NMR-based structural glycomics for high-throughput screening of carbohydrate-active enzyme specificity

Romain Irague,^{†,‡,F} Stéphane Massou,^{†,‡,F} Claire Moulis,^{†,‡,F} Olivier Saurel,^{\perp} Alain Milon, ^{\perp} Pierre Monsan, ^{†,‡,F} Magali Remaud-Siméon, ^{†,‡,F} Jean-Charles Portais^{*,†,‡,F}, Gabrielle Potocki-Véronèse^{*,†,‡,F}

Université de Toulouse, INSA, UPS, INP, LISBP, 135 avenue de Rangueil, F-31077 Toulouse, France, UMR5504, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, CNRS, INRA, F-31400 Toulouse, France, CNRS, UPS, Institut de Pharmacologie et de Biologie Structurale (IPBS) ; 205 rte de Narbonne, Toulouse, France

[†]Université de Toulouse

[‡]CNRS UMR 5504

^TINRA UMR 792

[⊥]Institut de Pharmacologie et de Biologie Structurale

* Corresponding authors: veronese@insa-toulouse.fr; jean-charles.portais@insa-toulouse.fr

Table of contents

Materials and Methods section	
Supporting information references	6
Figures section	7
Figure S-1.	7
Figure S-2.	
Figure S-3.	
Tables section	
Table S-1	
Table S-2	
Table S-3	

DNA manipulations. A variant library was constructed by using the ISOR method¹ from the parental gene encoding the dextransucrase DSR-S vardel Δ 4N. An *AatII* restriction site was first incorporated in the pBAD *Thio-dsrs* vardel Δ 4N-*His* plasmid² by silent mutation using inverse PCR at the position 1881 of the gene dsr-s vardel $\Delta 4N$, to generate the pBAD *Thio-dsrs* vardel $\Delta 4N$ *aatII*1881-*His* plasmid. Then, a 1130 bp cassette, corresponding to the positions 829 to 1958 of the gene dsr-s vardel Δ 4N was PCR amplified from the pBAD Thio-dsrs vardel $\Delta 4N$ aatII1881-His plasmid. Five µg of purified PCR products were digested with 1U of DNaseI in the supplied buffer at 20°C in a final volume of 50 µL. The reaction was stopped after 3 min by adding 15 µL of 0.5 M EDTA and heating 10 min at 75°C. Fragments were separated on a 2% agarose gel and those with a size between 50-100 bp were extracted using QIAquick Gel Extraction Kit (Qiagen). Gene reassembly was carried out with 100 ng of purified fragments in combination with 2 µM of degenerated oligonucleotides mix, to mutate positions D306, F353, N404, W440, D460, H463, T464 and S512 (DSR-S vardel ∆4N numbering). The reaction mixture (30 µL), containing 1U Phusion® High-Fidelity DNA Polymerase (Finnzyme) in the appropriate buffer and 0.4 mM of each dNTPs, was thermocycled according to the following program: 1 denaturation step at 98°C for 30 s; 40 cycles composed of a denaturation step at 98°C for 10 s, 6 successive hybridization steps separated by 4°C each, from 65°C to 41°C for 10 s each and an elongation step at 72°C for 20s; and finally a 2 min step at 72°C. The fully recombined cassettes were isolated from the reassembly products in a last amplification by nested PCR using the primers forK7A3nted (5'-CCACAGTGGAATGAAACTAGTGAAGATATG-3') and revK7A8nted (5'-ATGGCATCTTTACCATAGCGAACACTT-3'). The purified nested PCR products were digested with SpeI and AatII restriction enzymes and ligated into the pBAD Thio-dsrs vardel Δ 4N aatII1881-His plasmid to substitute the parental cassette. The ligation products were precipitated by adding 5 volumes of absolute ethanol and the DNA pellet was rinsed 2 times with 70% ethanol. The resuspended plasmids were transformed into E. coli TOP 10 electrocompetent cells and plated on LB agar supplemented with ampicillin (100 μ g/ml). The transformants were growth overnight (ON) at 37°C and the colonies were scraped from the plates for plasmid extraction, constituting the glucan sucrase DNA libraries.

Selection of glucansucrase active clones. The glucansucrase DNA libraries were transformed into chemiocompetent *E.coli* BL21 AI cells (Invitrogen, Carlsbad, CA) and plated onto LB agar supplemented with 100 µg/ml ampicillin. After overnight growth at 37°C, the cells were scraped, resuspended with physiological water and diluted to an OD_{600nm} of 5.10⁻⁵. The clones were subjected to selection pressure by plating them on 22x22 cm plates containing solid M9 mineral medium (42 mM Na₂HPO₄, 22 mM KH₂PO₄, 18.7 mM NH₄Cl, 8.5 mM NaCl, 2.5.10⁻² mM CaCl₂, 1 mM MgSO₄) supplemented with 100 µg/ml ampicillin, 0.02 % arabinose (wt/vol) and 146 mM sucrose as the sole carbon source. The plates were incubated 7 days at 20°C allowing enough growth and expression of the recombinant proteins. Glucansucrase positive variants were picked and transferred to 96 well microplates (NuncTM Brands Products, Roskilde, Denmark) filled with 250 µL LB per well supplemented with 100 µg/ml ampicillin using a Biomek2000 pipettor (Beckman Coulter, Brea, CA). After overnight growth at 30°C under horizontal shaking at 250 rpm, each starter cultures was duplicated into new microplates containing 250 µL LB supplemented with 100 µg/ml ampicillin and 9 % (wt/vol) glycerol. The resulting libraries were stocked at -80°C.

Screening of the active glucansucrase library

Small-scale expression and oligosaccharides synthesis. Starter cultures of active variants were inoculated from storage microplates using the QpixII automate (Genetix, Hampshire, UK). After growth for 24 h at 30°C under agitation, 50 μ L of each starter culture were used to inoculate 96-deepwell plates (ABgene, Epsom, UK) containing 500 μ L auto-inducing media ZYM-5052³ supplemented with 100 μ g/ml ampicillin and 0.1 % arabinose (wt/vol). Growth and gene expression were conducted during 48 h at 20°C in an incubator-shaker (INFORS HT, Bottmingen, Switzerland). Plates were centrifuged (5 min, 3700 g, 4°C) and the supernatants removed. Bacterial cell pellets were resuspended in 200 μ L of

0.5 mg/ml lysozyme solution, incubated 20 min at 37°C and frozen at -80°C for 12 h. After thawing at room temperature, 800 μ L of reaction mixture containing sucrose and iso-maltooligosaccharides (1 kDa, Pharmacosmos, Denmark) diluted in buffered deuterium water (50 mM NaAc, 0.05 g/L CaCl₂, pH 5.2) at a final concentration of 292 mM and 50 mM respectively, were added to each well. Enzymatic reactions were incubated 48 h at 25°C under agitation. After that, 50 μ L of TSP-d4 (trimethylsilyl)propionic acid-2,2,3,3-d4 acid) in D₂O were added to each well at a final concentration of 37 mM. The deepwell plates were then loaded onto the flow injection NMR system rack holders and subjected to 1D ¹H NMR analysis.

NMR spectroscopy. Measurements were performed by using the BEST system combining a Bruker Avance 600 MHz spectrometer with a Gilson Liquid Handler for sample train preparation and injection. A 5 mm TCi (Triple Cryocooler inverse) probe with a 120 μ L active volume cryoFIT (CryoProbe Flow Conversion System) was used. Samples were transferred to the probe with a flow rate of 2.6 ml/min and eliminated after analysis. All NMR data were acquired at 298 K and processed with IconNMR software, requiring 3 min per sample. A ZGPR pulse sequence, for presaturation of the residual water signal, was applied and experiments were carried out using the parameters described in Supplementary tables 1 and 2. The ¹H-signal from D₂O was used for automatic lock and a gradient shimming was performed on each sample. Before Fourier transformation, the FIDs were multiplied by an exponential function with a line broadening of 0.3 Hz. Spectra were processed with a 64 k zero filling, baseline correction and referenced using the TSP-d4 signal at 0 ppm.

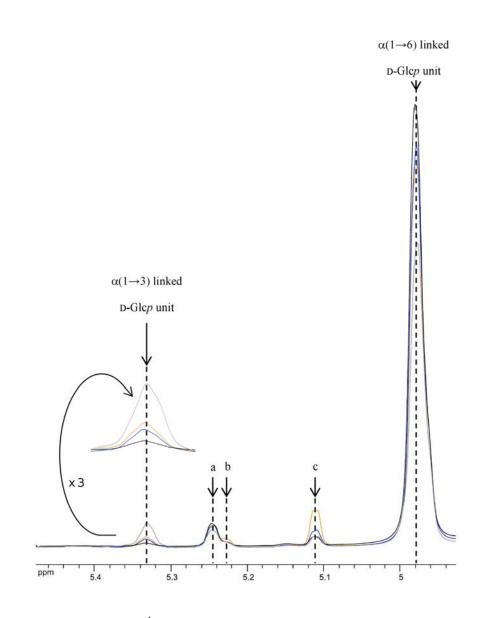
Analysis of the products synthesised by variants S512C, F353W and H463R/T464D/S512T

Enzyme production. Variants were growth in flask containing 50 ml of ZYM-5052 medium supplemented with 100 μ g/ml ampicillin and 0.1 % (wt/vol) arabinose. Growth and gene expression were conducted during 24 h at 20°C in an incubator-shaker. Bacterial cells were collected by centrifugation (15 min, 4500g, 4°C) and resuspended in 3 ml of sodium acetate buffer (50 mM NaAc,

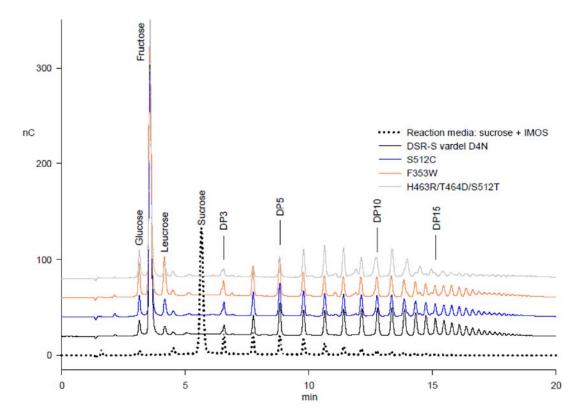
0.05 g.L⁻¹ CaCl₂, pH 5.2). Cells were sonicated and precipitated by centrifugation (3500 g, 30 min, 4° C), supernatants were used as enzymatic extracts.

Oligosaccharide and glucan synthesis. Reactions were carried out at 25°C, using 1 U.ml⁻¹ of enzymes, in sodium acetate buffer (50 mM NaAc, 0.05 g.L⁻¹ CaCl₂, pH 5.2), and 292 mM sucrose for glucan synthesis or 292 mM sucrose and 50 mM iso-maltooligosaccharides for oligosaccharide synthesis, until sucrose depletion. Reactions were stopped by 5 min incubation at 95°C.

HPLC analysis. Oligosaccharide analysis was performed by HPAEC-PAD using a Dionex Carbo-pack PA100 column (250 x 4 mm, Dionex). A gradient of sodium acetate in 150 mM NaoH was applied at 1 ml/min flow rate as following: from 0 to 300 mM in 30 min, 300 to 450 mM in 1 s, 450 to 0 mM in 5 min and 0 mM during 10 min. Detection was performed using an ED40 module with a gold electrode.


NMR spectroscopy. 1D ¹H NMR spectra were recorded on a Bruker Avance 500mHz spectrometer using a 5 mm z-gradient BBI probe at 298 K, an acquisition frequency of 500.13 MHz and a spectral width of 8012.82 Hz. Oligosaccharide samples were lyophilised and dissolved in 650 μ L of D₂O. Glucan samples were precipitated with one volume of absolute ethanol, recovered by centrifugation, washed with distilled water, lyophilised and dissolved in 650 μ L of D₂O. Chemical shifts are given in ppm by reference to TSP-d4 (δ 0 ppm).

Supporting information references


(1) Herman, A.; Tawfik, D. S. Protein Eng. Des. Sel. 2007, 20, 219-26.

(2) Moulis, C.; Arcache, A.; Escalier, P. C.; Rinaudo, M.; Monsan, P.; Remaud-Simeon, M.; Potocki-Veronese, G. *FEMS Microbiol. Lett.* **2006**, *261*, 203-10.

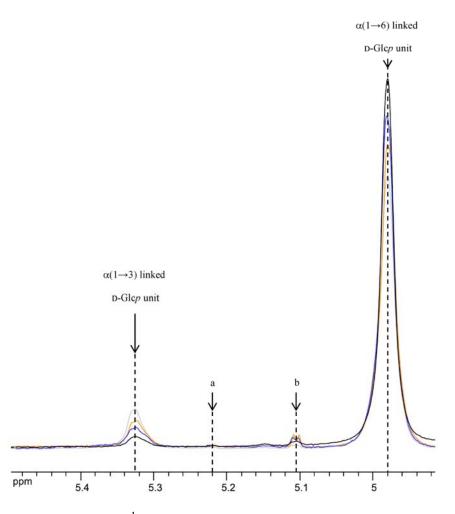

(3) Studier, F. W. Protein Expr. Purif. 2005, 41, 207-34.

Figure S-1. Superimposition of 1D ¹H NMR spectra of the oligosaccharides synthesized by DSR-S vardel Δ 4N (black) and the three mutants S512C (blue), F353W (orange) and H463R/T464D/S512T (gray). These mutants show an alteration in their capacity to synthesize $\alpha(1\rightarrow 3)$ glucosidic linkages, visible as disturbance of the relative intensities of $\alpha(1\rightarrow 3)$ linked D-Glc*p* units anomeric proton signals at 5.33 ppm. Spectra were calibrated according to the internal standard TSP-d4 present in each sample at the same concentration (¹H = 0 ppm, 37 mM). (a) α -D-Glc*p* reducing unit, (b) free D-Glc*p* unit and (c) α -D-Glc*p* (1 \rightarrow 5)-D-fru*p* (leucrose).

Figure S-2. HPAEC-PAD profiles of the reaction products obtained from sucrose and isomaltooligosaccharides by using parental DSR-S vardel Δ 4N and variants S512C, F353W and H463R/T464D/S512T. IMOS: Isomalto-oligosaccharides; DP: Polymerisation degree (referenced to IMOS used as acceptors)

Figure S-3. Superimposition of 1D ¹H NMR spectra of the α -glucans synthesized by DSR-S vardel Δ 4N (black) and the mutants S512C (blue), F353W (orange) and H463R/T464D/S512T (gray) that show an altered specificity. Spectra were calibrated according to the internal standard TSP-d4 present in each sample at the same concentration (¹H = 0 ppm, 37 mM). (a) α -D-Glc*p* reducing unit, (b) α -D-Glc*p* (1 \rightarrow 5)-D-fru*p*.

Tables section

Table S-1. Parameters for sample train preparation and automated direct injection of crude reaction

 media to the NMR spectrometer.

Sample train		Gap composition	Volume (µL)	
	1	Push solvent (H ₂ O)		
	2	Gas	10	
Trailing gaps	3	H ₂ O	35	
	4	Gas	10	
	5	Sample	500	
Leading gaps	6	Gas	10	
	7	Sample	35	
	8	Gas	10	
	9	D_2O	50	
	10	Gas	10	

Temperature	298 K
Time domain	32 k
Number of scans	16
Number of dummy scans	4
Relaxation delay	1 s
Acquisition time	1.95 s
Sweep width	8389 Hz
90° pulse lengh	8.2 µs
Presaturation radio frequency field	12.4 Hz

Table S-2. NMR measurement parameters.

The experiments have been performed on a Bruker Avance 600 MHz spectrometer equipped with a triple resonance TCi cryoProbe. A flow through BEST system coupled with a cryoProbe flow conversion system insert was used to acquire NMR spectra in a continuous mode and to link the probe to a 96 well plates injection automate.

	Negative control	DSR-S vardel Δ4N	DSR-E	ASR C-del
β -D-Fru <i>f</i> -(2↔1)-α-D-Glc <i>p</i> H1 (sucrose)	5,413			
$\alpha(1\rightarrow 3)$ linked D-Glcp unit		5,339 (1)	5,34 (1)	5,336 (10)
α -D-Glc <i>p</i> reducing unit		5,249	5,249	5,249
free D-Glcp unit		5,232	5,231	5,229
$\alpha(1\rightarrow 6)$ linked 2,6-di- <i>O</i> -substituted D-Glcp unit			5,187	
α -D-Glcp (1 \rightarrow 5)-D-frup (leucrose)		5,11	5,112	5,113
$\alpha(1\rightarrow 2)$ linked D-Glcp unit			5,09 (5)	
$\alpha(1\rightarrow 6)$ linked D-Glcp unit	4,976	4,976 (99)	4,977 (94)	4,976 (90)

Table S-3. ¹H NMR chemical shifts (in ppm) of the synthesized products.

Anomeric protons were referenced according to internal TSP-d4 (1H = 0 ppm). Numbers into brackets indicates the ratio of $\alpha(1\rightarrow x)$ linked D-Glcp units involved in the synthesized oligosaccharide primary structures, calculated as follows:

Ratio of $\alpha(1 \rightarrow x)$ linked D-Glcp units = $\frac{I_x}{I_t} \times 100$, where I_x and I_t correspond to the relative

intensities of the anomeric proton signals of $\alpha(1 \rightarrow x)$ linked D-Glcp units and the total $\alpha(1 \rightarrow)$ linked D-Glcp units respectively involved in the synthesized oligosaccharide primary structures.