Supporting Information

For

Formation of a Hybrid Compound Composed of a Saddle-Distorted Tin(IV)-Porphyrin and a Keggin-Type Heteropolyoxometalate to Undergo Intramolecular Photoinduced Electron Transfer

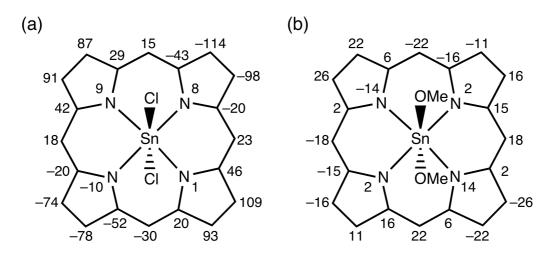
Atsutoshi Yokoyama,[†] Takahiko Kojima,^{‡,} * Kei Ohkubo,[†] Motoo Shiro,[§] and Shunichi Fukuzumi^{†,£,*}

Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, X-ray Research Laboratory, Rigaku Corporation, 3-9-12 Matsubara, Akishima-shi, Tokyo 196-68666, Japan, and Department of Bioinspired Chemistry, Ewha Womans University, Seoul 120-750, Korea

[†] Osaka University.

[‡] University of Tsukuba.

[§] Rigaku Corporation


[£]Ewha Womans University.

* To whom correspondence should be addressed. E-mail: <u>kojima@chem.tsukuba.ac.jp</u>, <u>fukuzumi@chem.eng.osaka-u.ac.jp</u> **X-ray Crystallography. X-ray crystallography on 1 and 2**: Refinements on F^2 were performed for all reflections. The weighted *R* factor (R_w) and goodness of fit (*S*) are based on F^2 , and the conventional *R* factor (*R*) on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ was used only for calculating *R* factors (gt) etc. and was not relevant to the choice of reflections for refinement. *R* factors based on F^2 are statistically about twice as large as those based on *F*, and *R* factors based on all data are even larger. Since the methanol molecule in **2** was disordered, its carbon atom was refined isotropically with occupancies of 0.5. Crystallographic data are summarized in Table S1.

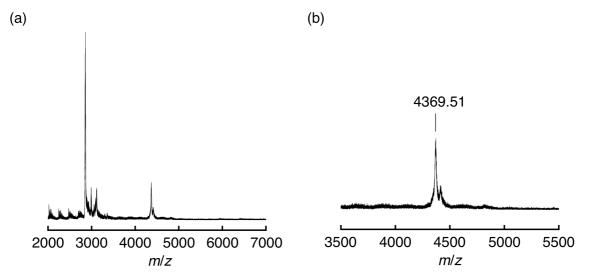

	1	2
Formula	$C_{97}H_{69}Cl_5N_4O_4Sn$	$C_{100}H_{80}N_4O_8Sn$
F. W.	1650.59	1584.44
Crystal system	monoclinic	triclinic
Space group	$P2_{1}/n$	<i>P</i> –1
<i>Т</i> , К	183	180
a, Å	25.106(7)	11.4345(5)
b, Å	16.854(4)	12.6971(7)
<i>c</i> ,Å	37.347(9)	14.1793(8)
α , deg	_	103.943(2)
β , deg	92.653(3)	101.911(2)
γ, deg	_	93.635(2)
V, Å ³	15786(7)	1941.0(2)
Ζ	8	1
No. of reflections	104400	15908
No. of observations	28696	8777
No. of parameters	2016	511
$R1^{a} (I > 2.0 \sigma(I))$	0.087	0.039
$R_{\rm w}^{\ b}$ (all data)	0.182	0.097
GOF	1.096	1.080

Table S1. X-ray Crystallographic Data for 1 and 2

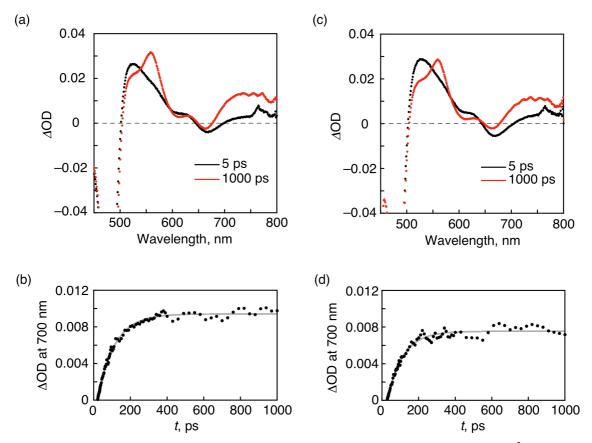

 ${}^{a}R1 = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|.$ ${}^{b}R_{w} = [\sum (w(F_{o}{}^{2} - F_{c}{}^{2})^{2}) / \sum w(F_{o}{}^{2})^{2}]^{1/2}.$

Figure S1. The displacement of each atom from the least-squares mean plane of 24 atoms of the TMPP(Ph)_8^{2-} moiety in (a) **1** and (b) **2** (in unit of 0.01 Å).

Figure S2. Full range of MALDI-TOF-MS spectrum of conglomerate made of **2** and **3** (m/z = 4369.51) in CH₂Cl₂ (linear negative mode, matrix = α -cyano-4-hydroxycinnamic acid (CHCA)).

Figure S3. (a) Femtosecond transient absorption spectra of **1** (4.0×10^{-5} M) at 5 (black) and 1000 ps (red) after laser excitation at 430 nm and (b) time profile of Δ OD at 700 nm. (c) Femtosecond transient absorption spectra of **1** (4.0×10^{-5} M) with **3** (1.2×10^{-2} M) at 5 (black) and 1000 ps (red) after laser excitation at 430 nm and (b) time profile of Δ OD at 700 nm.