A Peptide Aldehyde Microarray for High-Throughput Profiling of Cellular Events

Hao Wu,¹ Jingyan Ge,¹ Peng-Yu Yang,^{1,3} Jigang Wang,^{1,3}

Mahesh Uttamchandani,^{1,2,4} and Shao Q. Yao^{1,2,3,*}

¹Department of Chemistry, ²Department of Biological Sciences, ³NUS MedChem Program of the Life Sciences Institute, 3 Science Drive 3, National University of Singapore, Singapore 117543 and ⁴Defence Medical and Environmental Research Institute, DSO National Laboratories, 27 Medical Drive, Singapore 117510

E-Mail: chmyaosq@nus.edu.sg

Keywords: Peptide Aldehyde, Cysteine Protease, Microarray, High-throughput Screening, Inhibitor Fingerprinting

1. Materials and Methods:

1.1. General Information

All chemicals were purchased from commercial vendors and used without further purification. Aminomethyl (AM) polystyrene resin, Rink Amide resin, all Fmoc amino acids, O-benzotriazole-N,N,N',N'-tetramethyl-uronium-hexafluoro-phosphate (HBTU), N-hydroxy-benzotriazole (HOBt), triisopropylsilane (TIS) and N,N'-diisopropylcarbodiimide (DIC) used in peptide synthesis were purchased from GL Biochem (China). All reactions requiring anhydrous conditions were carried out under an argon or nitrogen atmosphere using ovendried glassware. HPLC grade solvents were used. Unless otherwise stated, all reactions were carried out at room temperature. Reaction progress was monitored by TLC on pre-coated silica plates (Merck 60 F_{254} , 0.25 μ m) and spots were visualized by UV, iodine or Cerium Ammonium Molybdate (CAM) stain. Peptide synthesis progress was monitored by ninhydrin test. Flash column chromatography was carried out using Merck 60 F_{254} 0.040-0.063 μ m silica gel.

¹H and ¹³C NMR spectra were recorded on Bruker Avance 300 MHz, or Bruker Avance 500 MHz spectrometer. Chemical shifts were reported in parts per million relative to internal standard Tetramethylsilane (Si(CH₃)₄ = 0.00 ppm) or residual solvent peaks (CHCl₃ = 7.26 ppm, DMSO- d_6 = 2.50 ppm). ¹H NMR data are reported as follows: chemical shift in ppm from the respective internal standard, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, dd= doublet of doublets, dd= doublet of doublets of doublets, dt = doublet of triplets or overlap of nonequivalent resonances), integration, coupling constant.

Mass spectra were recorded on a Finnigan LCQ mass spectrometer, a Shimadzu LC-IT-TOF spectrometer or a Shimadzu LC-ESI spectrometer. Analytical HPLC was carried out on Shimadzu LC-IT-TOF or Shimadzu LC-ESI system equipped with an autosampler, using reverse-phase Phenomenex Luna 5μ m C₁₈ 100 Å 50 × 3.0 mm columns. Preparative HPLC was carried out on Gilson preparative HPLC system using Trilution software and reverse-phase Phenomenex Luna 5μ m C₁₈₍₂₎ 100 Å 50 × 30.00 mm column. 0.1% TFA/H₂O and 0.1% TFA/acetonitrile were used as eluents for all HPLC experiments. To purify selected compounds, semi-preparative HPLC was carried out on a Phenomenex Luna C₁₈ column (250 × 21.2 mm). The flow rate was 0.6 mL/min for analytical HPLC and 8 mL/min for preparative HPLC.

Recombinant Caspases were expressed, purified and fluorescently labeled as previously described.^{1,2} Cruzain and Rhodesain were kindly provided by the McKerrow lab (UCSF). The parasites (*P. Falciparum* and *T Brucei* (BSF)) were generously donated by the groups of Kevin Tan and Cynthia He (NUS), respectively.

1.2. Peptide Aldehyde Library Synthesis.

The peptide aldehyde library was synthesized in two different sublibraries (Positional Scanning Inhibitor Libraries (PSIL) and DEVX library) by using IRORITM technology. The peptide aldehyde sequences are the followings (**Figure S1**):

Library	Component Structure	Number of sublibraries	Compounds per sublibraries
	P_4 P_3 P_2 P_1		
P ₂	Biotin –G–G–Mix–Mix–	90	324
P ₃	Biotin –G–G–Mix–Mix–	90	324
P_4	Biotin –G –G – Mix – Mix – Mix	90	324
DEVX	Biotin –G –G – D – E – V –	5	1
Mix	= Isokinetic mixture of 18 amino acids omitting c	ysteine and met	hionine

= Individual amino acid of the 18 amino acids omitting cysteine and methionine

= 5 different individual amino aldehydes

Figure S1. The diverse Peptide Aldehyde PSIL. The library was synthesized using five different amino aldehydes as P₁. *Mix* means an equimolar mixture of 18 amino acids (omitting cysteine and methionine). The library consists of P₂, P₃, and P₄ libraries, and each of them consists of $5 \times 18=90$ sublibraries. Each sub-library is composed of $18 \times 18=324$ species of tetra peptide-aldehyde inhibitors. The library totals 29,165 compound diversities.

1.2.1. General Procedure for Synthesis of Amino Aldehyde

All amino aldehyde Synthesis were based on previously published procedures (Scheme S1).^{1,3} Three methods were used for synthesis of amino aldehydes. The Fmocprotected amino acid I was initially activated using isobutylchloroformate, followed by reduction of the mixed anhydride to the amino alcohol II. Swern oxidation/ Dess-Martin oxidation gave the amino aldehyde III (Method 1&2).

Method 3: To a dried flask flushed with N_2 was added Fmoc-AA-OH (3 mmol), Nhydroxy-benzotriazole (0.51 g, 3.3 mmol), dicyclohexylcarbodiimide (0.68 g, 3.3 mmol) and 6mL DMF. After stirring for 30 min at room temperature, a solid formed and was removed by filtration. N,O-dimethylhydroxylamine (0.35 g, 3.6 mmol), N,N'-diisopropylethylamine (0.46 g, 3.6 mmol) and another 4 mL DMF were added. After 3 hr, the mixture was concentrated. The crude oil was dissolved in ethyl acetate and washed with saturated sodium bicarbonate, 0.1M hydrochloric acid and brine. The organic layer was dried (MgSO₄), concentrated and further purified yield dimethylhydroxyl amide **II** intermediate. After then, LiAlH₄ (137 mg, 3.6 mmol) was added to Fmoc-AA-dimethylhydroxyl amide **II** (2.55 mmol) in THF (10 mL) at 0 °C. The reaction was stirred for 20 min and quenched by addition of 10 mL 5% KHSO₄. After aqueous work-up, the pure product was obtained by purification with flash chromatography to give amino aldehyde **III**.

Scheme S1. Synthesis of amino aldehyde

1.2.2. Synthesis of Photo-crosslinking Probe

The synthesis was followed by section in main text, except the peptide sequence was changed to Biotin-Gly-Gly-Ala-Arg-Phe-Lys(BP)-CHO, where BP stand for benzophenone (**Scheme S2**). LC-MS was performed to ensure the peptide aldehydes were of correct mass and sufficient purity (**Section 2.2**). All further work was carried out with these peptide aldehydes without purifications.

Scheme S2. Reagents and conditions for synthesis of the peptide aldehyde probe. (a) i: Fmoc-Gly-OH, HBTU, HOBt, DIEA, DMF, 4 hrs; ii: 20% piperidine/DMF, 30 min; iii Fmoc-Thr(O'Bu)-OH, HBTU, HOBt, DIEA, DMF, 4 hrs; iv: Ac₂O, DIEA, DCM, 2 hr. (b) i: 20% piperidine/DMF, 30 min; ii: TFA/DCM (1:1) 1 hr; iii: 10% DIEA/DCM. (c) i:1%DIEA/MeOH, 2hr, 60°C. (d) Boc₂O, 1%DIEA/DCM, 2hrs. (e) i: 1% TFA/DCM, 30 min; ii: BP, HBTU, HOBt, DIEA, DMF, 4hrs. (f) i. TFA/TIS/EDT (95:5:0.1); ii. ACN:H₂O:TFA (60:40:0.1), 30 min, 60°C.

1.3. Microplate-based Screen of Sub-library against Caspase-3/-7/Cruzain/Rhodesain.

We performed screening on microplates to evaluate the relative potencies of Caspase-3/-7Cruzain/Rhodesain against the library. Assays were performed under optimized conditions as previous reported.^{1,3} The relative potencies of each inhibitor were calculated from the normalized data through the following relationship:

Inhibition Potency of
$$x = \left(1 - \frac{\text{Measured Intensity}, x}{\text{Uninhibited Intensity}}\right) \times 100\%$$

The data was presented as colored heatmaps using the treeview (http://rana.lbl.gov/ EisenSoftware.htm) software.

1.4. Microarray Work

1.4.1 Preparation of Avidin Slides.

 25×75 mm glass slides (Sigma-Aldrich) were cleaned in piranha solution (sulfuric acid/ hydrogen peroxide, 7:3). An amine functionality was incorporated onto the slides by silanization using a solution of 3% (aminopropyl)triethoxysilane in 2% water and 95% ethanol. After 1-2 hr incubation, the slides were washed with ethanol and cured at 150 °C for at least 2 hr. The resulting amine slides were incubated in a solution of 180 mM succinic anhydride in DMF for 30 min before being transferred to a boiling water bath for 2 min. The slides were rinsed with ethanol and dried under a stream of nitrogen. The carboxylic acid-derivatized slide surface was activated with a solution of 100 mM HBTU, 200 mM DIPEA, and 100 mM N-hydroxysuccinimide in DMF, thus generating the NHS-derivatized slides. These surfaces were reacted with a solution of 1 mg/mL avidin in 10 mM NaHCO₃ (*p*H 9.0) for 40 min, washed with water and air dried. The unreacted NHS group was quenched with a solution of 2 mM aspartic acid in a 0.5 M NaHCO₃ buffer (*p*H 9.0). These slides were washed with water, dried and stored at 4 °C.

1.4.2 Microarray Preparation

Stock solutions of the peptide aldehydes were prepared to ~1.0 mM in 50% DMSO with 50% PBS, and were distributed in 384-well plates. All peptide aldehydes were shown to be completely soluble in this spotting solution. Slides were spotted on an ESI SMA arrayer (Ontario, Canada) with the printhead installed with four Stealth SMP8B Micro-spotting pins (Telechem, U.S.A.). Spots generated were of approximately 350 μ m diameter and were printed with a spot-spot spacing of 375 μ m. The pins were rinsed in between samples using two cycles of wash (for 10s) and sonication (for 10s) in reservoirs containing 70% ethanol followed by drying under reduced pressure (for 10s). The slides were allowed to stand for 2 hr on the printer platform and stored at 4°C until use. Before incubation with the labeled protein, the slides were rinsed with PBS (*p*H 7.4) for 20 min and blocked with PBS containing 1.0% BSA for 1 hr.

1.4.3 Data extraction and Analysis

Microarray data was extracted using the ArrayWoRx software. Values from duplicated points were background subtracted and averaged (Duplicated spots with a standard deviation > 0.2 were rejected). The dataset was presented as colored heatmaps, using the Treeview software (http://rana.lbl.gov/EisenSoftware.htm).

<u>1.4.4 K_D analysis of Selected High Binders</u>

All peptide aldehydes were spotted onto slide where up to 4 identical sub-arrays were generated on the same microarray, so as to allow consistent/uniform screening and comparison of different protein samples, e.g. Caspases, Rhodesain, and cell lysates, to be carried out concurrently on the same platform. Using dose-dependent experiments, we extracted binding data of Caspase-3/-7 against 26 potential peptide aldehyde binders. The corresponding K_D was generated by fitting the data to the following equation, under the assumption that equilibrium is achieved during the incubation period:

Observed Fluorescence of $x = \frac{(\text{Maximum Fluorescence}, x) \times [\text{Protein Concentration}]}{K_{\text{D}} + [\text{Protein Concentration}]}$

Saturation dynamics observed when plotting *Observed Fluorescence* against the applied *Protein Concentration* were then fitted to the above equation using the Graph pad Prism software *ver* 4.03 (GraphPad, San Diego, USA) revealing the binding dissociation constant, K_D .⁴

1.5. Cell Culture and Western Blot

The human carcinoma epithelial carcinoma cell line Hela was cultured in growth media (DMEM supplemented with 10% fetal bovine serum, 100.0 mg/L streptomycin, and 100 IU/mL penicillin). Cells were maintained in a humidified atmosphere of 5% CO2 at 37 °C. To induce apoptosis, cells were incubated with 200 nM of staurosporine (STS), for overnight. Cells were detached by cell scraper, washed by cold PBS for three times, centrifuged, and keep in -80°C for further usage. Caspase-3, Calpain-1 and Cathepsin L antibodies were purchased from Abcam®. Briefly, equal amount of proteins were loaded and separated by SDS-PAGE and transferred onto PVDF membrane, blocked at room temperature for 1 hr using primary antibody blocking buffer (containing 0.1% Tween® 20) and incubated with HRP-conjugated secondary antibody for 1 hr at room temperature. At the end of this period, blots were washed thrice for 10 min each time in TBST (TBS containing 0.1% Tween® 20) and detected by chemiluminescence using ECL Plus Western Kit (Amersham, GE Healthcare, USA).

(113)	(115)	(117)	(119)								
	L3	(15)	(17)	(19)			L4	L6	LB		
J13	J15	J17	(J19)	J21	(J23)	J14	(J16)	(J18)	J20	(J22)	(J24)
		(15)	J7	(l)			(J4)	J6	(J8)	(110)	(J12)
H13	H15	H17	(H19)	H21	H23	H14	H16	H18	H20	H22	H24
H1	НЗ	H5	H7	(H9)	H11	H2	(H4)	(H6)	HB	(H10)	H12
F13	F15	F17	F19	F21	F23	F14	(F16)	(F18)	F20	F22	F24
(F1)	F3	(F5)	F7	(F9)	F11	F2	(F4)	F6	F8	F10	F12
D13	D15	D17	D19	D21	D23	D14	D16	D18	D20	D22	D24
		D5	D7		D11	D2	D4	D6	DB	D10	D12
B13	B15	B17	B19	B21	B23	B14	B16	B18	B20	B22	B24
B1	B3	B5	B7	B9	B11	B2	B4	B6	BB	B10	B12
\sim											
K13	K15		K19	K21	K23		K16	K18	K20	K22	K24
K1	KB	K5	K7	K9	К11		K4	K6	K8	К10	K12
(113)	(115)		(119)	(121)	(123)	(114)	(116)	(118)	120	(122)	(124)
				(19)			(14)	(16)			
G13	G15	G17	G19	G21	G23	G14	G16	G18	G20	G22	G24
G1	G3	G5	G7	G9	G11	G2	G4	G6	G8	G10	G12
E13	E15	E17	E19	E21	E23	E14	E16	E18	E20	E22	E24
(E1)	E3	E5	E7	E9	E11	E2	E4	E6	E8	E10	E12
C13	C15	C17	C19	C21	(23)	C14	C16	C18	C20	C22	C24
	G	(15)	(7)	(1)	C11		C4	C6	(3)	C10	C12
(A13)	A15	A17	(A19)	(A21)	A23	A14	A16	A18	A20	A22	A24
(A1)	(A3)	(A5)	(A7)	(A9)	(A11)	A2	(A4)	(A6)	AB	A10	A12

Figure S2. The spotting format of all the microarrays used in this study. Compounds were printed duplicate in horizontal direction. Decoding table see **Section 3**.

2. Results and Discussion:

2.1. ¹H and/or ¹³C-NMR data of Amino Aldehyde

Fmoc-Asp(*tBu*)-**H** (**IIIa**): yield 86%. ¹H NMR (300 MHz, CDCl₃) 9.64 (s, 1H), 7.20-7.90 (m, 8H), 4.10-4.50 (m, 4H), 2.86 (m, 2H), 1.31 (s, 9H). ¹³C NMR (60 MHz, CDCl₃) 198.7, 170.1, 156.1, 143.6, 141.2, 127.7, 127.0, 125.0, 120.0, 82.1, 67.2, 56.5, 47.0, 35.6, 27.9. (Method 1)

Fmoc-Phe-H (**IIIb**): yield 90%. ¹H NMR (300 MHz, CDCl₃) 9.64 (s, 1H), 7.10-7.90 (m, 12H), 4.10-4.60 (m, 4H), 3.15 (d, J = 6.4 Hz, 2H). ¹³C NMR (60 MHz, CDCl₃) 198.6, 155.8, 143.6, 141.3, 135.4, 129.2, 128.7, 127.7, 127.1, 127.0, 124.9, 119.9, 66.9, 61.0, 47.1, 35.3. (Method 3)

Fmoc-Lys(Boc)-H (IIIc): yield 87%. ¹H NMR (300 MHz, CDCl₃) 9.57 (s, 1H) 7.20-7.90 (m, 8H), 4.10-4.60 (m, 4H), 3.11 (b, 2H), 1.2-1.7 (m, 15H). ¹³C NMR (60 MHz, CDCl₃) 199.2, 156.1, 143.6, 141.2, 127.6, 127.0, 124.9, 119.9, 79.2, 66.9, 60.0, 47.1, 39.7, 33.8, 29.7, 28.4, 22.0. (Method 2)

Fmoc-Leu-H (**IIId**): yield: 81.0%. ¹H NMR (300 MHz, CDCl₃) 9.58 (s, 1H), 7.20-7.90 (m, 8H), 4.10-4.60 (m, 4H), 1.71 (b, 2H), 1.30 (b, 1H), 0.97 (d, J = 4.4 Hz, 6H). ¹³C NMR (60 MHz, CDCl₃) 199.6, 156.1, 143.7, 141.2, 127.6, 127.0, 124.9, 119.9, 66.8, 58.7, 47.1, 38.0, 24.5, 23.0, 21.8. (Method 3)

Fmoc-Arg(Pbf)-H (IIIe): yield: 85%. 1H NMR (300 MHz, CDCl₃): δ 9.57 (s, 1H), 7.73 (d, J = 4.2 Hz, 2H), 7.56 (d, J = 4.2 Hz, 2H), 7.36 (t, J = 4.6 Hz, 2H), 7.28 (t, J = 3.4 Hz, 2H), 6.59 (s, 1H), 5.66 (s, 1H), 5.27 (d, J = 5.6 Hz, 1H), 4.76 (br s, 1H), 4.35 (d, J = 4.2 Hz, 2H), 4.17 (t, J = 4.2 Hz, 1H), 2.92 (s, 2H), 2.07-2.00 (m, 6H), 3.61, (m, 1H), 3.15 (t, J = 6.8 Hz, 1H), 1.77-1.52 (m, 4H), 1.44 (s, 6H). (Method 2)

2.2. HPLC-MS Profiles of DEVX-CHO Sublibrary

ID	Inhibitors	M.W.	Obs Mass
H21	Biotin –GG- D-E-V-D-CHO	800.83	801.236
G22	Biotin –GG- D-E-V-F-CHO	832.92	833.271
D14	Biotin –GG- D-E-V-K-CHO	813.92	814.333
D16	Biotin –GG- D-E-V-L-CHO	798.90	799.297
D18	Biotin –GG- D-E-V-R-CHO	841.93	842.317

H21. Biotin-G-G-DEVD-CHO

G22. Biotin-G-G-DEVF-CHO

D14. Biotin-GG-DEVK-CHO

D18. Biotin-GG-DEVR-CHO

2.3. Microplate and Microarray Specificity Profiles of Pure Cysteine Proteases

Figure S3. Microplate inhibitor specificity screening of cysteine proteases determined using the complete diverse inhibitor library. The results are presented in the order of amino acid sequence identity to each protease. All assays were performed in triplicate. The height of the bars denotes mean of $Log_{10}(IC_{50})$ value for caspase-3/-7 and $Log_{10}(Enzyme Activity)$ for Cruzain and Brucipain. The *x* axis in P2/P3/P4 indicates 18 amino acids held constant at each position, designated by the single-letter code. The *x* axis in P1 indicates five amino aldehydes.

Figure S4 Kinetic reading of Ca^{2+} activated protease assay using non-/infected RBC lysates monitored by microplate reader. Curves shown in red are lysates pre-activated by $CaCl_2$ (20 μ M). Curves shown in green are those without activation of Ca^{2+} . Curves shown in blue are background readings of the fluorogenic substrate (BODIPY FL casein).

Figure S5. Microarray images of concentration-dependent experiments with Caspase-7 (top), and Caspase-3 (bottom). Data were extracted and fitted, assuming a saturation binding model, to derive the corresponding K_{D} .

Figure S6. Inhibitory binding curves of K_D analysis for selected compounds.

2.4. Cellular lysates screening on microarray

Figure S7. Cellular lysates screening on microarray including STS induced and Calcium dependent activity. (a) Hela cell was induced by STS for different lengths of time (as indicated), after which the cell lysates was collected and labeled. Subsequently, 0.16 $\mu g/\mu L$ of the lysate was applied onto each grid; (b) Calcium-dependent microarray images (0.16 $\mu g/\mu L$ of lysate on each gride); b1, Cy5-labeled apoptotic Hela cells (ApHela) induced with 20 μM Ca²⁺; b2, Cy5-labeled apoptotic Hela cells only; b3, Cy5-labeled Hela cells (Non-apoptotic) induced with 20 μM Ca²⁺; b4, Cy5-labeled Hela cells (Non-apoptotic) only. (c) Western blots of non-apoptosis/apoptosis Hela lysates, indicating the successful activation of the corresponding cysteine proteases (e.g. caspases and calpains).

Figure S8. 2D barcode representation from different cellular events based on the microarray binding profiles obtained (left) Ca^{2+} -activated Hela Cells; (right) STS-induced ApHela Cells. The RFU values were normalized from scale 0 to 500.

Figure S9. Ca^{2+} induced RBC lysate of different malaria parasite stages (Normal erythrocyte, without infection; Early-ring stage of *P. Falciparum* infected erythrocyte; Trophozoite staged erythrocyte; and Schizont staged erythrocyte). Parts of above figure were reproduced as Figure 4b in the maintext.

2.5 Pull-down results

Figure S10. Proteomic validation of protein targets by pull-down and western blotting experiments. Pull-down of Hela lysate with non-covalent compound D10 (structure shown on the right) as described in **maintext**. Pull-down proteins positively identified by immunoblotting with the corresponding antibody. Asterisks show the expected locations of pro-Caspase-3 and active Caspase-3 bands. CBB: Coomassie Brilliant Blue; PD: Pull-Down assay; Ctrl: negative pull-down (with avidin beads only); CASP3: Caspase-3.

No	ID	Description	Mass	Score	emPAI	Peptides Matched	Related References
1	IPI00295741	Cathepsin B	30781	119	0.36	11	
2	IPI00002745	Cathepsin Z	34530	87	0.20	3	
3	IPI00219018	GAPDH	36201	508	0.69	12	6a
4	IPI00645452	β-Tubulin	48135	493	1.21	21	6b
5	IPI00027493	SLC3A2	58023	119	0.12	6	6c
6	IPI00022774	VCP	89950	113	0.11	3	6d
7	IPI00013508	ACTN1	103563	105	0.06	2	6e
8	IPI00011062	CPS1	165975	95	0.04	2	6f
9	IPI00784154	HSPD1	61187	395	0.37	15	
10	IPI00021439	Actin	42052	350	0.83	25	
11	IPI00414676	HSP90AB1	83554	317	0.31	10	
12	IPI00302592	FLNA	282581	185	0.07	8	
13	IPI00550731	IGKC	26503	146	0.27	2	
14	IPI00643920	Transketolase	69382	141	0.15	4	
15	IPI00001639	KPNB1	98420	140	0.10	4	
16	IPI00793443	IPO5	125032	118	0.08	3	
17	IPI00169383	PGK1	44985	92	0.24	3	
18	IPI00339226	FN1	243861	90	0.03	3	
19	IPI00219217	LDHB	36900	83	0.29	6	
20	IPI00302925	CCT8	60011	78	0.05	2	

Table S1. Proteins identified by pull-down and mass spectrometry. (Score is greater than 70)

3. References:

- Ng, S.L.; Yang, P.-Y.; Chen, K.Y.-T.; Srinivasan, R.; Yao, S.Q. " "Click" Synthesis of Small Molecule Inhibitors Targeting Caspases", *Org. Biomol. Chem.*, 2008, 6, 844 – 847.
- Uttamchandani, M.; Lee, W.L.; Wang, J.; Yao, S. Q. "Inhibitor Fingerprinting of Matrix Metalloproteases Using a Combinatorial Peptide Hydroxamate Library", *J. Am. Chem. Soc.*, 2007, 129, 13110 – 13117.
- Yang, P-Y.; Wu, H.; Lee, M.Y.; Xu, A.; Srinivasan, R.; Yao, S.Q. "Solid-Phase Synthesis of Azidomethylene Inhibitors Targeting Cysteine Proteases", Org. Lett., 2008, 10, 1881 – 1884.
- Lu, C.H.S.; Sun, H.; Bakar, F.B.A.; Uttamchandani, M.; Zhou, W.; Liou, Y.-C.; Yao, S.Q. "Rapid Affinity-Based Fingerprinting of 14-3-3 Isoforms Using A Combinatorial Peptide Microarray", *Angew. Chem. Intl. Ed.*, 2008, 47, 7438 – 7441.
- (a) Denault, J.B.; Salvesen, G.S. "Caspases: Keys in the Ignition of Cell Death", *Chem. Rev.*, 2002, 102, 4489 4499, (b) www.merops.sanger.ac.uk, (c) Choe, Y.; Leonetti, F.; Greenbaum, D.C.; Lecaille F.; Bogyo, M.; Bromme, D.; Ellman, J.A.; Craik, C.S. "Substrate Profiling of Cysteine Proteases Using a Combinatorial Peptide Library Identifies Functionally Unique Specificities", *J. Biol. Chem.*, 2006, 281, 12824 12832.
- (a) Nakajima, H.; Amano, W.; Fujita, A.; Fukuhara, A.; Azuma, Y.-T.; Hata, F.; Inui, T.; Takeuchi, T. J. Biol. Chem. 2007, 282, 26562–26574. (b) Ludueña, R. F.; Banerjee, A.; Khan, I. A. Curr. Opin. Cell Biol. 1992, 4, 53–57. (c) Fort, J.; de la Ballina, L. R.; Burghardt, H. E.; Ferrer-Costa, C.; Turnay, J.; Ferrer-Orta, C.; Uson, I.; Zorzano, A.; Fernandez-Recio, J.; Orozco, M.; Lizarbe, M. A.; Fita, I.; Palacín, M. J. Biol. Chem. 2007, 282, 31444–31452. (d) Noguchi, M.; Takata, T.; Kimura, Y.; Manno, A.; Murakami, K.; Koike, M.; Ohizumi, H.; Hori, S.; Kakizuka, A. J. Biol. Chem. 2005, 280, 41332–41341. (e) Harper, B. D.; Beckerle, M. C.; Pomies, P. Biochem. J. 2000, 350, 269–274. (f) Corvi, M. M.; Soltys, C.-L. M.; Berthiaume, L. G. J. Biol. Chem. 2001, 276, 45704–45712.

ID	Sequence
A01	Biotin-GG-IXXF-CHO
A02	Biotin-GG-XXAD-CHO
A03	Biotin-GG-KXXF-CHO
A04	Biotin-GG-XXDD-CHO
A05	Biotin-GG-LXXF-CHO
A06	Biotin-GG-XXED-CHO
A07	Biotin-GG-XRXK-CHO
A08	Biotin-GG-XXFD-CHO
A09	Biotin-GG-PXXF-CHO
A10	Biotin-GG-XXGD-CHO
A11	Biotin-GG-XXFK-CHO
A12	Biotin-GG-XXHD-CHO
A13	Biotin-GG-XXAK-CHO
A14	Biotin-GG-XXRD-CHO
A15	Biotin-GG-XXDK-CHO
A16	Biotin-GG-XXSD-CHO
A17	Biotin-GG-XXEK-CHO
A18	Biotin-GG-XXTD-CHO
A19	Biotin-GG-QXXF-CHO
A20	Biotin-GG-XXDR-CHO
A21	Biotin-GG-XXGK-CHO
A22	Biotin-GG-XXWD-CHO
A23	Biotin-GG-XXHK-CHO
A24	Biotin-GG-XXYD-CHO
B01	Biotin-GG-AXXK-CHO
B02	Biotin-GG-IXXK-CHO
B03	Biotin-GG-DXXK-CHO
B04	Biotin-GG-KXXK-CHO
B05	Biotin-GG-EXXK-CHO
B06	Biotin-GG-LXXK-CHO
B07	Biotin-GG-FXXK-CHO
B08	Biotin-GG-NXXK-CHO

4. Microarray Decoding Table:

ID	Sequence
B09	Biotin-GG-GXXK-CHO
B10	Biotin-GG-PXXK-CHO
B11	Biotin-GG-HXXK-CHO
B12	Biotin-GG-QXXK-CHO
B13	Biotin-GG-RXXK-CHO
B14	Biotin-GG-XXAL-CHO
B15	Biotin-GG-SXXK-CHO
B16	Biotin-GG-XXDL-CHO
B17	Biotin-GG-TXXK-CHO
B18	Biotin-GG-XXEL-CHO
B19	Biotin-GG-VXXK-CHO
B20	Biotin-GG-XXFL-CHO
B21	Biotin-GG-WXXK-CHO
B22	Biotin-GG-XXGL-CHO
B23	Biotin-GG-YXXK-CHO
B24	Biotin-GG-XXHL-CHO
C01	Biotin-GG-XAXF-CHO
C02	Biotin-GG-XIXF-CHO
C03	Biotin-GG-XDXF-CHO
C04	Biotin-GG-XKXF-CHO
C05	Biotin-GG-XEXF-CHO
C06	Biotin-GG-XXIF-CHO
C07	Biotin-GG-XFXF-CHO
C08	Biotin-GG-XNXF-CHO
C09	Biotin-GG-XGXF-CHO
C10	Biotin-GG-XXKF-CHO
C11	Biotin-GG-XHXF-CHO
C12	Biotin-GG-XQXF-CHO
C13	Biotin-GG-XRXF-CHO
C14	Biotin-GG-AXXF-CHO
C15	Biotin-GG-XSXF-CHO
C16	Biotin-GG-DXXF-CHO
C17	Biotin-GG-XTXF-CHO
C18	Biotin-GG-EXXF-CHO

ID	Sequence
C19	Biotin-GG-XVXF-CHO
C20	Biotin-GG-XXNF-CHO
C21	Biotin-GG-XWXF-CHO
C22	Biotin-GG-XXPF-CHO
C23	Biotin-GG-XYXF-CHO
C24	Biotin-GG-XXQF-CHO
D01	Biotin-GG-XXIL-CHO
D02	Biotin-GG-XQXD-CHO
D03	Biotin-GG-XXKL-CHO
D04	Biotin-GG-XSXD-CHO
D05	Biotin-GG-XXLL-CHO
D06	Biotin-GG-XTXD-CHO
D07	Biotin-GG-XWXD-CHO
D08	Biotin-GG-XYXD-CHO
D09	Biotin-GG-AXXD-CHO
D10	Biotin-GG-DXXD-CHO
D11	Biotin-GG-NXXD-CHO
D12	Biotin-GG-PXXD-CHO
D13	Biotin-GG-QXXD-CHO
D14	Biotin-GG-DEVK-CHO
D15	Biotin-GG-XDXL-CHO
D16	Biotin-GG-DEVL-CHO
D17	Biotin-GG-XEXD-CHO
D18	Biotin-GG-DEVR-CHO
D19	Biotin-GG-XFXL-CHO
D20	Biotin-GG-XEXL-CHO
D21	Biotin-GG-XGXL-CHO
D22	Biotin-GG-DEVY-CHO
D23	Biotin-GG-XHXL-CHO
D24	Biotin-GG-DEVH-CHO
E01	Biotin-GG-XXID-CHO
E02	Biotin-GG-RXXD-CHO
E03	Biotin-GG-XXKD-CHO
E04	Biotin-GG-SXXD-CHO

ID	Sequence
E05	Biotin-GG-XXLD-CHO
E06	Biotin-GG-TXXD-CHO
E07	Biotin-GG-XXND-CHO
E08	Biotin-GG-VXXD-CHO
E09	Biotin-GG-XXPD-CHO
E10	Biotin-GG-WXXD-CHO
E11	Biotin-GG-XXQD-CHO
E12	Biotin-GG-YXXD-CHO
E13	Biotin-GG-XAXD-CHO
E14	Biotin-GG-XLXF-CHO
E15	Biotin-GG-XDXD-CHO
E16	Biotin-GG-XPXF-CHO
E17	Biotin-GG-DEVQ-CHO
E18	Biotin-GG-XXLF-CHO
E19	Biotin-GG-XFXD-CHO
E20	Biotin-GG-FXXF-CHO
E21	Biotin-GG-XGXD-CHO
E22	Biotin-GG-GXXF-CHO
E23	Biotin-GG-XHXD-CHO
E24	Biotin-GG-HXXF-CHO
F01	Biotin-GG-XRXL-CHO
F02	Biotin-GG-AXXL-CHO
F03	Biotin-GG-XSXL-CHO
F04	Biotin-GG-DXXL-CHO
F05	Biotin-GG-XTXL-CHO
F06	Biotin-GG-EXXL-CHO
F07	Biotin-GG-XVXL-CHO
F08	Biotin-GG-FXXL-CHO
F09	Biotin-GG-XWXL-CHO
F10	Biotin-GG-GXXL-CHO
F11	Biotin-GG-XYXL-CHO
F12	Biotin-GG-HXXL-CHO
F13	Biotin-GG-IXXL-CHO
F14	Biotin-GG-RXXL-CHO

ID	Sequence
F15	Biotin-GG-KXXL-CHO
F16	Biotin-GG-SXXL-CHO
F17	Biotin-GG-LXXL-CHO
F18	Biotin-GG-TXXL-CHO
F19	Biotin-GG-NXXL-CHO
F20	Biotin-GG-VXXL-CHO
F21	Biotin-GG-PXXL-CHO
F22	Biotin-GG-WXXL-CHO
F23	Biotin-GG-QXXL-CHO
F24	Biotin-GG-YXXL-CHO
G01	Biotin-GG-XIXD-CHO
G02	Biotin-GG-XRXD-CHO
G03	Biotin-GG-XKXD-CHO
G04	Biotin-GG-XXSL-CHO
G05	Biotin-GG-XLXD-CHO
G06	Biotin-GG-XXTL-CHO
G07	Biotin-GG-XNXD-CHO
G08	Biotin-GG-XVXD-CHO
G09	Biotin-GG-XPXD-CHO
G10	Biotin-GG-XXNL-CHO
G11	Biotin-GG-XXRL-CHO
G12	Biotin-GG-XXVL-CHO
G13	Biotin-GG-XXPL-CHO
G14	Biotin-GG-IXXD-CHO
G15	Biotin-GG-HXXD-CHO
G16	Biotin-GG-KXXD-CHO
G17	Biotin-GG-EXXD-CHO
G18	Biotin-GG-LXXD-CHO
G19	Biotin-GG-FXXD-CHO
G20	Biotin-GG-XXQL-CHO
G21	Biotin-GG-GXXD-CHO
G22	Biotin-GG-DEVF-CHO
G23	Biotin-GG-XXAR-CHO
G24	Biotin-GG-XAXL-CHO

ID	Sequence
H01	Biotin-GG-DEVE-CHO
H02	Biotin-GG-XXER-CHO
H03	Biotin-GG-DEVW-CHO
H04	Biotin-GG-XXFR-CHO
H05	Biotin-GG-XXWL-CHO
H06	Biotin-GG-XXGR-CHO
H07	Biotin-GG-XXYL-CHO
H08	Biotin-GG-XXHR-CHO
H09	Biotin-GG-XIXL-CHO
H10	Biotin-GG-XXRR-CHO
H11	Biotin-GG-XKXL-CHO
H12	Biotin-GG-XXSR-CHO
H13	Biotin-GG-XLXL-CHO
H14	Biotin-GG-XXTR-CHO
H15	Biotin-GG-XNXL-CHO
H16	Biotin-GG-XXVR-CHO
H17	Biotin-GG-XPXL-CHO
H18	Biotin-GG-XXWR-CHO
H19	Biotin-GG-XQXL-CHO
H20	Biotin-GG-XXYR-CHO
H21	Biotin-GG-DEVD-CHO
H22	Biotin-GG-XXIR-CHO
H23	Biotin-GG-XXVD-CHO
H24	Biotin-GG-XXKR-CHO
I01	Biotin-GG-XXAF-CHO
I02	Biotin-GG-RXXF-CHO
I03	Biotin-GG-XXDF-CHO
I04	Biotin-GG-SXXF-CHO
I05	Biotin-GG-XXEF-CHO
I06	Biotin-GG-TXXF-CHO
I07	Biotin-GG-XXFF-CHO
I08	Biotin-GG-VXXF-CHO
109	Biotin-GG-XXGF-CHO
I10	Biotin-GG-WXXF-CHO

ID	Sequence
I11	Biotin-GG-XXHF-CHO
I12	Biotin-GG-YXXF-CHO
I13	Biotin-GG-XXRF-CHO
I14	Biotin-GG-XXIK-CHO
I15	Biotin-GG-XXSF-CHO
I16	Biotin-GG-XXKK-CHO
I17	Biotin-GG-XXTF-CHO
I18	Biotin-GG-XXLK-CHO
I19	Biotin-GG-XXVF-CHO
I20	Biotin-GG-XXNK-CHO
I21	Biotin-GG-XXWF-CHO
I22	Biotin-GG-XXPD-CHO
I23	Biotin-GG-XXYF-CHO
I24	Biotin-GG-XXQD-CHO
J01	Biotin-GG-XIXR-CHO
J02	Biotin-GG-XRXR-CHO
J03	Biotin-GG-XKXR-CHO
J04	Biotin-GG-XSXR-CHO
J05	Biotin-GG-XLXR-CHO
J06	Biotin-GG-XTXR-CHO
J07	Biotin-GG-XNXR-CHO
J08	Biotin-GG-XVXR-CHO
J09	Biotin-GG-XPXR-CHO
J10	Biotin-GG-XWXR-CHO
J11	Biotin-GG-XQXR-CHO
J12	Biotin-GG-XYXR-CHO
J13	Biotin-GG-AXXR-CHO
J14	Biotin-GG-IXXR-CHO
J15	Biotin-GG-DXXR-CHO
J16	Biotin-GG-KXXR-CHO
J17	Biotin-GG-EXXR-CHO
J18	Biotin-GG-LXXR-CHO
J19	Biotin-GG-FXXR-CHO
J20	Biotin-GG-NXXR-CHO

ID	Sequence
J21	Biotin-GG-GXXR-CHO
J22	Biotin-GG-PXXR-CHO
J23	Biotin-GG-HXXR-CHO
J24	Biotin-GG-QXXR-CHO
K01	Biotin-GG-XXRK-CHO
K02	Biotin-GG-XAXK-CHO
K03	Biotin-GG-XXSK-CHO
K04	Biotin-GG-XDXK-CHO
K05	Biotin-GG-XXTK-CHO
K06	Biotin-GG-XEXK-CHO
K07	Biotin-GG-XXVK-CHO
K08	Biotin-GG-XFXK-CHO
K09	Biotin-GG-XXWK-CHO
K10	Biotin-GG-XGXK-CHO
K11	Biotin-GG-XXYK-CHO
K12	Biotin-GG-XHXK-CHO
K13	Biotin-GG-XIXK-CHO
K14	Biotin-GG-NXXF-CHO
K15	Biotin-GG-XKXK-CHO
K16	Biotin-GG-XSXK-CHO
K17	Biotin-GG-XLXK-CHO
K18	Biotin-GG-XTXK-CHO
K19	Biotin-GG-XNXK-CHO
K20	Biotin-GG-XVXK-CHO
K21	Biotin-GG-XPXK-CHO
K22	Biotin-GG-XWXK-CHO
K23	Biotin-GG-XQXK-CHO
K24	Biotin-GG-XYXK-CHO
L01	Biotin-GG-XXLR-CHO
L02	Biotin-GG-TXXR-CHO
L03	Biotin-GG-XXNR-CHO
L04	Biotin-GG-VXXR-CHO
L05	Biotin-GG-XXPR-CHO
L06	Biotin-GG-WXXR-CHO

ID	Sequence
L07	Biotin-GG-XXQR-CHO
L08	Biotin-GG-YXXR-CHO
L09	Biotin-GG-XAXR-CHO
L10	Biotin-GG-XEXR-CHO
L11	Biotin-GG-XDXR-CHO

ID	Sequence
L12	Biotin-GG-XFXR-CHO
L13	Biotin-GG-XGXR-CHO
L15	Biotin-GG-XHXR-CHO
L17	Biotin-GG-RXXR-CHO
L19	Biotin-GG-SXXR-CHO