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Analytical method validation and quality assurance 

 Analytical method validation forms the first level of quality assurance in the 

laboratory, and involves a complete set of measures a laboratory must undertake to 

ensure that it can always achieve high-quality data (1). The second stage should be an 

extensive validation performed through a collaborative trial or inter-laboratory study. 

Both single-laboratory and inter-laboratory validations do not exclude each other and 

must be seen as two complementary stages in a process. 

 In the present work, an in-house validation was done by evaluating precision, 

selectivity, linearity, operating range, recovery, limit of detection, measurement 

uncertainty and, finally, applicability to real systems. Uncertainty estimation and figures 

of merit calculation for multivariate calibration, such as that here applied, were obtained 

following IUPAC recommendations (2).  

  The single-laboratory validation should be a valuable source of data usable to 

demonstrate the fitness for purpose of the proposed method, and should be completed 

with the corresponding collaborative assay for a potential accreditation by international 

standardization agencies. 

 

Calibration with second-order multivariate models 

The U-PLS/RBL model 

In U-PLS, the original second-order data are unfolded into vectors before PLS is 

applied (3). In this algorithm, concentration information is employed in the calibration 

step (without including data for the unknown sample) in order to obtain a set of loadings 

P and weight loadings W (both of size JK×A, where J is the number of data points in the 

first data dimension, K is the number of data points in the second data dimension and A 

is the number of latent factors), as well as regression coefficients v (size A×1). They are 
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estimated from Ical calibration data matrices Xc,i, which are first vectorized into JK×1 

vectors, and calibration concentrations y (size Ical×1).  

The parameter A is usually selected by leave-one-out cross-validation (4). Thus, 

A is estimated by calculating the ratios F(A) = PRESS(A<A*)/PRESS(A), where PRESS 

= Σ(ci,act – ci,pred)
2, A* corresponds to the minimum PRESS, and ci,act and ci,pred are the 

actual and predicted concentrations for the ith. sample left out of the calibration during 

cross validation, respectively. Then, the A value leading to a probability of less than 75 

% that F>1 is selected. 

In the absence of interferences in the test sample, v could be employed to 

estimate the analyte concentration: 

 yu = tu
T
 v          (1) 

in which tu is the test sample score, obtained by projection of the unfolded data for the 

test sample vec(Xu) onto the space of the A latent factors: 

 tu = (WT
 P)–1

 W
T vec(Xu)        (2) 

where vec() is the unfolding operator. 

When unexpected interferences occur in Xu, then the sample scores given by 

equation (2) are not suitable for analyte prediction using equation (1). In this case, the 

residuals of the U-PLS prediction step [sp, see equation (3)] will be abnormally large in 

comparison with the typical instrumental noise: 

sp = || ep || / (JK–A)1/2 = || vec(Xu) – P (WT
 P)–1

 W
T vec(Xu) || / (JK–A)1/2 = 

    = || vec(Xu) – P tu || / (JK–A)1/2       (3) 

in which || · || indicates the Euclidean norm. 

Therefore, a separate procedure called residual bilinearization can be 

implemented. This procedure is based on principal component analysis (PCA) to model 

the unexpected effects (5,6), and is usually carried out by singular value decomposition 
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(SVD). RBL aims at minimizing the norm of the residual vector eu, computed while 

fitting the sample data to the sum of the relevant contributions:  

vec(Xu) = P tu + vec[Bunx Gunx (Cunx)
T] + eu     (4) 

in which Bunx and Cunx are matrices containing the first left and right eigenvectors of Ep, 

and Gunx is a diagonal matrix containing its singular values, as obtained from SVD 

analysis: 

Bunx Gunx (Cunx)
T = SVD(Ep)        (5) 

in which Ep is the J×K matrix obtained after reshaping the JK×1 ep vector of equation 

(3) and SVD indicates taking the first principal components. 

During this procedure, P is kept constant at the calibration values, and tu is 

varied until || eu || is minimized. Then, the analyte concentrations are provided by 

equation (1), by introducing the final tu vector found by the RBL procedure.  

It should be noticed that for a number of interferences larger than one, the 

profiles provided by the SVD analysis of Ep unfortunately no longer resemble the true 

interferent profiles, due to the fact that the principal components are restricted to be 

orthonormal.  

The aim which guides the RBL procedure is the minimization of the residual 

error su to a level compatible with the noise present in the measured signals (7), with su 

given by: 

su = || eu || / [(J – NRBL)(K – NRBL) – A]1/2       (6) 

in which NRBL is the number of RBL components and A the number of calibration PLS 

factors. 
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The N-PLS/RBL model 

The N-PLS model is similar to the U-PLS method, but in this case the original 

second-order data matrices are not unfolded. The calibration step involves obtaining two 

sets of loadings Wj and Wk (of sizes J×A and K×A), as well as a vector of regression 

coefficients v (size A×1) (8,9). When no unexpected components occur in the test 

sample, equation (1) can be used for analyte prediction. However, in the presence of 

interferences, the sample scores are not suitable. The residuals of the N-PLS modeling 

of the test sample signal [sp, see equation (7)] will be abnormally large in comparison 

with the typical instrumental noise level: 

sp = || ep || / (JK–A)1/2 = || vec(Xu) – vec( X̂ u) || / (JK–A)1/2               (7) 

in which X̂ u is the sample data matrix (Xu) reconstructed by the N-PLS model. 

The situation is handled by minimizing the residuals computed while fitting the 

sample data to the sum of the relevant contributions: 

Xu = reshape{tu[(W
j|⊗ |Wk)]}+ SVD ( X̂ u – Xu) + Eu              (8) 

in which 'reshape' indicates transforming a JK×1 vector into a J×K matrix, and |⊗ | is 

the Kathri-Rao operator (8). During this process, the weight loadings W
j and W

k are 

kept constant at the calibration values, and tu is varied until the final RBL residual error 

su is minimized using a Gauss-Newton procedure, with su given by an equation similar 

to (6) [with eu = vec(Eu)]. 

Finally, an equation analogous to (1) retrieves the analyte concentrations by 

introducing the final tu vector found by RBL.  

 

The PARAFAC model 

In the PARAFAC model, the second-order data for the Ical training matrices Xi,cal, 

each of them as a J×K matrix, are joined with the unknown sample matrix Xu into a 
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three-way data array X, whose dimensions are [(Ical + 1)×J×K]. If the array X is trilinear, 

each responsive component can be explained in terms of three vectors an, bn and cn, 

which collect the relative concentrations [(Ical + 1)×1] for component n, and the profiles 

in both modes (J×1) and (K×1) respectively. The PARAFAC model (10) can be defined 

as:  

 Xijk = ∑
=

N

i

knjnin cba
1

 +Eijk        (9) 

in which N is the total number of responsive components, ain is the relative 

concentration of component n in the ith. sample, and bjn and ckn are the intensities at the 

j and k variables, respectively. The values of Eijk are the elements of the matrix array E, 

which contains the variation not captured by the model. The column vectors an, bn and 

cn are collected into the corresponding score matrix A and loading matrices B and C. 

 The decomposition of X, usually accomplished through an alternating least-

squares minimization scheme (11,12), retrieves the profiles in both data dimensions (B 

and C) and relative concentrations (A) of individual components in the (Ical + 1) 

mixtures, whether they are chemically known or not, constituting the basis of the 

second-order advantage.  

 Some relevant issues concerning the application of PARAFAC to the calibration 

of three-way data have to be considered:  

Initialization of the algorithm: Different strategies to manage this step include the use of 

vectors given by the GRAM method (13), known spectral profiles of pure components, 

or loadings giving the best fit after a small number of PARAFAC runs with a few 

iterations. These alternatives can be found in Bro's PARAFAC package (14). 

Determination of the number of responsive components: Several methods can be applied 

to estimate the number of responsive components (N). CORCONDIA, a useful 
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diagnostic tool which considers the PARAFAC internal parameter known as core 

consistency (15), involves the study of the structural model based on the data and the 

estimated parameters of gradually augmented models. If the addition of more 

components does not considerably improve the fit, the model could be considered as 

suitable, and the core consistency parameter significantly drops from a value of ca. 50. 

The evaluation of the PARAFAC residual error, i.e. the standard deviation of the 

elements of the array E in equation (9) (11), which decreases with increasing N until it 

stabilizes at a value compatible with the instrumental noise, can be considered as 

another useful technique. N can be established as the smallest number of components 

for which the residual error is not statistically different than the instrumental noise.  

Restriction of the least-squares fit: With the aim of obtaining physically interpretable 

profiles, the alternating least-squares PARAFAC fitting can be constrained by several 

available restrictions. For instance, non-negativity restrictions in all three modes allow 

the fit to converge to the minimum with physical meaning from the several minima 

which may exist for linearly dependent systems. 

Identification of specific components: The estimated profiles retrieved by the model 

have to be compared with those for standard solutions of the analytes of interest in order 

to identify the chemical components under investigation, since the order in which they 

are sorted can be different between samples, i.e. it depends on their contribution to the 

overall spectral variance.  

Calibration of the model to obtain absolute concentrations in unknown samples: Due to 

the fact that the three-way array decomposition provides relative values (A), absolute 

analyte concentrations can only be obtained after calibration. Calibration is carried out 

by regression of the set of standards with known analyte concentrations (contained in an 

Ical×1 vector y) against the first Ical elements of column an:  



S9 

k = y+ × [a1,n | ... | aIcal,n ]            (10) 

in which '+' implies taking the pseudo-inverse. Then, for each test sample, the unknown 

relative concentration of n has to be converted to absolute by division of the last 

element of column an [a(Ical+1)n] by the slope of the calibration graph k: 

yu = a(Ical+1)n / k             (11) 
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Figure S1. Plots for U-PLS (green circles) and N-PLS (violet circles) predicted 
concentrations as a function of the nominal values for BaP, DBA, CHR, BbF, BkF and 
BaA in validation samples, as indicated, and the corresponding elliptical joint regions (at 
95 % confidence level) for the slopes and intercepts of the regressions for U-PLS (green 
solid lines) and N-PLS (violet solid lines) predictions. Black circles in the ellipses plots 
mark the theoretical (slope = 1, intercept = 0) point. 
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Figure S2. Plots for PARAFAC predicted concentrations as a function of the nominal 
values for BaP, DBA, CHR, BbF, BkF and BaA, as indicated, in validation samples (red 
circles) and in samples with interferences (white triangles), and the corresponding 
elliptical joint regions (at 95 % confidence level) for the slopes and intercepts of the 
corresponding regressions for validation samples (red solid lines) and samples with 
interferences (red dashed lines) predictions. Black circles in the ellipses plots mark the 
theoretical (slope = 1, intercept = 0) point. 
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Figure S3. Elliptical joint region (at 95 % confidence level) for the slope and intercept of 
the regression for U-PLS/RBL prediction for all studied analytes in the real water and 
sludge samples. Red circle marks the theoretical (slope = 1, intercept = 0) point. 
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