrm{C}$ (softening point: $220^{\circ} \mathrm{C}$, toluene); IR (ATR, neat) 3241 (br), 3083, 2963, 1674, 1596, $1582,1540,1504,1437,1355,1338,1318,1195,1167,1139,1094,1079,1049,978,915,911,828,783,770,738,671$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta 11.21(\mathrm{bs}, 1 \mathrm{H}), 8.80(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 8.31(\mathrm{dd}, 1 \mathrm{H}, J=9.0,2.4 \mathrm{~Hz}), 8.21(\mathrm{~d}$, $1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 3.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right) \delta 163.2,155.2,145.2,143.4,132.0,125.1,122.4,118.7$, 107.3, 52.6; MS (EI) $m / z 253\left(\mathrm{M}^{+}, 36\right), 221\left([\mathrm{M}-\mathrm{MeOH}]^{+}, 100\right), 119$ (60); HRMS (EI) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{NO}_{5} \mathrm{~S}$ 253.0045 , found 253.0040 .

11
Methyl 5-nitro-3-(trifluoromethylsulfonyloxy)benzo[b]thiophene-2-carboxylate (11). To a suspension of $\mathbf{1 0}$ (500 mg , $1.97 \mathrm{mmol})$ in dry $\mathrm{DCM}(10 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added DMAP ($\left.12.3 \mathrm{mg}, 0.0987 \mathrm{mmol}\right), \mathrm{Et}_{3} \mathrm{~N}(0.39 \mathrm{~mL}, 2.76 \mathrm{mmol})$ and $\mathrm{Tf}_{2} \mathrm{O}(0.47 \mathrm{~mL}, 2.76 \mathrm{mmol})$. The resulting solution was stirred at room temperature under argon for 2 h . The reaction mixture was then quenched with sat. aq. NaHCO_{3} and extracted twice with DCM. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo. Chromatography of the residue on SiO_{2} (8:2 to 7:3, hexanes/EtOAc) afforded 11 ($705 \mathrm{mg}, 93 \%$) as a pale yellow cristalline powder: Mp $106.7-107.0^{\circ} \mathrm{C}$ (softening point: $106.0^{\circ} \mathrm{C}$); IR (ATR, neat) $3098,2960,1722,1603,1581,1538,1517,1420,1405,1344,1316,1279,1230,1210,1150,1124,1111,1088$, $1062,1034,966,954,919,904,848,828,811,781,768,757,740,732,656 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.74(\mathrm{~d}$, $1 \mathrm{H}, J=1.5 \mathrm{~Hz}), 8.43(\mathrm{dd}, 1 \mathrm{H}, J=9.0,2.1 \mathrm{~Hz}), 8.04(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}), 4.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ $160.1,146.7,142.3,140.0,131.2,127.0,124.7,122.7,118.8(\mathrm{q}, ~ J=319.0 \mathrm{~Hz}), 118.3(\mathrm{~d}, J=1.2 \mathrm{~Hz}), 53.6$; MS (EI) m / z $385\left(\mathrm{M}^{+}, 28\right), 252(99), 196(100), 68(76)$; HRMS (EI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~F}_{3} \mathrm{NO}_{7} \mathrm{~S}_{2} 385.9538$, found 385.9534.

3,4-Dihydro-9-nitro-[1]benzothieno[2,3-f]-1,4-thiazepin-5(2H)-one (12). To a solution of triflate $\mathbf{1 1}$ (632 mg, 1.64 $\mathrm{mmol})$ in dry DMF $(9.2 \mathrm{~mL})$ were added cysteamine $\cdot \mathrm{HCl}(745 \mathrm{mg}, 6.56 \mathrm{mmol})$ and then DBU ($2.0 \mathrm{~mL}, 13.1 \mathrm{mmol}$). The resulting dark red mixture was stirred at room temperature under argon for 1.5 h . The slurry was then heated at $70{ }^{\circ} \mathrm{C}$ for 13 h , then diluted with EtOAc and 2 N aq. HCl was added. The resulting yellow mixture was filtered, and the solid boiled in toluene, filtered immediately over a hot filter, rinsed with toluene and dried to afford $\mathbf{1 2}$ ($231 \mathrm{mg}, 50 \%, 67 \%$ b.r.s.m.) as a yellow powder. An additional $105 \mathrm{mg}(25 \%)$ of 10 was recovered from the filtrate. Representative experimental data for 12 are as follows: $\mathrm{Mp} 294-296^{\circ} \mathrm{C}$ (dec.); IR (ATR, neat) 3262, 3150, 3020, 2915, 1640, 1597, 1567, 1515, 1495, 1467, $1454,1439,1418,1402,1346,1327,1286,1258,1245,1232,1189,1139,1096,1081,1016,965,923,885,878,829$,
$811,734 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta 8.71(\mathrm{bt}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 8.53(\mathrm{t}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz}), 8.32(\mathrm{~d}, 2 \mathrm{H}, J=1.5$ Hz), 3.73-3.63 (m, 2 H), 3.52-3.43 (m, 2 H) ${ }^{13}{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 100 \mathrm{MHz}$) $\delta 164.4,145.2,144.8,138.2,135.6,129.4$, 124.5, 120.9, 118.1, 42.3, 33.4; MS (EI) m/z $280\left(\mathrm{M}^{+}, 100\right)$; HRMS (EI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2} 279.9976$, found 279.9974.

3,4-Dihydro-9-amino-[1]benzothieno[2,3-f]-1,4-thiazepin-5(2H)-one (13). To a suspension of $\mathbf{1 2}$ (250 $\mathrm{mg}, 0.892$ $\mathrm{mmol})$ in degassed $\mathrm{EtOH}(9 \mathrm{~mL})$ was added $\mathrm{SnCl}_{2}(1.73 \mathrm{~g}, 8.92 \mathrm{mmol})$. The resulting suspension was heated at reflux for 5 h under argon, then quenched with 2.5 N aq. NaOH and extracted with hot $8: 2 \mathrm{CHCl}_{3} / i-\mathrm{PrOH}(9 \mathrm{x} 50 \mathrm{~mL})$. The combined organic layers were washed with water (2 x), brine (2 x), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated in vacuo to afford crude 13 ($158 \mathrm{mg}, 71 \%$) as a dark orange powder. A sample ($c a .30 \mathrm{mg}$) was further purified by chromatography on SiO_{2} (5:5 hexanes/EtOAc to EtOAc) to afford pure $\mathbf{1 3}(28.2 \mathrm{mg})$ as a yellow powder: Mp 198.6-199.0 ${ }^{\circ} \mathrm{C}$; IR (ATR, neat) $3370,3254,3146,3008,2915,1623,1599,1556,1491,1454,1430,1403,1346,1333,1312,1286,1243,1204,1184$, $1129,1083,975,887,837,798,766,749,719,691,677,663 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 7.58(\mathrm{dd}, 1 \mathrm{H}, J=8.8$, $0.4 \mathrm{~Hz}), 7.15(\mathrm{dd}, 1 \mathrm{H}, J=2.4,0.4 \mathrm{~Hz}), 6.98(\mathrm{dd}, 1 \mathrm{H}, J=8.8,2.0 \mathrm{~Hz}), 3.77-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.37(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 169.3,147.0,141.5,132.4,130.8,130.7,124.0,119.7,108.4,44.3,35.1 ; \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 250\left(\mathrm{M}^{+}\right.$, 100); HRMS (EI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OS}_{2} 250.0235$, found 250.0225 .

3,4-Dihydro-9-azido-[1]benzothieno[2,3-f]-1,4-thiazepin-5(2H)-one (mcf292-08). To a suspension of crude aniline 13 $(50.0 \mathrm{mg}, 0.200 \mathrm{mmol})$ in $\mathrm{MeCN}(0.5 \mathrm{~mL})$ were added t-BuONO $(53 \mu \mathrm{~L}, 0.399 \mathrm{mmol})$ and then $\mathrm{TMSN}_{3}(45 \mu \mathrm{~L}, 0.320$ mmol) dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature in the dark for 1.5 h , then diluted in CHCl_{3} (ca. 60 mL) and stirred with 2.5 N aq. $\mathrm{NaOH}(c a .50 \mathrm{~mL}$) for 1 h . The layers were then separated, the organic layer washed with water $(20 \mathrm{~mL})$, dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, filtered and concentrated in vacuo. Chromatography of the residue on SiO_{2} $\left(\mathrm{CHCl}_{3}\right.$ to $\left.98: 2 \mathrm{CHCl}_{3} / \mathrm{MeOH}\right)$ afforded a fraction that was dissolved in CHCl_{3} and stirred with 2.5 N aq. NaOH for 2 h . The layers were then separated, and the organic layer was stirred with 2.5 N aq. NaOH for 1 h . The procedure was repeated 4 times ($1 \times 30 \mathrm{~min}$ and $3 \times 15 \mathrm{~min}$ stirring). The layers were then separated, the organic layer was washed with water, dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$, filtered and concentrated in vacuo to yield mcf292-08 $(29.4 \mathrm{mg}, 53 \%, 38 \%$ over 2 steps, 96% purity estimated by ${ }^{1} \mathrm{H}$ NMR) as a beige powder: Mp $193{ }^{\circ} \mathrm{C}$ (dec.); IR (ATR, neat) $3260,3154,3016,2922,2115,1631,1592$, $1495,1467,1441,1422,1400,1340,1284,1252,1234,1215,1198,1144,1113,975,889,835,809,792,751,721 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 8.53(\mathrm{bt}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}), 8.06(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.39(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}), 7.31(\mathrm{dd}$, $1 \mathrm{H}, J=8.6,2.2 \mathrm{~Hz}$), 3.68-3.60 (m, 2 H), 3.45-3.38 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 100 \mathrm{MHz}$) $\delta 164.9,139.4,136.9$, 135.2, 134.2, 127.7, 124.6, 119.2, 112.0, 42.4, 33.4; MS (EI) $m / z 276\left(\mathrm{M}^{+}, 14\right), 248\left(\left[\mathrm{M}-\mathrm{N}_{2}\right]^{+}, 50\right), 68$ (100); HRMS (EI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{OS}_{2}$ 276.0140, found 276.0137.

14
Thieno[3,2-d]pyrimidine-2,4-diol (14). To a solution of methyl 3-aminothiophene-2-carboxylate ($5.00 \mathrm{~g}, 31.8 \mathrm{mmol}$) in glacial $\mathrm{AcOH}(35.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(31 \mathrm{~mL})$ was added $\mathrm{KOCN}(8.06 \mathrm{~g}, 95.4 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(18.0 \mathrm{~mL})$ dropwise. The resulting slurry was stirred at room temperature for 20 h , and filtered. The solid was placed in a flask, flushed with N_{2}, treated with 2 N aq. $\mathrm{NaOH}(85 \mathrm{~mL}$), and stirred at room temperature for 3 h . The slurry was filtered to remove any undissolved material. The solution was acidified with conc. aq. HCl until a pH of 5-6 was obtained. The precipitate was filtered and the solid was dried at $50{ }^{\circ} \mathrm{C}$ to provide 14 ($3.49 \mathrm{~g}, 65 \%$) as a white solid: ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300 \mathrm{MHz}$) δ $11.56(\mathrm{~s}, 1 \mathrm{H}), 11.21(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz}), 6.90(\mathrm{~d}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz})$.

2,4-Dichlorothieno[3,2-d]pyrimidine (15). To a solution of $14(500 \mathrm{mg}, 2.97 \mathrm{mmol})$ and N, N-dimethylaniline (0.29 mL , 2.23 mmol) in $\mathrm{MeCN}(2.5 \mathrm{~mL})$ cooled to $0{ }^{\circ} \mathrm{C}$ was slowly added $\mathrm{POCl}_{3}(1.4 \mathrm{~mL}, 14.9 \mathrm{mmol})$. The purple slurry was heated to $80-85^{\circ} \mathrm{C}$ and stirred for 48 h . A second portion of $\mathrm{POCl}_{3}(1.0 \mathrm{~mL})$ was added after 24 h . The resulting clear purple solution was poured into ice and water and stirred for 5 min . The slurry was filtered, and the solid was dried at 45 ${ }^{\circ} \mathrm{C}$. The solid was dissolved in EtOAc, washed with sat. aq. NaHCO_{3}, and stirred with activated charcoal. The solution was filtered through Celite ${ }^{\circledR}$ and concentrated to provide $15(482 \mathrm{mg}, 79 \%)$ as a yellow solid: Mp 138.8-139.3 ${ }^{\circ} \mathrm{C}\left(\mathrm{H}_{2} \mathrm{O}\right)$; IR (ATR, neat) $3066,3088,1545,1508,1307,1204,798 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta 8.70(\mathrm{~d}, 1 \mathrm{H}, J=5.4$ $\mathrm{Hz}), 7.74(\mathrm{~d}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 75 \mathrm{MHz}\right) \delta 163.6,154.8,154.7,142.4,129.3,124.1$; HRMS (EI) m / z calcd for $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{SCl}_{2}$ 203.9316, found 203.9312 .

16
2-Chlorothieno[3,2-d]pyrimidine (16). To a solution of $15(44.0 \mathrm{mg}, 0.022 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(27.0 \mathrm{mg}, 0.32 \mathrm{mmol})$ in EtOH (2.0 mL) was added $10 \% \mathrm{Pd} / \mathrm{C}(8.90 \mathrm{mg}, 20 \%$ by wt$)$. The suspension was stirred at room temperature under an atmosphere of H_{2} for 23 h . A second portion of $10 \% \mathrm{Pd} / \mathrm{C}(8.90 \mathrm{mg}, 20 \%$ by wt) was added after 12 h . The reaction mixture was filtered through Celite ${ }^{\circledR}$ with EtOAc washings. The filtrate was washed with $\mathrm{H}_{2} \mathrm{O} /$ brine $(4: 1)$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure to provide $16\left(33.0 \mathrm{mg}, 90 \%\right.$) as white solid: Mp 164.9-165.5 ${ }^{\circ} \mathrm{C}$ (EtOAc); IR (ATR, neat) $3105,3051,2924,1543,1515,1456,1420,1334,1349,1301,1159,794 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300$ $\mathrm{MHz}) \delta 9.50(\mathrm{~s}, 1 \mathrm{H}), 8.64(\mathrm{~d}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 7.64(\mathrm{~d}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 75 \mathrm{MHz}\right) \delta 162.7$, 156.3, 155.3, 142.2, 130.1, 122.9; MS (EI) $m / z 170\left(\mathrm{M}^{+}, 100\right)$, 135 (72); HRMS (EI) m / z calcd for $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{SCl} 169.9705$, found 169.9700 .

17
2-Methoxythieno[3,2-d]pyrimidine (17). To a solution of $\mathbf{1 6}$ ($146 \mathrm{mg}, 0.86 \mathrm{mmol}$) in MeOH (20 mL) was added $\mathrm{NaOMe}(130 \mathrm{mg}, 2.41 \mathrm{mmol})$. The solution was heated at reflux for 37 h . An additional 1.4 equiv of $\mathrm{NaOMe}(65.0 \mathrm{mg})$ was added after 24 h (Note: The reaction was complete in 7 h with comparable yields when 4.2 equiv of NaOMe were added at the start of the reaction). The reaction mixture was cooled to room temperature, quenched with $1 \mathrm{Naq} . \mathrm{HCl}(2.0$ $\mathrm{mL})$, and extracted with DCM $(4 \times 10 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure to provide $17(125 \mathrm{mg}, 88 \%)$ as an off-white solid: $\mathrm{Mp} 167.0-168.5^{\circ} \mathrm{C}(\mathrm{DCM})$; IR (ATR, neat) 3071, 3025, 2917, 1558, 1528, 1478, 1379, 1295, 1249, 1031, 796, $677 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300$ $\mathrm{MHz}) \delta 9.30(\mathrm{~d}, 1 \mathrm{H}, J=0.6 \mathrm{~Hz}), 8.45(\mathrm{~d}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 7.47(\mathrm{dd}, 1 \mathrm{H}, J=5.4,0.7 \mathrm{~Hz}), 3.96(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 75 \mathrm{MHz}\right) \delta 163.4,162.4,154.8,139.9,124.8,122.9,54.6 ; \mathrm{MS}$ (EI) $m / z 166$ (M ${ }^{+}$, 29), 84 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{OS} 166.0201$, found 166.0201.

18
7-Bromo-2-methoxythieno[3,2-d]pyrimidine (18). To a reaction vial containing 17 ($100 \mathrm{mg}, 0.602 \mathrm{mmol}$) and AcOH $(1.5 \mathrm{~mL})$ under an atmosphere of N_{2} was added $\mathrm{Br}_{2}(0.093 \mathrm{~mL}, 1.81 \mathrm{mmol})$. The reaction vial was sealed and heated to 70 ${ }^{\circ} \mathrm{C}$ for 24 h . The mixture was cooled to room temperature, quenched with sat. aq. NaHCO_{3}, and extracted with EtOAc. The combined organic layers were washed with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, sat. aq. NaHCO_{3}, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to give a white solid. The solid was adsorbed onto SiO_{2} and purified by chromatography on SiO_{2} (1:20 EtOAc/hexanes, 1:10 EtOAc/hexanes, 3:20 EtOAC/hexanes, $100 \% \mathrm{EtOAc}$) to provide 18 ($58.3 \mathrm{mg}, 40 \%$) as a white solid: Mp 115.3-115.9 ${ }^{\circ} \mathrm{C}$ (EtOAc); IR (ATR, neat) 3090, 3019, 2956, 1567, 1524, 1474, 1463, $1370,1312,1271 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta 9.34(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}, 75 MHz) $\delta 163.9,158.4,155.8,136.7,124.0$, 106.8, 54.8; HRMS (EI) m / z calcd for $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{OSBr} 243.9306$, found 243.9304.

19
Methyl 7-bromo-2-methoxythieno[3,2-d]pyrimidine-6-carboxylate (19). To a reaction vial containing $\mathbf{1 8}$ (40.0 mg , $0.16 \mathrm{mmol})$ and THF $(0.6 \mathrm{~mL})$ cooled to -55 to $-60^{\circ} \mathrm{C}$ under an atmosphere of argon was added $\mathrm{TMPMgCl} \cdot \operatorname{LiCl}^{6}(0.17$ $\mathrm{mL}, 0.22 \mathrm{mmol}$) dropwise. The white slurry became a clear yellow solution after the addition of $\mathrm{TMPMgCl} \cdot \mathrm{LiCl}$ and was stirred for 2 h at -55 to $-60^{\circ} \mathrm{C}$, turning into a pale yellow slurry at the end of this time. Methyl cyanoformate (0.016 mL , $0.20 \mathrm{mmol})$ in THF (0.10 mL) was added dropwise at $-50^{\circ} \mathrm{C}$ and the solution was stirred for 2 h while warming to $0^{\circ} \mathrm{C}$.

The pale yellow slurry turned pale yellow-orange as it warmed to $0{ }^{\circ} \mathrm{C}$. The reaction was quenched at $0{ }^{\circ} \mathrm{C}$ with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(0.5 \mathrm{~mL})$. The mixture was diluted with EtOAc and the organic layer was washed with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(2 \times 5 \mathrm{~mL})$. The combined aqueous layers were extracted with EtOAc ($2 \times 5 \mathrm{~mL}$). The combined organic layers were washed with brine (5 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated under reduced pressure to provide $19(48.0 \mathrm{mg}, 97 \%)$ as a yellow solid: Mp 180.9-181. $4^{\circ} \mathrm{C}$ (EtOAc); IR (ATR, neat) 2956, 2915, 2848, 1735, 1569, 1472, 1382, 1213, 1031, $788 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta 9.49(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 75 \mathrm{MHz}\right) \delta 164.1,160.6,158.3$, 157.4, 136.3, 124.8, 113.9, 55.0, 53.3; MS (EI) $m / z 302\left(\mathrm{M}^{+}, 100\right), 274$ (45); HRMS (ESI) m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{~S}$ $(\mathrm{M}+\mathrm{H}) 302.9439$, found 302.9418 .

2-Methoxy-7H,8H,9H-1,4-thiazepino[7',6'-5,4]thiopheno[3,2- d]pyrimidin-6-one (kmg-NB4-23). To a solution of 19 $(41.0 \mathrm{mg}, 0.14 \mathrm{mmol})$ in DMF $(1.3 \mathrm{~mL})$ under an atmosphere of N_{2} was added cysteamine $\cdot \mathrm{HCl}(63.0 \mathrm{mg}, 0.54 \mathrm{mmol})$ in one portion and DBU $(0.17 \mathrm{~mL}, 1.1 \mathrm{mmol})$ dropwise. The reaction mixture turned dark blue upon addition of DBU and after stirring for 20 min , the mixture was a pale purple colored slurry. The reaction mixture was stirred at room temperature for 1.5 h , and then heated to $70{ }^{\circ} \mathrm{C}$ for 9 h 50 min . The resulting yellow slurry was diluted with EtOAc, washed with 2 N aq. HCl , and filtered ($\mathrm{H}_{2} \mathrm{O}$ and EtOAc washings). Residual DMF was removed by azeotropic distillation with heptane to provide kmg-NB4-23 (25.0 mg , 68\%) as a pale yellow solid: Mp $308{ }^{\circ} \mathrm{C}$ (dec.); IR (ATR, neat) 3260 , $3153,3015,1636,1554,1495,1467,1374,1269,1353,1323 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 300 \mathrm{MHz}\right) \delta 9.36(\mathrm{~s}, 1 \mathrm{H}), 8.70$ $(\mathrm{t}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 3.98(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{app} \mathrm{dd}, 2 \mathrm{H}, J=6.0 \mathrm{~Hz}), 3.40-3.36(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 75 \mathrm{MHz}\right) \delta$ $164.2,163.1,159.6,155.9,138.5,129.7,124.1,54.8,42.7,31.9$; HRMS (ESI) m/z calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})$ 268.0214 , found 268.0237 .

In vitro radiometric PKD kinase assays. In vitro radiometric PKD kinase assays were conducted as previously described. ${ }^{7}$ Briefly, 50 ng recombinant human PKD1 (Biomol International, Plymouth Meeting, PA), PKD2 (SignalChem, Richmond, BC, Canada), or 75 ng PKD3 (Enzo Life Sciences) was incubated at $30^{\circ} \mathrm{C}$ for 10 min with a reaction mixture containing $2.5 \mu \mathrm{~g}$ syntide-2 (Sigma), $70 \mu \mathrm{M} \mathrm{ATP}$, and $1 \mu \mathrm{Ci} \gamma^{3}{ }^{32} \mathrm{P}$-ATP (PerkinElmer, Boston, MA) in kinase buffer (50 mM Tris- $\mathrm{HCl} \mathrm{pH} 7.5,4 \mathrm{mM} \mathrm{MgCl} 2$, and $10 \mathrm{mM} \beta$-mercaptoethanol). $25 \mu \mathrm{~L}$ of the reaction mixture was then spotted on Whatman P81 filter paper (Whatman Inc., Clifton, NJ), and filter papers were washed three times with 0.5% phosphoric acid, then counted using a Beckman LS6500 multi-purpose scintillation counter.

In vitro radiometric PKC and CAMKII $\boldsymbol{\alpha}$ kinase assays. In vitro radiometric kinase assays to assess the specificity of the PKD inhibitor analogs were performed as previously described. ${ }^{7}$ Briefly, for PKC assays, 50 ng of recombinant human PKC $\alpha, \mathrm{PKC} \beta \mathrm{I}$, or PKC δ (SignalChem) were incubated with $5 \mu \mathrm{~g}$ MBP4-14, $0.25 \mathrm{mg} / \mathrm{mL}$ BSA, $0.1 \mathrm{mg} / \mathrm{mL}$ PC/PS $(80 \% / 20 \%), 1 \mu \mathrm{M} \mathrm{PDBu}, 20 \mu \mathrm{M}$ ATP, and $1 \mu \mathrm{Ci} \gamma^{-32} \mathrm{P}$-ATP in kinase buffer with the indicated concentrations of inhibitor for 10 min at $30^{\circ} \mathrm{C}$. For CAMKII α activity assays, 50 ng CAMKII α (SignalChem) was pre-incubated with 0.5 mM CaCl 2 and $30 \mathrm{ng} / \mu \mathrm{L}$ calmodulin for 10 min on ice before being added to a reaction mixture containing $2.5 \mu \mathrm{~g}$ syntide- $2,70 \mu \mathrm{M}$ ATP, and $1 \mu \mathrm{Ci} \gamma^{3}{ }^{32} \mathrm{P}$-ATP in kinase buffer. Reactions were then incubated with the indicated concentrations of inhibitor for 10 min at $30^{\circ} \mathrm{C}$. Following incubation, $25 \mu \mathrm{~L}$ of the reaction mixture was spotted onto Whatman P81 filter paper. The filter papers were then washed three times with 0.5% phosphoric acid, and incorporation of $\gamma^{-32} \mathrm{P}$-ATP into the substrate was determined using a Beckman LS6500 multi-purpose scintillation counter.

Determination of cellular $\mathbf{I C}_{\mathbf{5 0}}$ for PKD1 inhibition. Inhibition of PKD1 in cells was determined as previously described. ${ }^{7}$ LNCaP cells were pre-treated with PKD inhibitors for 45 min at various concentrations, and then stimulated with 10 nM phorbol 12-myristate 13-acetate (PMA) for 20 min . Cells were then collected and lysed in lysis buffer containing 200 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.4,100 \mu \mathrm{M} 4$-(2-aminoethyl) benzenesulfonyl fluoride, 1 mM EGTA, and 1% Triton $\mathrm{X}-100$. Cell lysates were probed by Western blot analysis using primary antibodies targeting p-S916-PKD1 (Millipore), p-S744/748-PKD1, PKD1 (Cell Signaling Technology), or GAPDH. Densitometry analysis of visualized bands was used to determine the cellular IC_{50} values for PKD1 inhibition.

Statistical analysis. GraphPad Prism V software was used to determine statistical significance. Each assay was repeated two or three times with triplicate determination at each point. A p value of <0.05 was considered significant.

IMAP-based kinase counterscreening assays. Automated, HTS formatted IMAP-based AKT FP, and PLK1 and CAK TR-FRET assays were used to assess the specificity of the PKD analogs as previously described. ${ }^{7}$ For the PLK2 IMAP TR-FRET assay, PLK2 kinase reactions were generated by the stepwise addition of 3 times concentrations of substrate/ATP ($1650 \mathrm{nM} / 105 \mu \mathrm{M}$), analog, and PLK2 enzyme (1.02 milliunits/ $\mu \mathrm{L}$). PLK2 kinase reactions were incubated for 150 min at room temperature and stopped with the addition IMAP binding reagent supplemented with terbium. Assay plates were then incubated overnight. Data capture was as previously described. ${ }^{7}$ PLK2 substrate (FAM-LKKLTRRASFSGQ) was obtained from Molecular Devices (Sunnyvale, CA). H-89 was used as a positive inhibitory control compound in the assays. A 10 point concentration range of each compound used to determine IC_{50} values. The maximum concentration was either 50 or $100 \mu \mathrm{M}$, depending on the solubility of each individual compounds. Each experiment was assayed in triplicate and data is represented as average $\mathrm{IC}_{50} \pm \mathrm{SD}$. The IC_{50} determinations for each analog evaluated in the IMAP (PLK2, PLK1, CAK, and AKT) formats were conducted within the linear range of the captured signal readout.

Kinase Counterscreens: AKT

11.08.10 AKT inhibition by H 89 hydrochloride

11.08.10 AKT inhibition by KMG-NB4-23

11.08.10 AKT inhibition by kb-NB 123-57

11.08.10 AKT inhibition by kb-NB 165-09

11.08.10 AKT inhibition by kb-NB 184-02

11.08.10 AKT inhibition by NaOH

11.08.10 AKT inhibition by MCF 292-08

11.08.10 AKT inhibition by kb-NB 142-70
 11.08.10 AKT inhibition by kb-NB 165-92

Kinase Counterscreens: CAK (CDK7)

Kinase Counterscreens: PLK1

Kinase Counterscreens: PLK2

Kinase Counterscreens: Summary for AKT, CAK, PLK1, and PLK2

11.08.10					
IMAP counterscreens					
AKT	rep 1	rep 2	rep 3	average	stdev
H89	5.142	4.689	5.152	4.994	0.264
NaOH	9.777	9.824	10.02	9.874	0.129
KMG-NB4-23				not inhibitory	
MCF 292-08				not inhibitory	
Kb-NB 142-70				not inhibitory	
Kb-NB 165-09				not inhibitory	
Kb-NB 123-57				not inhibitory	
Kb-NB 184-02				not inhibitory	
Kb-NB 165-92				not inhibitory	
Plk1					
H89	0.8546	0.7277	0.5185	0.700	0.170
NaOH		15.26	18.45	16.855	2.256
KMG-NB4-23				not inhibitory	
MCF 292-08	36.3	33.59	85.64	51.843	29.300
Kb-NB 142-70	11.31	14.03	25.82	17.053	7.713
Kb-NB 165-09				>50	
Kb-NB 123-57				>100	
Kb-NB 184-02	89.03	55.49	82.71	75.743	17.822
Kb-NB 165-92	4.369	15.29	19.24	12.966	7.703

Plk2						
H89	0.5186	0.5573	0.5559	0.544	0.022	
NaOH	18.98	19.18	20.1	19.420		0.597
KMG-NB4-23				not inhibitory		
MCF 292-08				>50		
Kb-NB 142-70	42.83	36.28	37.96	39.023	3.402	
Kb-NB 165-09	108.4	57.98	47.51	>50		
Kb-NB 123-57					>100	
Kb-NB 184-02	51.31	79.28	57.96	62.850	14.612	
Kb-NB 165-92	28.47	30.9	24.68	28.017	3.135	

CAK					
H89	0.3875	0.5226	0.3864	0.432	0.078
NaOH	10.98	10.08	1152	10.860	0.727
KMG-NB4-23				not inhibi	
MCF 292-08	100.4	0	43.3	47.900	50.358
Kb-NB 142-70	12.46	11.19	12.13	11.927	0.659
Kb-NB 165-09	32.81	9.112	9.337	17.086	13.618
Kb-NB 123-57	47.68	27.88	42.14	39.233	10.215
Kb-NB 184-02	13.52	5.537	7.97	9.009	4.092
Kb-NB 165-92	14.47	7.995	10.48	10.982	3.267
red $=$ tested only to $50 \mu \mathrm{M}$ [highest]					
all other compounds testd to $100 \mu \mathrm{M}$					

IC 50 $(\mu \mathrm{M})($ Ave \pm SD)

Analog	AKT	PLK1	PLK2	CAK(CDK7)
KMG-NB4-23	>100	>100	>100	>100
MCF 292-08	>50	>50	>50	>50
Kb-NB-142-70	>100	17 ± 7.7	39 ± 3.4	12 ± 0.6
Kb-NB 165-09	>50	>50	>50	17.1 ± 13.6
Kb-NB-123-57	>100	>100	>100	39.2 ± 10.2
Kb-NB-184-02	>100	>50	>50	9 ± 4.1
Kb-NB-165-92	>50	13 ± 7.7	28 ± 3.1	11 ± 3.3

Kinase Counterscreens: Selectivity analysis for kmg-NB4-23, mcf292-08 and kb-NB123-57
Inhibition of PKCa, PKCbI, PKCd and CAMKIIa by kmg-NB4-23, mcf292-08 and kb-NB123-57 was determined at 100 $\mathrm{nM}, 1 \mathrm{uM}$ and 10 uM concentrations. In the PKC assays, the potent PKC inhibitor GF109203X was used as a control.
(Representative data from two independent experiments)

PKC α activity

PKC δ activity

PKC β activity

CAMKIl α activity

Inhibition of PMA-induced PKD1 S ${ }^{916}$ autophosphorylation by kmg-NB4-23 and mcf292-08 in LNCaP prostate cancer cells
(Representative data from three independent experiments)

Data demonstrating that kb-NB123-57 did not significantly inhibit PMA-induced PKD1 autophosphorylation at $\mathrm{S}^{916}\left(\mathrm{IC}_{50}>50 \boldsymbol{\mu M}\right)$:
(Representative data from three independent experiments)

References

(1) Grimm, J. B.; Stables, J. P.; Brown, M. L. Design, synthesis, and development of novel caprolactam anticonvulsants. Bioorg. Med. Chem. 2003, 11, 4133-4141.
(2) Iwata, Y.; Arisawa, M.; Hamada, R.; Kita, Y.; Mizutani, M. Y.; Tomioka, N.; Itai, A.; Miyamoto, S. Discovery of novel aldose reductase inhibitors using a protein structure-based approach: 3D-Database search followed by design and synthesis. J. Med. Chem. 2001, 44, 1718-1728.
(3) Connor, D. T.; Cetenko, W. A.; Mullican, M. D.; Sorenson, R. J.; Unangst, P. C.; Weikert, R. J.; Adolphson, R. L.; Kennedy, J. A.; Thueson, D. O. Novel benzothiophene-, benzofuran-, and naphthalenecarboxamidotetrazoles as potential antiallergy agents. J. Med. Chem. 1992, 35, 958-965.
(4) Khatana, S. S.; Boschelli, D. H.; Kramer, J. B.; Connor, D. T.; Barth, H.; Stoss, P. Preparation of benzothieno[2,3-f]-1,4-oxazepin- and -thiazepin-5(2H)-ones and of benzothieno[3,2-e]-1,4-diazepin-5-ones. J. Org. Chem. 1996, 61, 60606062.
(5) Amir, N.; Motonishi, M.; Fujita, M.; Miyashita, Y.; Fujisawa, K.; Okamoto, K. Synthesis of novel S-bridged heterotrinuclear complexes containing six-membered chelate rings: Structural, spectroscopic, and electrochemical properties of $\left[\mathrm{Co}\left\{\mathrm{Rh}(\mathrm{apt})_{3}\right\}_{2}\right]^{3+}(\mathrm{apt}=3$-aminopropanethiolate $)$. Eur. J. Inorg. Chem. 2006, 1041-1049.
(6) Piller, F. M.; Knochel, P. Regio- and chemoselective synthesis of fully substituted thiophenes. Org. Lett. 2008, 11, 445-448.
(7) Sharlow, E. R.; Giridhar, K. V.; LaValle, C. R.; Chen, J.; Leimgruber, S.; Barrett, R.; Bravo-Altamirano, K.; Wipf, P.; Lazo, J. S.; Wang, Q. J. Potent and selective disruption of protein kinase D functionality by a benzoxoloazepinolone. J. Biol. Chem. 2008, 283, 33516-33526.

 ค

3－chloro－5－（benzyloxy）－ benzo［b］thiophene－2－carbonyl chloride

－

五

\square

 $\underbrace{\infty}$ Nr,

6

SI ILT

[^0]
6

kb-NB142-70

9

13	12	11	10	9	8	7	6	5	4	3	2	1	0

16

$$
\begin{aligned}
& \because M O \text { に N N }
\end{aligned}
$$

$$
\begin{aligned}
& \text { n } 7 \mathrm{mmmmm}
\end{aligned}
$$

 17

1	160	160	140	120	100	80	60	40	20	0

200 $\begin{array}{llll}180 & 160 & 140 & 120\end{array}$ 20

6
$0 \quad 40$
$020 \quad 0 \quad$ ppm

[^0]: $\left[\begin{array}{r}69.57 \\ 42.41 \\ 40.05 \\ 39.93 \\ 39.79 \\ 39.65 \\ 39.51 \\ 39.37 \\ 39.23 \\ 39.09 \\ 33.36\end{array}\right.$

