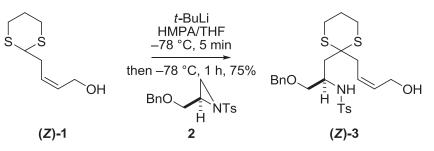
Supporting Information

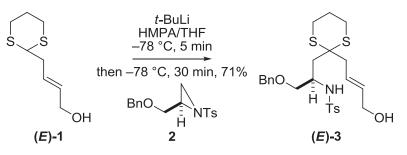
Stereoselective Synthesis of 2,6*-cis-* and 2,6*-trans-*Piperidines through Organocatalytic Aza-Michael Reactions: A Facile Synthesis of (+)-Myrtine and (–)-Epimyrtine


Yongcheng Ying, Hyoungsu Kim, and Jiyong Hong* Department of Chemistry, Duke University, Durham, NC 27708

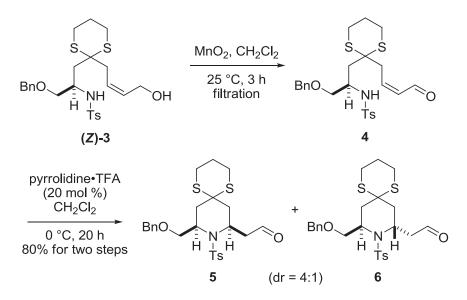
* To whom correspondence should be addressed.

Tel: 919-660-1545, Fax: 919-660-1605, E-mail: jiyong.hong@duke.edu

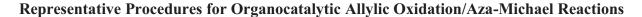
Contents	Page Number
Experimental Section	S2
Copies of ¹ H and ¹³ C NMR	S30

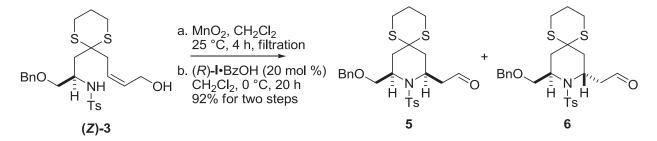

(Z)-Allyl Alcohol (Z)-3

To a cooled (-78 °C) solution of (Z)-1 (100 mg, 0.53 mmol) in HMPA/THF (1:10, 11 mL) was added dropwise t-BuLi (0.63 mL, 1.7 M in pentane, 1.07 mmol), and the resulting mixture was stirred for 5 min before aziridine 2^1 (167 mg, 0.53 mmol) was added. After stirred for 1 h at -78 °C, the reaction mixture was quenched with saturated aqueous NH₄Cl and diluted with EtOAc. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 2/1 to 1/1) to afford (Z)-3 (201 mg, 75%): $[\alpha]_{D}^{26} = +11.5$ (c 0.92, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 8.0 Hz, 2H), 7.16-7.36 (m, 7H), 5.74 (ddd, J = 11.2, 7.2, 6.4 Hz, 1H), 5.60 (ddd, J = 1.2, 7.2, 6.4 Hz, 1H)11.2, 7.2, 6.4 Hz, 1H), 5.51 (d, J = 8.0 Hz, 1H), 4.29 (AB, $J_{AB} = 12.0$ Hz, $\Delta v_{AB} = 14.8$ Hz, 2H), 4.15-4.22 (m, 1H), 4.03-4.10 (m, 1H), 3.71-3.78 (m, 1H), 3.36 (dd, J = 10.0, 3.2 Hz, 1H), 3.15(dd, J = 10.0, 4.8 Hz, 1H), 2.61-2.83 (m, 5H), 2.55 (dd, J = 15.6, 6.8 Hz, 1H), 2.38 (s, 3H), 2.31(dd, J = 15.2, 4.8 Hz, 1H), 2.10 (dd, J = 15.6, 6.8 Hz, 1H), 1.77–1.93 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 137.8, 137.5, 131.8, 129.5, 128.2, 127.7, 127.6, 127.0, 125.5, 72.9, 71.8, 58.2, 51.4, 51.1, 40.0, 36.3, 26.0, 25.8, 24.6, 21.4; IR (neat) 3273, 1156, 1090, 668 cm⁻¹; HRMS (FAB) found 525.1902 [calcd for $C_{25}H_{37}N_2O_4S_3$ (M+NH₄)⁺ 525.1910].

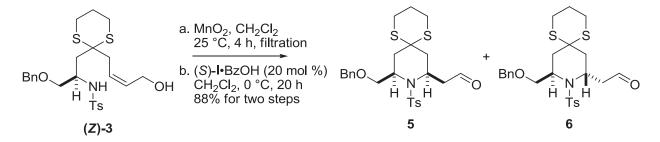

¹Righi, P; Scardovi, N; Marotta, E; ten Holte, P; Zwanenburg, B. Org. Lett. 2002, 4, 497–500.

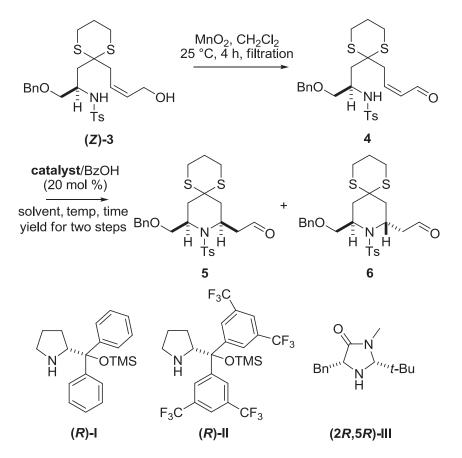
(E)-Allyl Alcohol (E)-3


To a cooled (-78 °C) solution of (E)-1 (150 mg, 0.79 mmol) in HMPA/THF (1:10, 11 mL) was added dropwise t-BuLi (0.93 mL, 1.7 M in pentane, 1.58 mmol), and the resulting mixture was stirred for 5 min before aziridine 2 (167 mg, 0.53 mmol) was added. After stirred for 0.5 h at -78 °C, the reaction mixture was quenched with saturated aqueous NH₄Cl and diluted with EtOAc. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 2/1 to 1/1) to afford (*E*)-**3** (285 mg, 71%): $[\alpha]_{D}^{26} = +22.5$ (*c* 2.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 8.4 Hz, 2H), 7.20–7.34 (m, 7H), 5.63–5.75 (m, 2H), 5.58 (d, J = 8.0 Hz, 1H), 4.29 (AB, $J_{AB} = 12.0$ Hz, $\Delta v_{AB} = 18.4$ Hz, 2H), 4.04 (d, J = 4.4 Hz, 1H), 3.68–3.76 (m, 1H), 3.45 (dd, J = 4.4 Hz, 1H), 3.45 (dd, J = 4.4 Hz, 1H), 3.68–3.76 (m, 1H), 3.45 (dd, J = 4.4 Hz, 1H), 3.68–3.76 (m, 1H), 3.45 (dd, J = 4.4 Hz, 1H), 3.68–3.76 (m, 1H), 3.45 (dd, J = 4.4 Hz, 1H), 3.68–3.76 (m, 1H), 3.45 (dd, J = 4.4 Hz, 1H), 3.68–3.76 (m, 1H), 3.45 (dd, J = 4.4 Hz, 1H), 3.68–3.76 (m, 1H), 3.45 (dd, J = 4.4 Hz, 1H), 3.68–3.76 (m, 1H), 3.45 (dd, J = 4.4 Hz, 1H), 3.68–3.76 (m, 1H), 3.45 (dd, J = 4.4 Hz, 1H), 3.68–3.76 (m, 1H), 3.68–3.76 9.6, 3.6 Hz, 1H), 3.22 (dd, J = 9.6, 5.2 Hz, 1H), 2.60–2.82 (m, 4H), 2.54 (dd, J = 15.6, 6.4 Hz, 1H), 2.43 (dd, J = 15.2, 6.4 Hz, 1H), 2.38 (s, 3H), 2.32 (dd, J = 15.2, 5.2 Hz, 1H), 2.11 (dd, J = 15.2, 5.2 Hz, 1H), 3.11 (dd, J = 15.2, 5.2 Hz, 1H), 5.11 (dd, J = 15.2, 5.2 Hz, 1H), 5.2 Hz, 1H), 5.2 Hz, 1H, 5.2 Hz, 1H), 5.2 Hz, 1H 15.6, 6.8 Hz, 1H), 1.76–1.94 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 137.8, 137.5, 133.5, 129.5, 128.2, 127.6, 127.0, 125.7, 72.9, 71.8, 63.1, 51.2, 51.0, 41.3, 39.9, 26.0, 25.8, 24.6, 21.4; IR (neat) 3289, 1597, 1326, 1092 cm⁻¹; HRMS (FAB) found 525.1901 [calcd for C₂₅H₃₇N₂O₄S₃ $(M+NH_4)^+$ 525.1910].

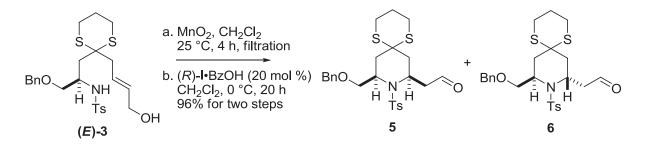

Secondary Amine-Catalyzed Aza-Michael Reaction

To a stirred solution of (*Z*)-3 (10.0 mg, 0.0197 mmol) in CH₂Cl₂ (1.0 mL, 0.02 M) was added MnO₂ (34.3mg, 0.394 mmol) at 25 °C. After stirred for 3 h at the same temperature, the reaction mixture was then filtered through celite and concentrated *in vacuo*. The crude α , β -unsaturated aldehyde **4** was employed in the next step without further purification: ¹H NMR (400 MHz, CDCl₃) δ 9.90 (d, *J* = 7.6 Hz, 1H), 7.69 (d, *J* = 7.6 Hz, 2H), 7.19–7.34 (m, 7H), 6.68 (ddd, *J* = 11.2, 7.2, 4.0 Hz, 1H), 6.01 (ddd, *J* = 11.2, 8.0, 7.6 Hz, 1H), 5.22 (d, *J* = 8.4 Hz, 1H), 4.33 (s, 2H), 3.70 (brs, 1H), 3.41 (dd, *J* = 9.2, 2.8 Hz, 1H), 3.20 (dd, *J* = 9.2, 4.8 Hz, 1H), 3.08 (dd, *J* = 16.8, 7.6 Hz, 1H), 2.96 (dd, *J* = 16.4, 7.2 Hz, 1H), 2.78–2.85 (m, 1H), 2.61–2.72 (m, 3H), 2.38 (s, 3H), 2.36 (dd, *J* = 15.2, 4.8 Hz, 1H), 2.12 (dd, *J* = 15.2, 6.8 Hz, 1H), 1.74–1.96 (m, 2H). To a stirred solution of α , β -unsaturated aldehyde **4** (10.0 mg, 0.0197 mmol) in CH₂Cl₂ (1.0 mL, 0.02 M) was added pyrrolidine TFA (0.1 mL, 7.3 mg pyrrolidine TFA dissolved in 1.0 mL CH₂Cl₂) at 0 °C. After stirred for 20 h at the same temperature, the reaction mixture was concentrated and purified by column chromatography (silica gel, hexanes/EtOAc, 3/1) to afford an inseparable mixture of 2,6-*cis*-piperidine **5** and 2,6-*trans*-piperidine **6** (8.0 mg, 80%, **5**:**6** = 4:1) as a colorless oil: [**For 5**] [α]²⁸_D = +10.3 (*c* 0.32, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ

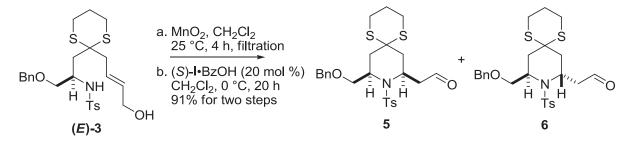

9.72 (s, 1H), 7.70 (d, J = 8.0 Hz, 2H), 7.26–7.37 (m, 7H), 4.57 (AB, $J_{AB} = 11.6$ Hz, $\Delta v_{AB} = 20.4$ Hz, 2H), 4.46–4.53 (m, 1H), 4.15–4.22 (m, 1H), 3.97 (dd, J = 8.8, 8.8 Hz, 1H), 3.72 (dd, J = 8.8, 5.8 Hz, 1H), 3.72 (dd, J = 8.8, 5.84.4 Hz, 1H), 3.23 (dd, J = 18.0, 8.8 Hz, 1H), 3.08 (dd, J = 18.0, 4.4 Hz, 1H), 2.71–2.86 (m, 4H), 2.51 (dd, J = 15.2, 4.0 Hz, 1H), 2.41 (s, 3H), 2.19 (dd, J = 14.8, 3.6 Hz, 1H), 1.94 (dd, J = 14.8, 6.4 Hz, 1H), 1.83–1.94 (m, 2H), 1.79 (dd, J = 15.2, 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 200.2, 143.7, 137.9, 136.7, 129.8, 128.4, 127.9, 127.7, 127.2, 73.3, 73.0, 51.6, 46.8, 44.3, 38.6, 35.3, 26.8, 26.7, 24.6, 21.5; IR (neat) 1721, 1327, 1098 cm⁻¹; HRMS (FAB) found 506.1482 [calcd for $C_{25}H_{32}NO_4S_3$ (M+H)⁺ 506.1488]. [For 6] ¹H NMR (400 MHz, CDCl₃) δ 9.50 (s, 1H), 7.73 (d, *J* = 8.4 Hz, 2H), 7.26–7.37 (m, 5H), 7.14 (d, *J* = 8.8 Hz, 2H), 4.51 (AB, *J*_{AB} = 11.6 Hz, $\Delta v_{AB} = 24.4 \text{ Hz}, 2\text{H}$, 4.37–4.47 (m, 2H), 4.03 (dd, J = 9.6, 7.2 Hz, 1H), 3.77 (dd, J = 10.0, 6.8Hz, 1H), 3.12 (dd, J = 18.4, 6.4 Hz, 1H), 2.97 (dd, J = 18.4, 8.0 Hz, 1H), 2.72-2.90 (m, 4H), 2.35 (s, 3H), 2.26 (dd, J = 6.4, 5.6 Hz, 2H), 2.21 (d, J = 3.6 Hz, 1H), 2.20 (d, J = 6.8 Hz, 1H), 1.86–2.00 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 198.9, 143.3, 139.4, 138.0, 129.5, 128.3, 127.8, 127.7, 127.6, 73.0, 70.6, 54.5, 47.7, 47.5, 46.5, 40.7, 37.8, 26.33, 26.29, 24.9, 21.5; IR (neat) 1722, 1326, 1305, 1085 cm⁻¹; HRMS (FAB) found 506.1489 [calcd for C₂₅H₃₂NO₄S₃ $(M+H)^+$ 506.1488].


To a stirred solution of (*Z*)-**3** (13.0 mg, 0.0256 mmol) in CH₂Cl₂ (1.5 mL, 0.0171 M) was added MnO₂ (50.6mg, 0.512 mmol) at 25 °C. After stirred for 4 h at the same temperature, the reaction mixture was then filtered through celite and concentrated *in vacuo*. To a stirred solution of α , β -

unsaturated aldehyde **4** in CH₂Cl₂ (1.0 mL, 0.0256 M) was added (*R*)-**I**·BzOH (2.3 mg, 0.0051 mmol) at 0 °C. After stirred for 20 h at the same temperature, the reaction mixture was concentrated and purified by column chromatography (silica gel, hexanes/EtOAc, 3/1) to afford an inseparable mixture of 2,6-*cis*-piperidine **5** and 2,6-*trans*-piperidine **6** (12.1 mg, 92%, **5**:**6** = 11:1) as a colorless oil.


To a stirred solution of (*Z*)-**3** (13.0 mg, 0.0256 mmol) in CH₂Cl₂ (1.5 mL, 0.0171 M) was added MnO₂ (50.6mg, 0.512 mmol) at 25 °C. After stirred for 4 h at the same temperature, the reaction mixture was then filtered through celite and concentrated *in vacuo*. To a stirred solution of α , β -unsaturated aldehyde **4** in CH₂Cl₂ (1.0 mL, 0.0256 M) was added (*S*)-**I**·BzOH (2.3 mg, 0.0051 mmol) at 0 °C. After stirred for 20 h at the same temperature, the reaction mixture was concentrated and purified by column chromatography (silica gel, hexanes/EtOAc, 3/1) to afford an inseparable mixture of 2,6-*cis*-piperidine **5** and 2,6-*trans*-piperidine **6** (11.5 mg, 88%, **5**:**6** = 1:3) as a colorless oil.

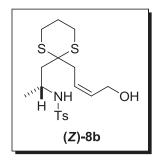
Optimization of Reaction Conditions



entry	catalyst	solvent	temp (°C)	time (h)	yield $(\%)^a$	dr^b
1	(<i>R</i>)-I	CH_2Cl_2	0	20	92	11:1
2	(<i>R</i>)-II	CH_2Cl_2	0	20	92	11:1
3	(2 <i>R</i> ,5 <i>R</i>)-III	CH_2Cl_2	0	24	73	4:1
4	(<i>R</i>)-I	toluene	0	20	94	9:1
5	(<i>R</i>)-I	ether	0	48	45	4.5:1
6	(<i>R</i>)-I	MeOH	0	48	86	4:1
7	(<i>R</i>)-I	MeCN	0	48	86	4.5:1
8	(<i>R</i>)-I	DMF	0	72	28	4:1
9	(<i>R</i>)-I	THF	0	72	NR ^c	NA^d
10	(<i>R</i>)-I	dioxane	25	72	NR ^c	NA^d

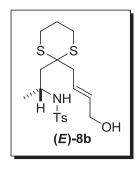
^{*a*} Combined yield of **5** and **6**. ^{*b*} Diastereomeric ratio (**5**:**6**) determined by integration of the ¹H NMR spectrum of the crude product. ^{*c*} No reaction. ^{*d*} Not applicable

To a stirred solution of (*E*)-**3** (23.0 mg, 0.0453 mmol) in CH₂Cl₂ (1.5 mL, 0.0302 M) was added MnO₂ (89.6 mg, 0.906 mmol) at 25 °C. After stirred for 4 h at the same temperature, the reaction mixture was then filtered through celite and concentrated *in vacuo*. To a stirred solution of α , β -unsaturated aldehyde intermediate in CH₂Cl₂ (2.0 mL, 0.0227 M) was added (*R*)-I·BzOH (4.0 mg, 0.0091 mmol) at 0 °C. After stirred for 20 h at the same temperature, the reaction mixture was concentrated and purified by column chromatography (silica gel, hexanes/EtOAc, 3/1) to afford an inseparable mixture of 2,6-*cis*-piperidine **5** and 2,6-*trans*-piperidine **6** (22.0 mg, 96%, **5**:**6** = 15:1) as a colorless oil.

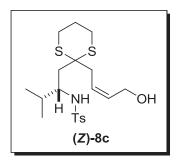

To a stirred solution of (*E*)-**3** (23.0 mg, 0.0453 mmol) in CH₂Cl₂ (1.5 mL, 0.0302 M) was added MnO₂ (89.6 mg, 0.906 mmol) at 25 °C. After stirred for 4 h at the same temperature, the reaction mixture was then filtered through celite and concentrated *in vacuo*. To a stirred solution of α , β -unsaturated aldehyde intermediate in CH₂Cl₂ (2.0 mL, 0.0227 M) was added (*S*)-I·BzOH (4.0 mg, 0.0091 mmol) at 0 °C. After stirred for 20 h at the same temperature, the reaction mixture was concentrated and purified by column chromatography (silica gel, hexanes/EtOAc, 3/1) to afford an inseparable mixture of 2,6-*cis*-piperidine **5** and 2,6-*trans*-piperidine **6** (21.0 mg, 91%, **5**:**6** = 1:5) as a colorless oil.

Substrate Scope of the Organocatalytic Aza-Michael Reaction

	1 – Juni OH	$a \rightarrow B = B$	$\begin{array}{c} b \text{ or } c \\ \hline OH \\ R' H \\ H \\ T_S \\ ga-e \end{array}$			
entry	R	allyl alcohol (yield)	Reaction conditions $(time)^a$	major product (yield ^b)	dr ^c	
1 OBn	OBn	(Z)-8a (75%)	b (24 h) c (24 h)	9a (91%) 10a (82%)	11:1 1:3	
		(E)-8a (81%)	b (20 h) c (20 h)	9a (93%) 10a (86%)	15:1 1:5	
2	Me	Ma	(Z)-8b (60%)	b (7 h) c (10 h)	9b (90%) 10b (75%)	>15:1 1:2
		(E)-8b (66%)	b (7 h) c (9 h)	9b (97%) 10b (80%)	>20:1 1:4	
3	<i>i-</i> Pr	(Z)-8c (30%)	b (45 h) c (64 h)	9c (78%) 10c (78%)	10:1 1:8	
		(E)-8c (50%)	b (45 h) c (67 h)	9c (87%) 10c (79%)	12:1 1:10	
4	CH=CH ₂	(Z)-8d (30%)	b (15 h) c (18 h)	9d (90%) 10d (86%)	15:1 1:1	
5	<i>t</i> -Bu	(Z)-8e (14%)	b (24 h) c (24 h)	NR ^d NR ^d	NA ^e	

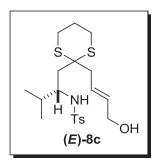

^{*a*}*Reagents and conditions*: (a) *t*-BuLi, HMPA/THF (1:10), -78 °C, 5 min, then, **7a–e**,² -78 °C, 0.5–1 h, 14–81%; (b) MnO₂, CH₂Cl₂, 25 °C, 3 h, filtration; (*S*)-**I**·BzOH (20 mol %), CH₂Cl₂, 0 °C; (c) i. MnO₂, CH₂Cl₂, 25 °C, 3 h, filtration; ii. (*R*)-**I**·BzOH (20 mol %), CH₂Cl₂, 0 °C. ^{*b*} Combined yield of **9** and **10**. ^{*c*} Diastereomeric ratio (2,6-*cis*-piperidine:2,6-*trans*-piperidine) determined by integration of the ¹H NMR spectrum of the crude product. ^{*d*} No reaction. ^{*e*} Not applicable.

²(a) Lapinsky, D. J; Bergmeier, S. C. *Tetrahedron Lett.* **2001**, *42*, 8583–8586. (b) Vicario, J. L; Badia, D; Carrillo, L. *ARKIVOC* **2007**, 304–311.

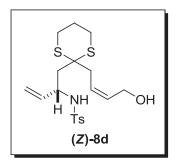

A colorless oil: $[\alpha]^{27}{}_{D} = -1.7$ (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 5.71 (ddd, *J* = 11.2, 7.2, 6.4 Hz, 1H), 5.66 (d, *J* = 6.4 Hz, 1H), 5.53 (ddd, *J* = 10.8, 7.2, 6.4 Hz, 1H), 4.15 (dd, *J* = 12.4, 7.6 Hz, 1H), 4.03 (dd, *J* = 12.4, 6.4 Hz, 1H), 3.52–3.62 (m, 1H), 2.62–2.80 (m, 5H), 2.46–2.52 (m, 1H),

2.36 (s, 3H), 2.12 (dd, J = 15.2, 8.0 Hz, 1H), 1.87 (dd, J = 15.2, 4.0 Hz, 1H), 1.78–1.94 (m, 2H), 1.00 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 137.8, 131.8, 129.5, 127.1, 125.6, 58.2, 51.2, 47.4, 44.6, 36.2, 26.0, 24.5, 23.0, 21.4; IR (neat) 3279, 1320, 1158, 668 cm⁻¹; HRMS (FAB) found 419.1491 [calcd for C₁₈H₃₁N₂O₃S₃ (M+NH₄)⁺ 419.1491].

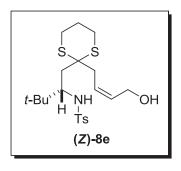
A colorless oil: $[\alpha]^{28.0}{}_{D} = -14.9$ (*c* 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 8.8 Hz, 2H), 7.24 (d, J = 8.8 Hz, 2H), 5.76 (d, J = 6.4 Hz, 1H), 5.60–5.73 (m, 2H), 4.07 (br s, 2H), 3.51–3.61 (m, 1H), 2.68–2.82 (m, 4H), 2.54 (dd, J = 14.4, 6.0 Hz, 1H), 2.38–2.48 (m, 2H), 2.39 (s, 3H), 2.19 (dd, J = 15.2, 7.6 Hz, 1H), 1.79–1.96 (m, 3H), 1.08 (d, J = 6.4


Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 137.7, 133.5, 129.5, 127.2, 125.6, 63.0, 51.0, 47.4, 44.6, 41.3, 26.0, 24.6, 23.1, 21.4; IR (neat) 3280, 1321, 1158, 1090, 668 cm⁻¹; HRMS (FAB) found 419.1487 [calcd for C₁₈H₃₁N₂O₃S₃ (M+NH₄)⁺ 419.1491].

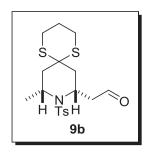
A colorless oil: $[\alpha]^{22}{}_{D} = -3.1$ (c 0.15, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 5.77 (ddd, J = 11.2, 7.2, 6.4 Hz, 1H), 5.58 (ddd, J = 11.2, 7.2, 6.0 Hz, 1H), 5.32 (d, J = 6.8 Hz, 1H), 4.18–4.24 (m, 1H), 4.04–4.10 (m, 1H), 3.56–3.62 (m, 1H), 2.69–2.81 (m, 5H), 2.56 (dd, J = 16.0, 5.6


Hz, 1H), 2.40 (s, 3H), 2.28 (br s, 1H), 1.82–1.99 (m, 5H), 0.80 (d, J = 7.2 Hz, 3H), 0.70 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 138.3, 131.9, 129.5, 127.1, 125.9, 58.3, 55.9,

51.3, 37.1, 36.0, 31.3, 26.2, 26.1, 24.6, 21.5, 18.2, 15.9; IR (neat) 3288, 1320, 1157, 1092, 668 cm⁻¹; HRMS (FAB) found 447.1793 [calcd for $C_{20}H_{35}N_2O_3S_3$ (M+NH₄)⁺ 447.1804].

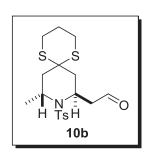

A colorless oil: $[\alpha]^{28}{}_{\rm D} = -9.5$ (*c* 1.06, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 8.4 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 5.62–5.75 (m, 2H), 5.51 (d, *J* = 7.2 Hz, 1H), 4.08 (br s, 2H), 3.50–3.56 (m, 1H), 2.67–2.82 (m, 4H), 2.56 (dd, *J* = 14.4, 6.0 Hz, 1H), 2.43 (dd, *J* = 14.0, 4.8 Hz, 1H), 2.39 (s, 3H), 1.84–2.01 (m, 5H), 0.79 (d, *J* = 7.2 Hz, 3H),

0.70 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.1, 138.1, 133.3, 129.4, 127.1, 126.0, 63.1, 55.8, 51.1, 40.9, 37.6, 31.4, 26.1, 26.0, 24.6, 21.4, 18.0, 16.1; IR (neat) 3280, 1318, 1155, 666 cm⁻¹; HRMS (FAB) found 447.1793 [calcd for C₂₀H₃₅N₂O₃S₃ (M+NH₄)⁺ 447.1804].

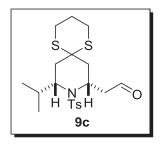

A colorless oil: $[\alpha]^{28}{}_{D}$ = +7.3 (*c* 0.48, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.4 Hz, 2H), 7.25 (d, *J* = 8.4 Hz, 2H), 5.78 (ddd, *J* = 11.6, 7.2, 5.2 Hz, 1H), 5.48–5.65 (m, 3H), 4.92 (d, *J* = 17.6 Hz, 1H), 4.86 (d, *J* = 10.0 Hz, 1H), 4.17–4.25 (m, 1H), 4.04–4.12 (m, 1H), 2.70–2.91 (m, 5H), 2.55 (dd, *J* = 15.6, 6.4 Hz, 1H), 2.39 (s,

3H), 2.27 (dd, J = 15.2, 8.0 Hz, 1H), 2.03 (dd, J = 15.2, 4.4 Hz, 1H), 1.94–2.02 (m, 2H), 1.82– 1.92 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 143.4, 138.1, 137.6, 132.0, 129.4, 127.5, 125.6, 116.3, 58.3, 54.4, 51.2, 42.7, 36.6, 26.2, 26.1, 24.7, 21.5; IR (neat) 3270, 1324, 1158, 1093, 668 cm⁻¹; HRMS (FAB) found 431.1482 [calcd for C₁₉H₃₁N₂O₃S₃ (M+NH₄)⁺ 431.1491].

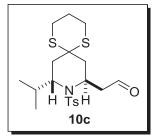
A colorless oil: $[\alpha]^{27}{}_{D} = -5.0$ (*c* 0.14, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 5.77–5.83 (m, 1H), 5.67 (ddd, *J* = 12.0, 6.4, 5.6 Hz, 1H), 4.73 (d, *J* = 8.4 Hz, 1H), 4.16–4.26 (m, 1H), 4.07–4.16 (m, 1H), 3.77 (ddd, *J* = 9.2, 9.2, 1.6 Hz, 1H), 2.93 (dd, *J* = 17.2, 8.0 Hz, 1H), 2.70–2.86 (m, 5H),


2.39 (s, 3H), 2.26 (dd, J = 15.6, 1.6 Hz, 1H), 2.09 (s, 1H), 1.89–1.99 (m, 2H), 1.89 (dd, J = 15.2, 10.0 Hz, 1H), 0.80 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 142.7, 139.8, 131.4, 129.2, 127.0, 126.9, 60.7, 58.3, 51.8, 39.4, 36.5, 35.4, 27.0, 26.29, 26.25, 24.8, 21.5; IR (neat) 1653, 1153 cm⁻¹; HRMS (FAB) found 461.1962 [calcd for C₂₁H₃₃N₂O₃S₃ (M+NH₄)⁺ 461.1961].

An inseparable mixture (**9b**:10b > 20:1): $[\alpha]^{25}{}_{D}$ = +15.7 (*c* 0.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.78 (s, 1H), 7.70 (d, *J* = 6.4 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 4.47–4.53 (m, 1H), 4.06–4.17 (m, 1H), 3.41 (dd, *J* = 18.0, 9.6 Hz, 1H), 3.17 (dd, *J* = 18.4, 4.8 Hz, 1H), 2.65–2.89 (m, 4H), 2.41(s, 3H), 2.35 (dd, *J* =15.2, 4.4 Hz, 1H), 1.82–2.03 (m, 5H), 1.54

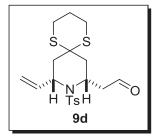

 $(d, J = 7.2 \text{ Hz}, 3\text{H}); {}^{13}\text{C} \text{NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta 200.5, 143.5, 136.8, 129.8, 127.1, 51.3, 48.2, 47.1, 44.4, 41.3, 38.0, 26.8, 26.7, 24.8, 24.6, 21.5; IR (neat) 1720, 1160 cm⁻¹; HRMS (FAB) found 400.1067 [calcd for C₁₈H₂₆NO₃S₃ (M+H)⁺ 400.1069].$

An inseparable mixture (**9b:10b** = 1:4): ¹H NMR (400 MHz, CDCl₃) δ 9.71 (s, 1H), 7.69 (d, J =

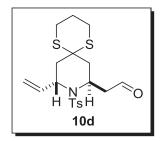

8.8 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 4.74–4.81 (m, 1H), 3.98–4.08 (m, 1H), 3.13–3.27 (m, 2H), 2.68–2.95 (m, 4H), 2.41(s, 3H), 2.36 (dd, J = 14.8, 5.6 Hz, 1H), 2.26 (dd, J = 14.4, 4.4 Hz, 1H), 2.13 (dd, J = 14.4, 4.0 Hz, 1H), 1.84–2.04 (m, 3H), 1.38 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.8, 143.3, 139.9, 129.6, 127.0, 49.1, 48.5, 47.5, 47.1,

43.2, 39.8, 26.4, 26.3, 25.0, 21.5, 20.2.

A colorless crystal: $[\alpha]^{27}{}_{D}$ = +69.6 (*c* 0.43, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.65 (s, 1H), 7.72 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 4.18–4.24 (m, 1H), 3.65–3.70 (m, 1H), 3.41 (dd, *J* = 18.4, 7.2 Hz, 1H), 2.89–3.01 (m, 2H), 2.87 (dd, *J* = 18.4, 8.0 Hz, 1H), 2.59–2.70 (m, 2H), 2.42 (s, 3H), 2.30 (dd, *J* = 14.0, 9.6 Hz, 1H), 2.20 (dd, *J* =

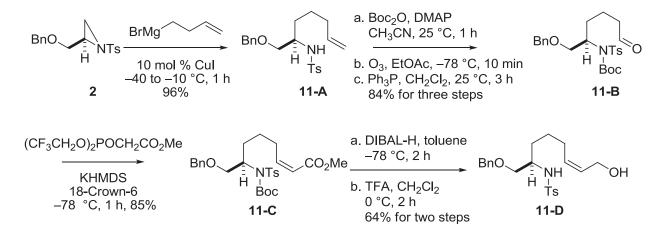

15.2, 2.0 Hz, 1H), 2.07 (dd, J = 14.8, 6.0 Hz, 1H), 1.92–2.00 (m, 1H), 1.72–1.82 (m, 1H), 1.43 (dd, J = 15.6, 6.4 Hz, 1H), 1.09 (d, J = 6.4 Hz, 3H), 1.00 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 200.5, 143.6, 136.6, 129.8, 127.4, 59.7, 50.9, 47.3, 44.4, 37.5, 36.5, 33.0, 27.0, 26.7, 24.5, 21.5, 20.9, 20.6; IR (neat) 1720, 1598, 1338, 1326, 1095 cm⁻¹; HRMS (FAB) found 428.1385 [calcd for C₂₀H₃₀NO₃S₃ (M+H)⁺ 428.1381].

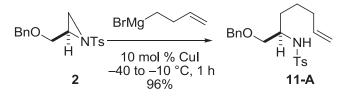
A colorless crystal: $[\alpha]^{23}{}_{D} = -9.10$ (*c* 0.083, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 7.71 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 4.36–4.43 (m, 1H), 3.57–3.62 (m, 1H), 3.34 (dd, *J* = 18.4, 4.4 Hz, 1H), 3.24 (dd, *J* = 18.4, 9.6 Hz, 1H), 2.81–2.95 (m, 2H), 2.54–2.66


(m, 2H), 2.42 (s, 3H), 2.31 (dd, J = 15.2, 9.6 Hz, 2H), 1.99–2.06 (m, 3H), 1.82–1.92 (m, 1H), 0.99 (d, J = 6.4 Hz, 3H), 0.80 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 198.9, 143.5, 139.1, 129.6, 127.5, 63.2, 48.4, 47.5, 46.7, 40.7, 36.3, 29.6, 26.3, 25.0, 21.6, 20.7; IR (neat) 1724, 1155, 754 cm⁻¹.

An inseparable mixture (9d:10d = 15:1): $[\alpha]_{D}^{25} = +22.6$ (c 0.1, CHCl₃); ¹H NMR (400 MHz,

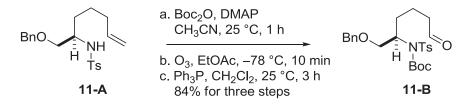
CDCl₃) δ 9.78 (s, 1H), 7.73 (d, *J* = 8.4 Hz, 2H),), 7.31 (d, *J* = 8.4 Hz, 2H), 6.07 (dddd, *J* = 16.8, 10.4, 5.6, 4.8 Hz, 1H), 5.39 (dd, *J* = 16.8, 2.0 Hz, 1H), 5.23 (dd, *J* = 10.4, 2.0 Hz, 1H), 4.44–4.57 (m, 2H), 3.35 (dd, *J* = 18.4, 4.0 Hz, 1H), 3.21 (dd, *J* = 18.0, 9.6 Hz, 1H), 2.80–2.93


(m, 2H), 2.62–2.71 (m, 2H), 2.43 (s, 3H), 2.31 (dd, J = 14.4, 6.4 Hz, 1H), 2.18 (dd, J = 15.2, 4.8 Hz, 2H), 1.93–2.00 (m, 1H), 1.80–1.87 (m, 1H), 1.76 (dd, J = 15.2, 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 200.4, 143.8, 140.2, 136.5, 129.8, 127.4, 116.6, 53.5, 51.5, 47.7, 44.2, 40.5, 37.7, 27.0, 26.9, 24.5; IR (neat) 1721, 1325, 1162, 1094 cm⁻¹; HRMS (FAB) found 412.1070 [calcd for C₁₉H₂₆NO₃S₃ (M+H)⁺ 412.1069].


An inseparable mixture (9d:10d = 1:1): ¹H NMR (400 MHz, CDCl₃) δ 9.65 (s, 1H), 7.68 (d, J = 8.4 Hz, 2H),), 7.27 (d, J = 8.4 Hz, 2H), 5.96 (dddd, J = 16.8, 10.0, 5.2, 4.8 Hz, 1H), 5.25 (d, J = 10.4 Hz, 1H), 5.12 (d, J = 10.0 Hz, 1H), 4.58–4.64 (m, 2H), 3.27 (dd, J = 18.0, 6.4 Hz,

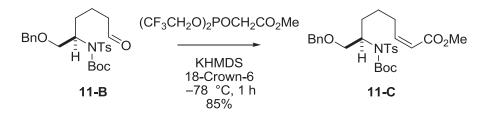
1H), 3.10 (dd, *J* = 18.4, 8.0 Hz, 1H), 2.80–2.93 (m, 2H), 2.71–2.79 (m, 2H), 2.41 (s, 3H), 2.22–2.30 (m, 2H), 2.20 (d, *J* = 3.2 Hz, 1H), 2.16 (d, *J* = 3.2 Hz, 1H), 1.95–2.04 (m, 1H), 1.78–1.88 (m, 1H).

Preparation of Allyl Alcohol 11-D


Preparation of Alkene 11-A

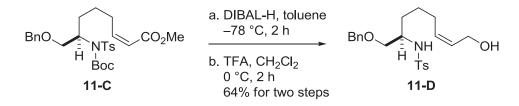
To a cooled (-40 °C) solution of 3-butene magnesium bromide (0.13 M, 15 mL) in THF (15 mL, 0.13 M) was added CuI (18 mg, 0.095 mmol) and aziridine **2** (300 mg, 0.95 mmol). The resulting mixture was warmed to -10 °C, stirred at -10 °C for 1 h, and quenched with 4 mL NH₄Cl/NH₄OH (3:1). After stirred at 25 °C for 2 h, the reaction mixture was diluted with EtOAc. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined

organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 3/1) to afford alkene **11-A** (340 mg, 96%): $[\alpha]^{26}_{D}$ = +18.1 (*c* 0.68, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 8.8 Hz, 2H), 7.17–7.34 (m, 7H), 5.68 (dddd, *J* = 17.2, 10.4, 6.8, 2.8 Hz, 1H), 4.97 (d, *J* = 8.4 Hz, 1H), 4.91 (d, *J* = 17.2 Hz, 1H), 4.90 (d, *J* = 9.2 Hz, 1H), 4.33 (s, 2H), 3.27–3.36 (m, 2H), 3.20 (dd, *J* = 9.6, 4.8 Hz, 1H), 2.39 (s, 3H), 1.93 (q, *J* = 6.8 Hz, 2H), 1.43–1.58 (m, 2H), 1.18–1.39 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 143.0, 138.2, 138.1, 137.7, 129.5, 128.3, 127.6, 127.5, 126.9, 114.6, 73.0, 71.2, 53.4, 33.2, 31.9, 24.7, 21.4; IR (neat) 1640, 1598, 1453, 1416, 1323, 1157, 1090, 1022 cm⁻¹.

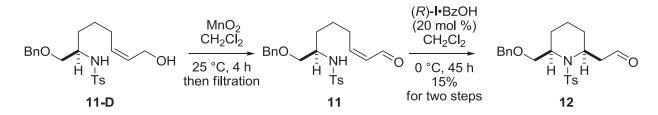

Preparation of Aldehyde 11-B

To a stirred solution of alkene **11-A** (297 mg, 0.795 mmol) in CH₃CN (15 mL, 0.053 M) was added Boc₂O (208 mg, 0.954 mmol) and DMAP (19 mg, 0.159 mmol) at 25 °C. After stirred at 25 °C for 1 h, the reaction mixture was concentrated and purified by purified by column chromatography (silica gel, hexanes/EtOAc, 10/1) to afford Boc-protected alkene (340 mg, 96%). To a cooled (-78 °C) solution of the known Boc protected alkene (300 mg, 0.634 mmol) in EtOAc (50 mL, 0.013 M) was bubbled O₃ until blue color was persisted (ca. 10 min). After purging the reaction with N₂ gas, EtOAc was removed and the residue was dissolved in CH₂Cl₂ (10 mL) before Ph₃P was added. The resulting mixture was stirred at 25 °C for 3 h and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 4/1) to afford aldehyde **11-B** (260 mg, 84% for three steps): ¹H NMR (400

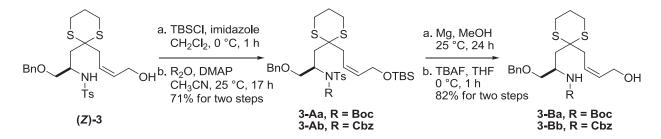
MHz, CDCl₃) δ 9.76 (s, 1H), 7.85 (d, J = 8.4 Hz, 2H), 7.21–7.30 (m, 5H), 7.05 (d, J = 8.0 Hz, 2H), 4.75–4.82 (m, 1H), 4.49 (AB, $J_{AB} = 11.6$ Hz, $\Delta v_{AB} = 45.6$ Hz, 2H), 3.97 (t, J = 9.6 Hz, 1H), 3.58 (dd, J = 10.0, 5.6 Hz, 1H), 2.44–2.57 (m, 2H), 1.94–2.04 (m, 1H), 1.58–1.87 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.1, 150.5, 143.5, 137.8, 137.6, 128.7, 128.27, 128.25, 127.8, 127.5, 84.1, 73.0, 70.5, 58.1, 43.2, 29.7, 27.8, 21.5, 19.0.


Preparation of Aldehyde 11-C

To a cooled (–78 °C) solution of methyl bis(2,2,2-trifluoroethyl)phosphonoacetate (0.23 mL, 1.06 mmol) and 18-crown-6 (1.4 g, 5.3 mmol) in THF (30 mL, 0.035 M) was added KHMDS (0.5 M, 2.1 mL). After stirred at the same temperature for 0.5 h, aldehyde **11-B** (250 mg, 0.53 mmol) was added to the reaction mixture. After stirred for 1 h at –78 °C, the reaction mixture was quenched with saturated aqueous NH₄Cl and diluted with EtOAc. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 8/1 to 4/1) to afford enoate **11-C** (236 mg, 85%): ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 6.4 Hz, 2H), 7.22–7.30 (m, 5H), 7.05 (d, *J* = 8.4 Hz, 2H), 6.22 (ddd, *J* = 11.2, 7.2, 4.4 Hz, 1H), 5.78 (ddd, *J* = 11.2, 2.0, 2.0 Hz, 1H), 4.75–4.83 (m, 1H), 4.49 (AB, *J*_{AB} = 11.6 Hz, Δv_{AB} = 47.6 Hz, 2H), 3.98 (dd, *J* = 9.6, 9.6 Hz, 1H), 3.69 (s, 3H), 3.57 (dd, *J* = 10.0, 5.6 Hz, 1H), 2.69–2.75 (m, 2H), 2.35 (s, 3H), 1.93–2.03 (m, 1H), 1.53–1.67 (m, 3H), 1.29 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 150.5, 150.0, 143.4,


137.9, 137.7, 128.7, 128.3, 128.2, 127.8, 127.5, 119.6, 84.0, 72.9, 70.6, 58.4, 50.9, 29.9, 28.6, 27.8, 25.8, 21.5.

Preparation of Allylic Alcohol 11-D


[DIBAL-H Reduction] To a cooled (-78 °C) solution of enoate 11-C (230 mg, 0.433 mmol) in toluene (8 mL, 0.054 M) was added DIBAL-H (1.73 mL, 1.0 M in toluene, 1.732 mmol). After stirred at the same temperature for 2 h, the reaction mixture was quenched with MeOH, and diluted with Et₂O. The resulting mixture was stirred for 5 h at 25 °C, filtered through a pad of celite and concentrated in vacuo. This crude alcohol was employed in the next step without purification. [Boc-Deprotection] To the crude Boc-sulfonamide (105 mg, 0.21 mmol) in CH₂Cl₂ (4.2 mL) was added TFA (0.8 mL) at 0 °C. After stirred at the same temperature for 2 h, the reaction mixture was concentrated in vacuo and purified by column chromatography (silica gel, hexanes/EtOAc, 1/1) to afford 11-D (54 mg, 64% for two steps) as a colorless oil: $[\alpha]_{D}^{26} = +8.5$ $(c \ 0.20, \text{CHCl}_3)$; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 8.0 Hz, 2H), 7.18–7.35 (m, 7H), 5.58 (ddd, *J* = 12.8, 6.8, 6.0 Hz, 1H), 5.40 (ddd, *J* = 15.2, 10.4, 7.2 Hz, 1H), 5.02 (d, *J* = 8.4 Hz, 1H), 4.32 (s, 2H), 4.13 (d, J = 6.8 Hz, 2H), 3.28–3.38 (m, 1H), 3.28 (dd, J = 9.2, 4.0 Hz, 1H), 3.16 (dd, J = 8.8, 4.4 Hz, 1H), 2.40 (s, 3H), 2.17 (s, 1H), 1.92-2.06 (m, 2H), 1.44-1.58 (m, 2H), 1.44-1.51.21–1.40 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 143.1, 138.0, 137.6, 132.1, 129.5, 128.8, 128.3, 127.7, 127.6, 126.9, 73.1, 71.1, 58.3, 53.3, 31.8, 26.7, 25.3, 21.4; IR (neat) 1598, 1453, 1323, 1157, 1091, 1024 cm⁻¹.

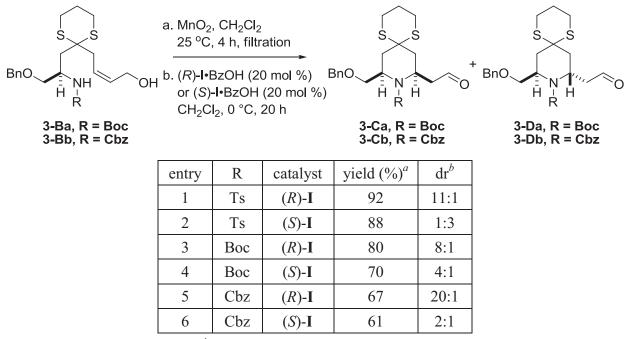
Allylic Oxidation/Aza-Michael Reaction of 11-D

[Allylic Oxiation] To a stirred solution of 11-D (41 mg, 0.102 mmol) in CH₂Cl₂ (3.0 mL, 0.0331 M) was added MnO₂ (196.3 mg, 1.986 mmol) at 25 °C. After stirred for 4 h at the same temperature, the reaction mixture was then filtered through celite and concentrated *in vacuo*. This crude α,β -unsaturated aldehyde 11 (40 mg, 0.0998 mmol) was employed in the next step without purification. [Aza-Michael Reaction] To a stirred solution of α,β -unsaturated aldehyde 11 in CH₂Cl₂ (4.0 mL, 0.0248 M) was added (*R*)-I·BzOH (8.9 mg, 0.0197 mmol) at 0 °C. After stirred for 45 h at the same temperature, the reaction mixture was concentrated and purified by column chromatography (silica gel, hexanes/EtOAc, 3/1) to afford 2,6-cis-piperidine 12 as the major diastereomer (6 mg, 15% for two steps, dr = 11:1) as a colorless oil: [For 11] ¹H NMR (400 MHz, CDCl₃) δ 10.01 (d, J = 8.0 Hz, 1H), 7.69 (d, J = 8.0 Hz, 2H), 7.19–7.34 (m, 8H), 6.51 (ddd, *J* = 11.2, 8.0, 3.2 Hz, 1H), 5.94 (dd, *J* = 11.2, 8.0 Hz, 1H), 4.76 (d, *J* = 8.8 Hz, 1H), 4.33 (brs, 2H), 3.30–3.39 (m, 1H), 3.26 (dd, *J* = 9.2, 3.2 Hz, 1H), 3.14 (dd, *J* = 9.6, 4.0 Hz, 1H), 2.51–2.57 (m, 2H), 2.41 (s, 3H); [For 12] ¹H NMR (400 MHz, CDCl₃) δ 9.71(s, 1H), 7.71 (d, J = 8.4 Hz, 2H), 7.26–7.38 (m, 7H), 4.56 (d, J = 4.0 Hz, 2H), 4.18–4.25 (m, 1H), 3.61 (d, J = 8.0Hz, 1H), 3.59 (d, J = 5.6 Hz, 1H), 2.76 (dd, J = 17.2, 5.6 Hz, 1H), 2.64 (ddd, J = 17.2, 8.8, 1.6 Hz, 1H), 2.42 (s, 3H), 1.80 (d, *J* = 12.8 Hz, 2H), 1.17–1.56 (m, 6H).

Preparation of Allyl Alcohols 3-Ba and 3-Bb

To a stirred solution of sulfonamide (*Z*)-3 (200 mg, 0.39 mmol) in CH₂Cl₂ (3 mL, 0.13 M) was added TBSCl (66 mg, 0.437 mmol) and imidazole (80 mg, 1.18 mmol) at 0 °C. After stirred at 0 °C for 1 h, the reaction mixture was concentrated and purified by purified by column chromatography (silica gel, hexanes/EtOAc, 10/1) to afford the corresponding TBS-protected allyl alcohol (210 mg, 86%). To a stirred solution of the TBS-protected allyl alcohol (105 mg, 0.17 mmol) in CH₃CN (6 mL, 0.03 M) was added Boc₂O (55 mg, 0.253 mmol) and DMAP (5 mg, 0.04 mmol) at 25 °C. After stirred at 25 °C for 17 h, the reaction mixture was concentrated and purified by purified by column chromatography (silica gel, hexanes/EtOAc, 10/1) to afford **3-Aa** (100 mg, 71% for two steps): [For **3-Aa**] ¹H NMR (400 MHz, CDCl₃) δ 7.83 (d, *J* = 8.0 Hz, 2H), 7.18–7.25 (m, 5H), 7.02 (d, *J* = 7.2 Hz, 2H), 5.64 (ddd, *J* = 12.0, 6.0, 5.6 Hz, 1H), 5.55 (ddd, *J* = 12.0, 6.8, 5.6 Hz, 1H), 5.03 (brs, 1H), 4.44 (AB, *J*_{AB} = 11.6 Hz, Δv_{AB} = 60.8 Hz, 2H), 4.21 (d, *J* = 6.0 Hz, 2H), 3.64 (dd, *J* = 9.6, 5.6 Hz, 1H), 2.87 (d, *J* = 11.2 Hz, 2H), 2.53–2.79 (m, 4H), 2.23–2.37 (m, 1H), 2.29 (s, 3H), 1.90–1.97 (m, 1H), 1.75–1.84 (m, 1H), 1.22 (s, 9H), 0.82 (s, 9H), 0.00 (s, 6H).

Cbz-protected sulfonamide **3-Ab** was prepared from (**Z**)-**3** in the same manner in 71% for two steps. [For **3A-b**] ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 8.4 Hz, 2H), 7.17–7.26 (m, 6H), 7.11 (d, J = 8.0 Hz, 2H), 7.05 (d, J = 7.2 Hz, 2H), 6.88 (d, J = 7.2 Hz, 2H), 5.62 (ddd, J = 11.6, 5.6, 5.2 Hz, 1H), 5.50 (ddd, J = 12.0, 6.8, 5.6 Hz, 1H), 4.91–5.05 (m, 1H), 4.48 (d, J = 12.0 Hz,

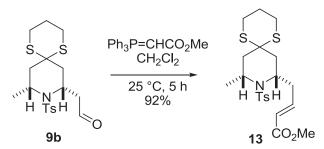

1H), 4.33 (s, 1H), 4.19 (d, *J* = 5.6 Hz, 2H), 3.59 (dd, *J* = 9.6, 5.2 Hz, 1H), 2.54–2.80 (m, 7H), 2.23–2.31 (m, 1H), 2.24 (s, 3H), 1.74–1.90 (m, 2H), 0.83 (s, 9H), 0.00 (s, 6H).

To a stirred solution of Boc-protected sulfonamide **3-Aa** (65mg, 0.09 mmol) in CH₃OH (3 mL, 0.03M) was added Mg powder (66mg, 2.7 mmol) and NH₄Cl (49 mg, 0.9 mmol) at room temperature. After stirring at room temperature for 24h, the reaction mixture was diluted with water and then extracted three times with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 10/1) to afford the corresponding Bocprotected amine (44 mg, 86%). To a stirred solution of the Boc-protected amine (42mg, 0.074 mmol) in THF (3 mL, 0.025M) was added TBAF (1.0 M in THF, 0.11 mL) at 0 °C. After stirring at 0 °C for 1h, the reaction mixture was quenched with sat. NH_4Cl and then extracted three times with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 2/1) to afford **3-Ba** (32 mg, 82% for two steps): [For 3-Ba] $\left[\alpha\right]^{21}$ = +9.0 (c 0.49, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.26–7.38 (m, 5H), 5.80 (ddd, J = 12.4, 6.8, 5.6Hz, 1H), 5.69 (ddd, J = 12.4, 7.2, 5.2 Hz, 1H), 4.95 (d, J = 8.0 Hz, 1H), 4.18 (brs, 2H), 4.00-4.09 (m, 1H), 3.59 (brs, 1H), 3.45 (brs, 1H), 2.68–2.88 (m, 6H), 2.50 (s, 1H), 2.36 (dd, J = 14.8, 4.0 Hz, 1H), 2.02 (dd, J = 14.8, 7.2 Hz, 1H), 1.87–1.99 (m, 2H), 1.43 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 155.1, 138.0, 131.8, 128.4, 127.7, 126.0, 79.6, 73.1, 72.9, 58.3, 51.4, 47.5, 40.1, 36.0, 28.4, 26.2, 26.1, 24.9. IR (neat) 1695, 1506, 1455, 1366, 1390, 1252, 1170, 1050 cm⁻¹; HRMS (FAB) found 454.2080 [calcd for $C_{23}H_{36}NO_4S_2 (M+H)^+ 454.2080$].

Cbz-protected allyl alcohol **3-Bb** was prepared from **3-Bb** in the same manner in 82% for two steps. **[For 3-Bb]** $[\alpha]^{27}_{D}$ = +18.6 (*c* 0.87, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.26–7.35 (m, 9H), 5.78 (ddd, *J* = 12.4, 7.2, 5.2 Hz, 1H), 5.68 (ddd, *J* = 12.4, 6.4, 5.6 Hz, 1H), 5.28 (d, *J* = 8.8

Hz, 1H), 5.10 (br s, 2H), 4.51 (s, 2H), 4.09–4.19 (m, 3H), 3.60 (dd, J = 8.8, 2.4 Hz, 1H), 3.47 (dd, J = 8.8, 4.0 Hz, 1H), 2.72–2.85 (m, 6H), 2.42 (s, 1H), 2.34 (dd, J = 15.2, 4.4 Hz, 1H), 2.08 (dd, J = 15.2, 7.6 Hz, 1H), 1.86–1.99 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 137.8, 136.4, 131.8, 128.4, 128.3, 128.0, 127.7, 125.9, 73.1, 72.6, 66.7, 58.3, 51.3, 48.2, 40.0, 36.1, 26.2, 26.1, 24.8. IR (neat) 1699, 1520, 1268, 1238, 1052 cm⁻¹; HRMS (FAB) found 488.1921 [calcd for C₂₆H₃₄NO₄S₂ (M+H)⁺ 488.1924].

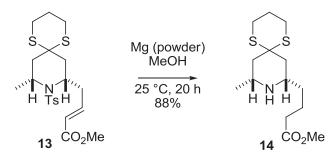
Aza-Michael Reaction with 3-Ba and 3-Bb


^{*a*}Combined yield of **3-C** and **3-D**. ^{*b*}Diastereomeric ratio (2,6-*cis*-piperidine:2,6-*trans*-piperidine) determined by integration of the ¹H NMR spectrum of the crude product.

To a stirred solution of **3-Ba** (10 mg, 0.022 mmol) in CH₂Cl₂ (1.0 mL, 0.02 M) was added MnO₂ (220 mg, 0.55 mmol) at 25 °C. After stirred for 4 h at the same temperature, the reaction mixture was then filtered through celite and concentrated *in vacuo*. To a stirred solution of α , β -unsaturated aldehyde intermediate (9 mg, 0.02 mmol) in CH₂Cl₂ (1.0 mL, 0.02 M) was added (*R*)-**I**·BzOH (1.8 mg, 0.004 mmol) at 0 °C. After stirred for 20 h at the same temperature, the reaction mixture was concentrated and purified by column chromatography (silica gel,

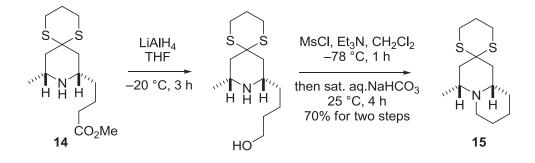
hexanes/EtOAc, 3/1) to afford 2,6-*cis*- piperidine **3-Ca** as the major diastereomer (8 mg, 80% for two steps, **3-Ca:3-Da** = 8:1, Entry 3) as a colorless oil: **[For 3-Ca]** ¹H NMR (400 MHz, CDCl₃) δ 9.70 (t, J = 1.6 Hz, 1H), 7.27–7.37 (m, 5H), 4.67 (ddd, J = 14.4, 7.6, 6.4 Hz, 1H), 4.54 (AB, $J_{AB} = 11.6$ Hz, $\Delta v_{AB} = 30.8$ Hz, 2H), 4.47 (ddd, J = 14.0, 7.6, 5.6 Hz, 1H), 3.67 (dd, J = 9.6, 6.8 Hz, 1H), 3.48 (dd, J = 9.2, 4.8 Hz, 1H), 2.80–2.94 (m, 4H), 2.73 (dd, J = 16.4, 5.6 Hz, 1H), 2.56 (dd, J = 15.6, 7.2 Hz, 1H), 2.34 (dd, J = 14.4, 8.0 Hz, 1H), 2.22 (dd, J = 14.8, 5.2 Hz, 1H), 1.90–2.04 (m, 3H), 1.42 (s, 9H); HRMS (FAB) found 452.1924 [calcd for C₂₃H₃₄NO₄S₂ (M+H)⁺ 452.1924].

2,6-*cis*-piperidine **3-Cb** was prepared as the major diastereomer from **13-Bb** in the same manner in 67% for two steps (**3-Cb**:**3-Db** = 20:1, Entry 5): [For 3-Cb] ¹H NMR (400 MHz, CDCl₃) δ 9.66 (t, *J* = 1.6 Hz, 1H), 7.27–7.36 (m, 10H), 5.14 (s, 2H), 4.75 (ddd, *J* = 14.8, 7.6, 7.2 Hz, 1H), 4.51–4.58 (m, 1H), 4.51 (AB, *J*_{AB} = 12.4 Hz, Δv_{AB} = 30.4 Hz, 2H), 3.66 (dd, *J* = 9.6, 6.4 Hz, 1H), 3.48 (dd, *J* = 9.6, 5.2 Hz, 1H), 2.72–2.96 (m, 5H), 2.62 (ddd, *J* = 14.4, 8.0, 2.0 Hz, 1H), 2.36 (ddd, *J* = 14.8, 8.4, 1.6 Hz, 1H), 2.19 (dd, *J* = 14.4, 5.6 Hz, 1H), 1.88–2.04 (m, 3H); HRMS (FAB) found 486.1766 [calcd for C₂₆H₃₂NO₄S₂ (M+H)⁺ 486.1767].

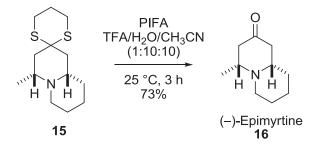

Preparation of (E)-Enoate 13

To a solution of aldehyde **9b** (104.8 mg, 0.262 mmol) in CH_2Cl_2 (4 mL) was added methyl 2-(triphenylphosphoranylidene)acetate at 25 °C, and the resulting mixture was stirred at the same temperature for 5 h before concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 10/1) to afford (*E*)-enoate **13** (119.5 mg, 92%) as a

colorless oil: $[\alpha]^{25}{}_{D}$ = +42.6 (*c* 1.00, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.70 (d, *J* = 7.5 Hz, 2H), 7.27 (d, *J* = 7.5 Hz, 2H), 6.91 (ddd, *J* = 16.0, 7.5, 7.5 Hz, 1H), 5.90 (d, *J* = 15.5 Hz, 1H), 4.03–4.12 (m, 2H), 3.73 (s, 3H), 2.96 (ddd, *J* = 14.5, 8.5, 8.5 Hz, 1H), 2.68–2.84 (m, 5H), 2.17 (dd, *J* = 15.5, 4.5 Hz, 1H), 2.05 (dd, *J* = 15.0, 5.0 Hz, 1H), 1.94 (dd, *J* = 14.5, 6.5 Hz, 1H), 1.82–1.91 (m, 3H), 1.50 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 166.4, 145.0, 144.3, 136.7, 129.5, 127.0, 123.7, 51.6, 51.4, 48.0, 44.3, 40.9, 40.3, 37.5, 26.77, 26.69, 24.47, 24.44, 21.4; IR (neat) 2947, 1716, 1158 cm⁻¹; HRMS (ESI) found 456.1328 [calcd for C₂₁H₃₀NO₄S₃ (M+H)⁺ 456.1331].

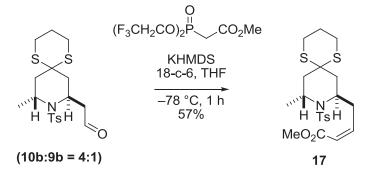

Preparation of Ester 14

To a solution of (*E*)–enoate **13** (102.0 mg, 0.224 mmol) in anhydrous MeOH (4 mL) was added Mg powder (272.0 mg, 11.2 mmol) at 25 °C. After stirred at the same temperature for 20 h, the reaction mixture was diluted with diethyl ether and saturated aqueous NaHCO₃. The resulting cloudy mixture was stirred vigorously for 1 h, filtered through a pad of Celite, concentrated *in vacuo*, and partitioned between CH₂Cl₂ and H₂O. The layers were separated, and the aqueous layer was extracted three times with CH₂Cl₂. The combined organic layers were dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (CH₂Cl₂/MeOH, 10/1 to 5:1) to give ester **14** as a colorless oil (60.0 mg, 88%): $[\alpha]^{28}_{D}$ = +31.5 (*c* 0.21, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 3.64 (s, 3H), 3.11 (ddddd, *J* = 12.8, 6.8, 6.8, 6.8, 2.8 Hz, 1H), 2.99 (dddd, *J* = 13.2, 6.8, 6.8, 2.4 Hz, 1H), 2.86


(dd, J = 6.4, 4.8 Hz, 2H), 2.73 (dd, J = 6.0, 6.0 Hz, 2H), 2.29 (dd, J = 7.6, 7.6 Hz, 2H), 2.20– 2.29 (m, 2H), 1.91–1.99 (m, 2H), 1.62–1.71 (m, 2H), 1.34–1.43 (m, 4H), 1.06 (d, J = 6.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.8, 51.5, 48.8, 47.3, 45.5, 43.4, 35.7, 33.9, 26.00, 25.86, 25.63, 22.0, 21.2; IR (neat) 2930, 1730 cm⁻¹; HRMS (ESI) found 304.1394 [calcd for C₁₄H₂₆NO₂S₂ (M+H)⁺ 304.1399].

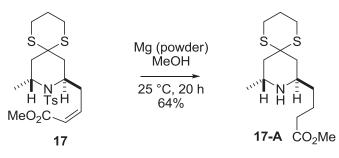
Preparation of Quinolizidine 15

[LiAlH₄-Reduction] To a cooled (-20 °C) solution of ester 14 (60.0 mg, 0.198 mmol) in anhydrous THF (6 mL) was added LiAlH₄ (0.2 mL, 2.0 M in THF, 0.4 mmol). After stirred at the same temperature for 3 h, the reaction mixture was quenched with MeOH and diluted with THF (20 mL) and saturated aqueous NaHCO₃. The resulting cloudy mixture was stirred vigorously for 2 h, filtered through a pad of Celite, and concentrated *in vacuo* to afford crude alcohol, which was employed in next step without further purification. [Cyclization] To a cooled (-78 °C) solution of crude alcohol in CH₂Cl₂ (10 mL) were added Et₃N (0.14 mL, 0.99 mmol) and MsCl (2.38 mL, 0.1 M in CH₂Cl₂, 0.24 mmol). The reaction mixture was allowed to warm to -20 °C for 1 h and quenched with saturated aqueous NaHCO₃. The resulting mixture was allowed to warm to 25 °C over 4 h with continuous stirring. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (EtOAc only) to give quinolizidine 15 as a colorless oil (35.4 mg, 70% for two steps): $[\alpha]^{25}{}_{D} = -21.4$ (*c* 0.57, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 3.22 (br d, *J* = 11.5 Hz, 1H), 2.83–2.87 (m, 2H), 2.72–2.75 (m, 2H), 2.49–2.53 (m, 1H), 2.32 (dd, *J* = 9.5, 9.5 Hz, 2H), 2.19 (ddd, *J* = 14.0, 2.0, 2.0 Hz, 1H), 2.15 (ddd, *J* = 14.5, 3.0, 3.0 Hz, 1H), 1.93–1.99 (m, 2H), 1.64–1.83 (m, 5H), 1.50–1.57 (m, 2H), 1.22–1.34 (m, 2H), 1.09 (d, *J* = 5.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 57.6, 53.8, 51.1, 48.2, 46.1, 45.0, 33.1, 26.21, 26.04, 25.97, 25.69, 24.3, 20.0; IR (neat) 2930, 1423 cm⁻¹; HRMS (ESI) found 258.1347 [calcd for C₁₃H₂₄NS₂ (M+H)⁺ 258.1344].

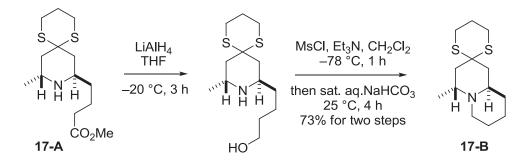

Completion of Synthesis (–)-Epimyrtine 16

To a solution of quinolizidine **15** (35.4 mg, 0.137 mmol) in TFA/H₂O/CH₃CN (1:10:10, total 2.1 mL) was added [bis(trifluoroacetoxy)iodo]benzene (PIFA) (178.3 mg, 0.411 mmol) at 25 °C. After stirred at the same temperature for 3 h, the reaction mixture was quenched with saturated aqueous NaHCO₃. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (EtOAc only) to give (–)-epimyrtine **16** as a colorless oil (16.8 mg, 73%): $[\alpha]^{25}{}_{D} = -17.8$ (*c* 0.18, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 3.32 (br d, *J* = 11.5 Hz, 1H), 2.33–2.44 (m, 3H), 2.22–2.29 (m, 2H), 2.17 (dd, *J* = 11.0, 11.0 Hz, 1H), 1.82 (ddd, *J* = 11.0, 11.0, 2.5 Hz, 1H), 1.69–1.77 (m, 2H), 1.55–1.68 (m, 2H), 1.36–1.45 (m, 1H), 1.21–1.31 (m, 1H), 1.19 (d, *J* = 6.0 Hz, 3H); ¹³C NMR

(125 MHz, CDCl₃) δ 208.4, 62.0, 59.3, 51.0, 49.7, 48.6, 34.0, 25.8, 23.9, 20.6; IR (neat) 2930, 1716 cm⁻¹; HRMS (ESI) found 168.1378 [calcd for C₁₀H₁₈NO (M+H)⁺ 168.1382].

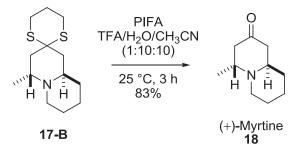

Preparation of (Z)-Enoate 17

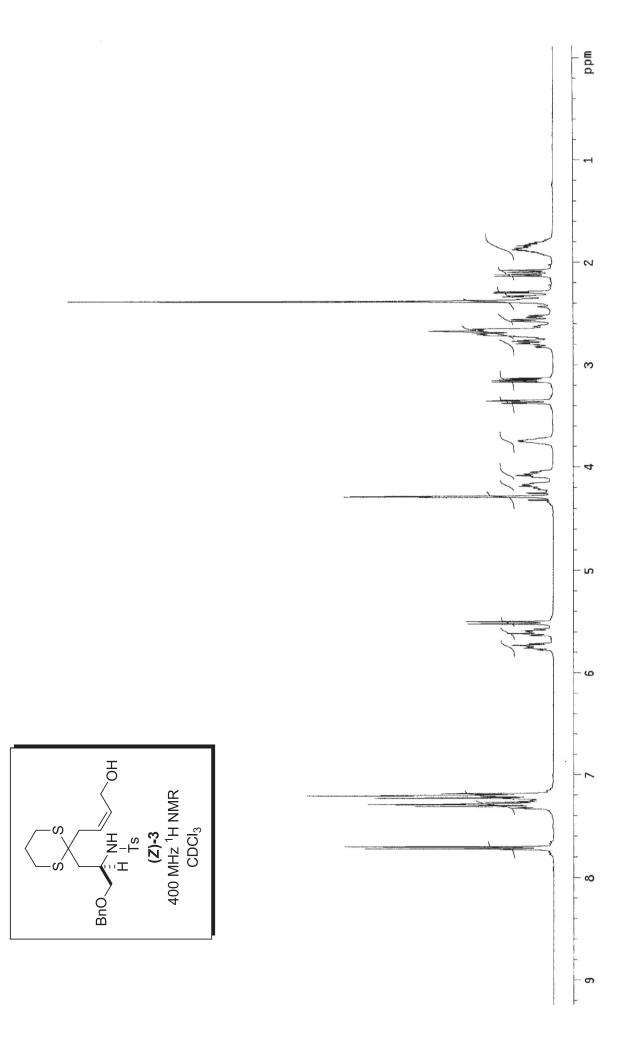
To a cooled (-78 °C) solution of methyl 2-(bis(2,2,2-trifluoroethoxy)phosphoryl)acetate (0.15 mL, 0.702 mmol) and 18-Crown-6 (264.3 mg, 1.05 mmol) in THF (10 mL, 0.19 M) was added KHMDS (0.7 mL, 1.0 M in THF, 0.7 mmol). The resulting mixture was stirred at the same temperature for 30 min. A mixture of aldehydes **10b** and **9b** (4:1, 140.3 mg) was added, and the resulting mixture was stirred at the same temperature for 1 h before quenched with saturated aqueous NH₄Cl and diluted with diethyl ether. The layers were separated, and the aqueous layer was extracted with diethyl ether. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (hexane/ EtOAc, 1/1) to give (*Z*)-enoate ester **17** as a colorless oil (90.5 mg, 57%): $[\alpha]^{25}{}_{D}$ = -25.3 (*c* 1.00, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 7.5 Hz, 2H), 6.20 (ddd, *J* = 11.0, 7.5, 7.5 Hz, 1H), 5.82 (dd, *J* = 11.0, 1.0 Hz, 1H), 3.02 (ddd, *J* = 16.0, 7.0, 7.0 Hz, 1H), 2.72-2.88 (m, 4H), 2.23 (dd, *J* = 15.0, 3.5 Hz, 1H), 2.16 (dd, *J* = 14.5, 6.0 Hz, 1H), 2.11 (d, *J* = 14.0 Hz, 1H), 1.91-1.99 (m, 3H), 1.34 (d, *J* = 7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 166.4, 146.5, 142.9, 129.4, 127.0, 121.0, 54.6, 51.1,

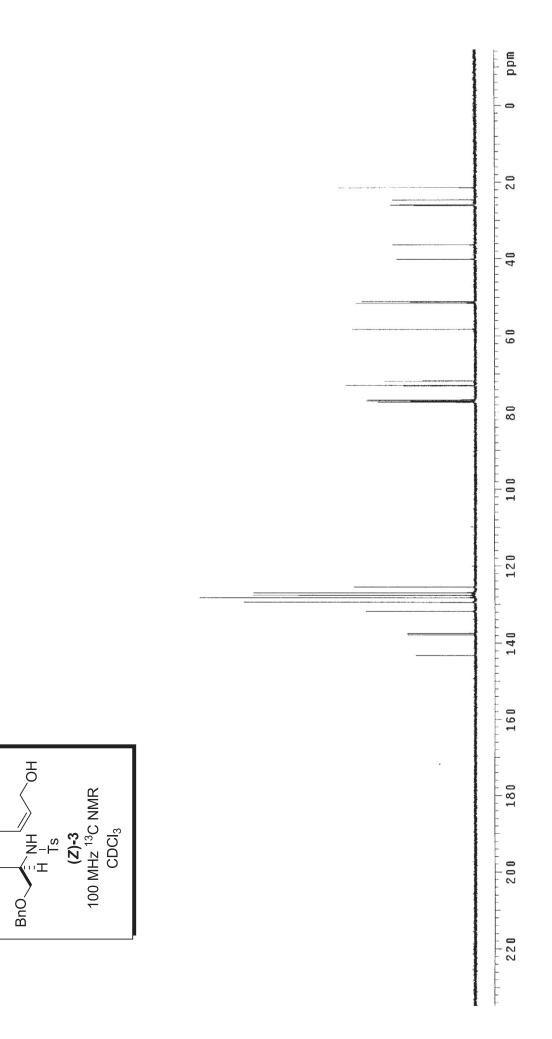

48.1, 47.8, 43.2, 39.9, 32.6, 26.39, 26.26, 25.1, 21.4, 19.7; IR (neat) 1716, 1147 cm⁻¹; HRMS (ESI) found 456.1333 [calcd for $C_{21}H_{30}NO_4S_3$ (M+H)⁺456.1331].

Preparation of Ester 17-A

To a solution of (*E*)-enoate **17** (70.1 mg, 0.154 mmol) in anhydrous MeOH (4 mL, 0.044 M) was added Mg powder (50 mesh, 187.0 mg, 7.7 mmol). After stirred at room temperature for 20 h, the reaction mixture was diluted with diethyl ether (10 mL) and saturated aqueous NaHCO₃. The layers were separated, and the aqueous layer was extracted with diethyl ether. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (hexane/ EtOAc, 1/1) to give ester **17-A** as a colorless oil (30.0 mg, 64%): $[\alpha]^{28}{}_{D}$ = +11.5 (*c* 0.47, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 3.65 (s, 3H), 3.24–3.32 (m, 1H), 3.11–3.14 (m, 1H), 2.79–2.89 (m, 4H), 1.91–1.98 (m, 2H), 1.78 (dd, *J* = 14.0, 7.5 Hz, 1H), 1.62–1.72 (m, 4H), 1.23 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.8, 51.5, 49.8, 47.7, 44.4, 44.1, 41.0, 34.3, 33.8, 26.43, 26.42, 25.3, 22.1, 21.6; IR (neat) 2930, 1732, 1158 cm⁻¹; HRMS (ESI) found 304.1395 [calcd for C₁₄H₂₆NO₂S₂ (M+H)⁺ 304.1399].

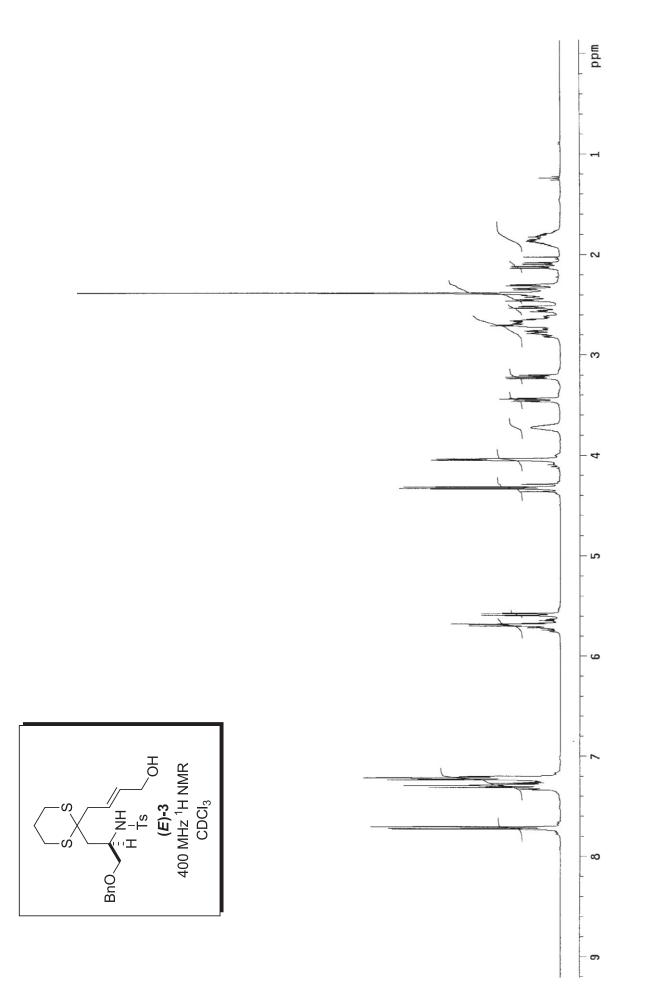

Preparation of Quinolizidine 17-B

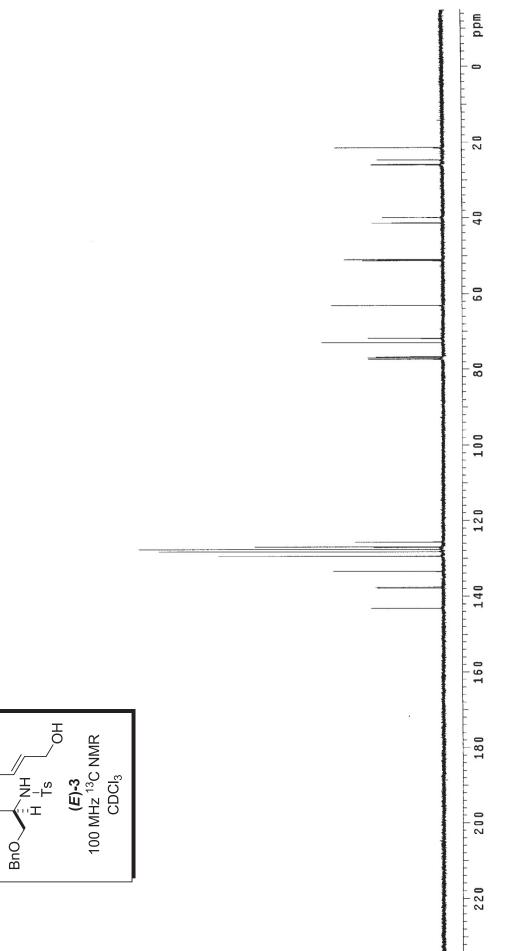

[LiAlH₄-Reduction] To a cooled (-20 °C) solution of ester 17-A (38.4 mg, 0.127 mmol) in anhydrous THF (5 mL) was added LiAlH₄ (0.51 mL, 2.0 M in THF, 1.02 mmol). After stirred at the same temperature for 3 h, the reaction mixture was guenched with MeOH and diluted with THF (10 mL) and saturated aqueous NaHCO₃. The cloudy mixture was stirred vigorously for 2 h, filtered through a pad of Celite, and concentrated *in vacuo* to afford crude amino alcohol, which was employed in next step without further purification. [Cyclization] To a cooled (-20 °C) solution of crude alcohol in CH₂Cl₂ (5 mL) were added Et₃N (0.07 mL, 0.50 mmol) and MsCl (1.40 mL, 0.1 M in CH₂Cl₂, 0.140 mmol). After stirred at the same temperature for 1 h, the reaction mixture was quenched saturated aqueous NaHCO₃. The resulting mixture was allowed to warm to 25 °C over 4 h with continuous stirring. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 , and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (EtOAc only) to give quinolizidine 17-B as a colorless oil (23.9 mg, 73%): $[\alpha]^{25}_{D}$ = +19.3 (*c* 0.41, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 3.23 (ddddd, *J* = 7.5, 7.5, 7.5, 7.5, 2.5 Hz, 1H), 2.96 (ddd, J = 17.5, 8.5, 5.0 Hz, 1H), 2.78–2.88 (m, 2H), 2.68–2.74 (m, 3H), 2.48 (ddd, J = 11.5, 11.5, 3.5 Hz, 1H), 2.33 (ddd, J = 13.5, 2.5, 2.5 Hz, 1H), 2.28 (dd, J = 14.0, 5.5 Hz, 1H), 2.20 (ddd, J = 14.0, 2.5, 2.5 Hz, 1H), 1.87–2.02 (m, 3H), 1.76 (dd, J = 14.0, 10.5 Hz, 1H), 1.72 (br d, J = 13.0 Hz, 1H), 1.56–1.63 (m, 3H), 1.21–1.41 (m, 2H), 1.27 (d, J =

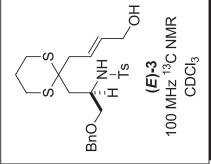

7.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 53.9, 51.3, 50.2, 47.4, 45.0, 43.3, 32.7, 26.54, 26.35, 25.4, 24.1, 14.6; IR (neat) 2928, 1436, 1422, 1309, 1272, 1123 cm⁻¹; HRMS (ESI) found 258.1345 [calcd for C₁₃H₂₄NS² (M+H)⁺ 258.1344].

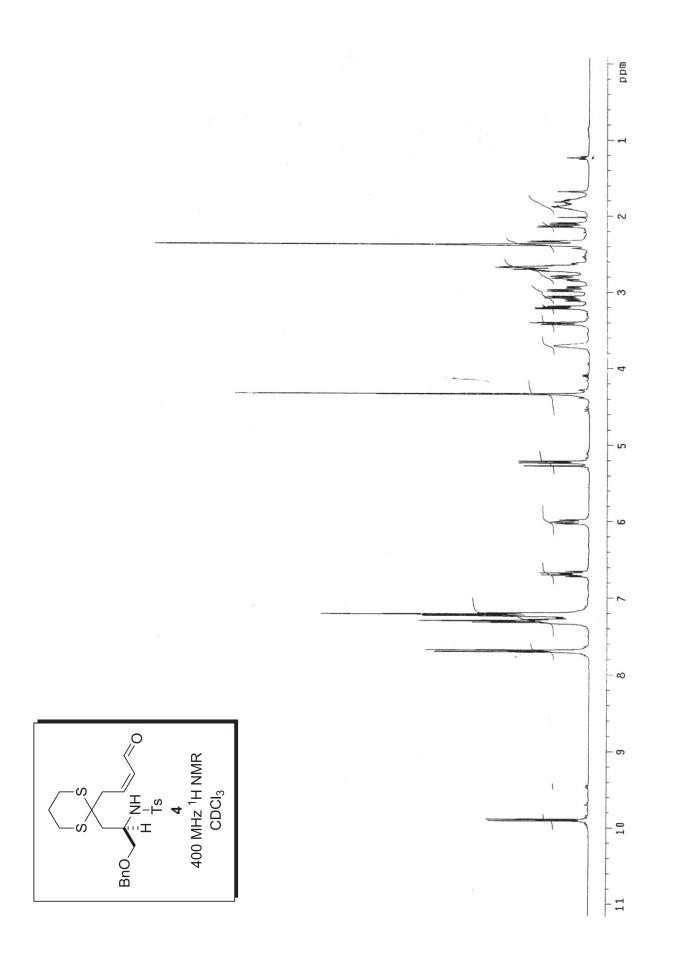
Completion of Synthesis (+)-Myrtine 18

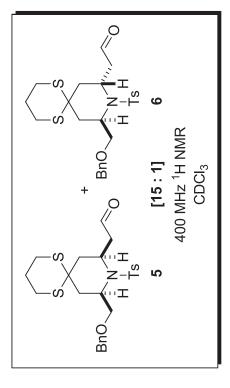
To a solution of quinolizidine **17-B** (23.9 mg, 0.093mmol) in TFA/H₂O/CH₃CN (1:10:10, total 2.1 mL) was added [bis(trifluoroacetoxy)iodo]benzene (PIFA, 120.8 mg, 0.278 mmol) at 25 °C. After stirred at the same temperature for 3 h, the reaction mixture was quenched with saturated aqueous NaHCO₃. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (EtOAc only) to give (+)-myrtine **18** as a colorless oil (12.8 mg, 83%): [α]²⁵_D = +14.1 (*c* 0.11, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 3.93 (ddddd, *J* = 6.5, 6.5, 6.5, 6.5, 2.0 Hz, 1H), 2.85 (dd, *J* = 14.0, 6.5 Hz, 1H), 2.79 (br d, *J* = 11.0 Hz, 1H), 2.66 (dddd, *J* = 10.0, 10.0, 5.0, 3.0 Hz, 1H), 2.48 (ddd, *J* = 11.0, 11.0, 2.5 Hz, 1H), 2.23–2.27 (m, 2H), 2.19 (ddd, *J* = 13.5, 2.0, 2.0 Hz, 1H), 1.57–1.73 (m, 4H), 1.14–1.36 (m, 3H), 0.97 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 209.5, 57.0, 53.5, 51.4, 48.6, 48.0, 34.1, 25.7, 23.4, 11.1; IR (neat) 2930, 1716, 1335, 1289, 1279, 1173, 1114 cm⁻¹; HRMS (ESI) found 168.1380 [calcd for C₁₀H₁₈NO (M+H)⁺ 168.1382].

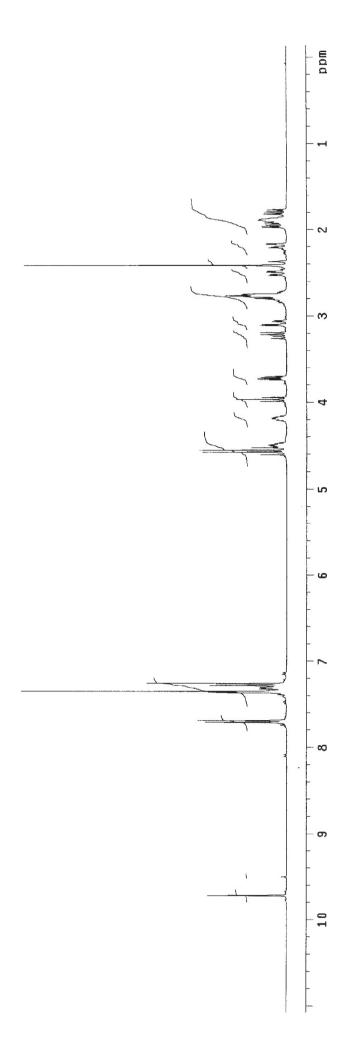


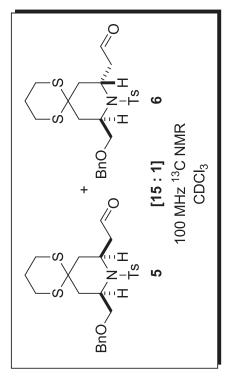


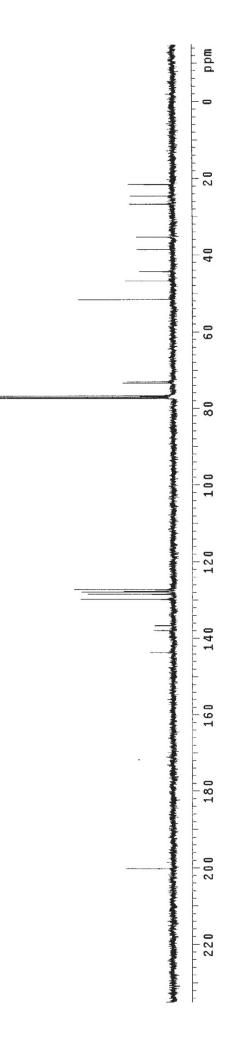

Ś

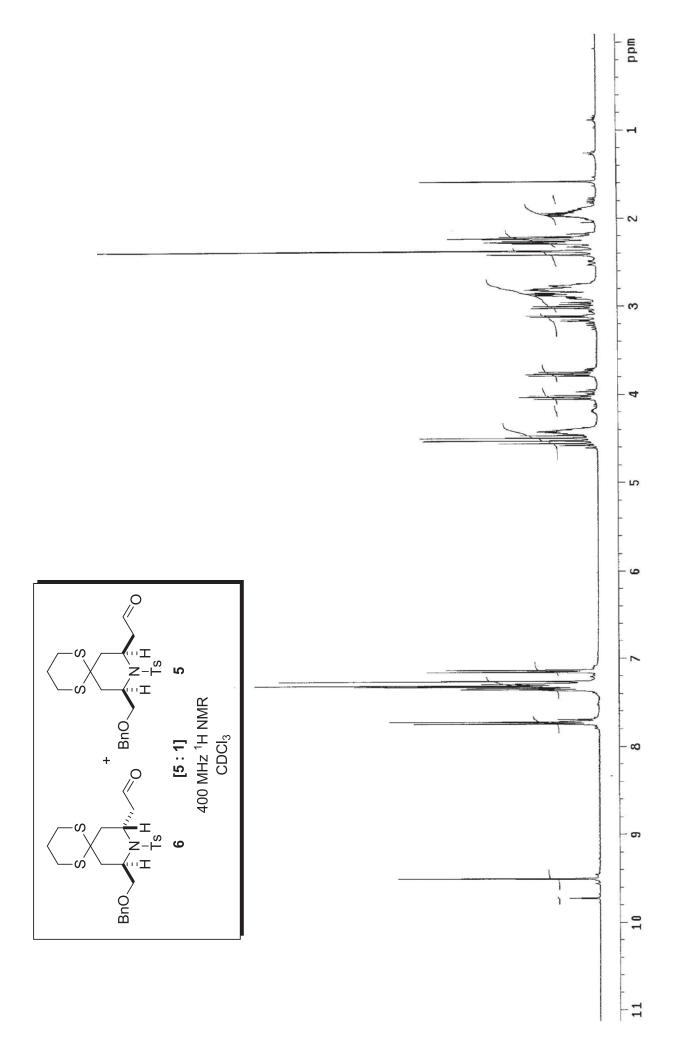

တ်

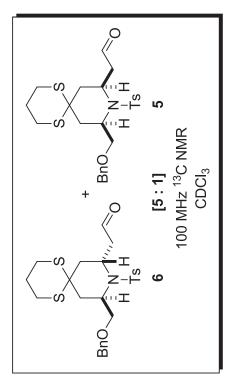


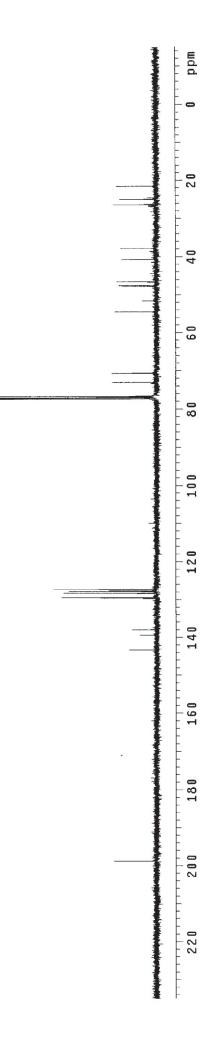


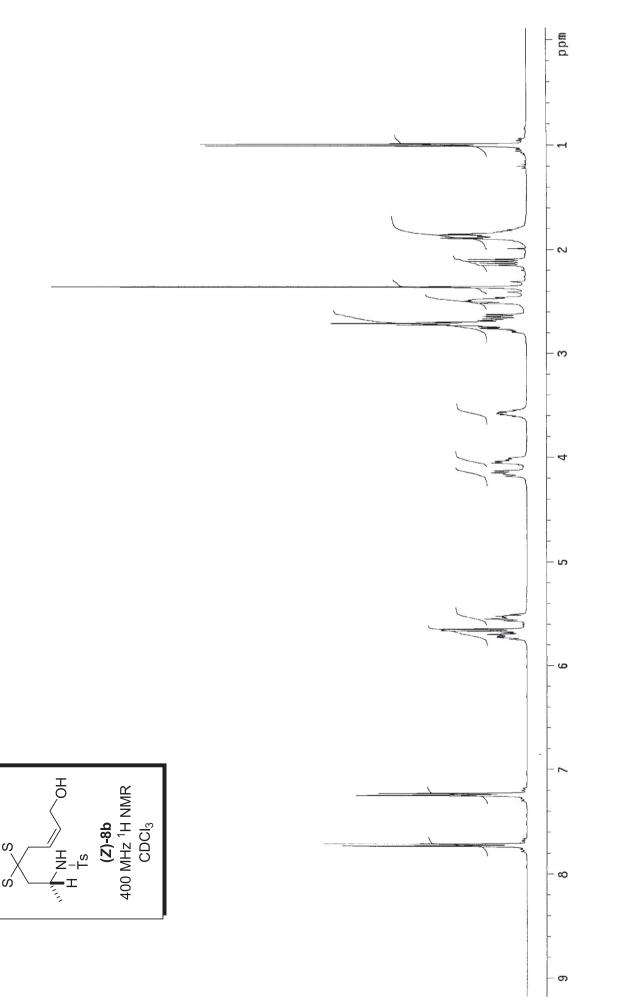


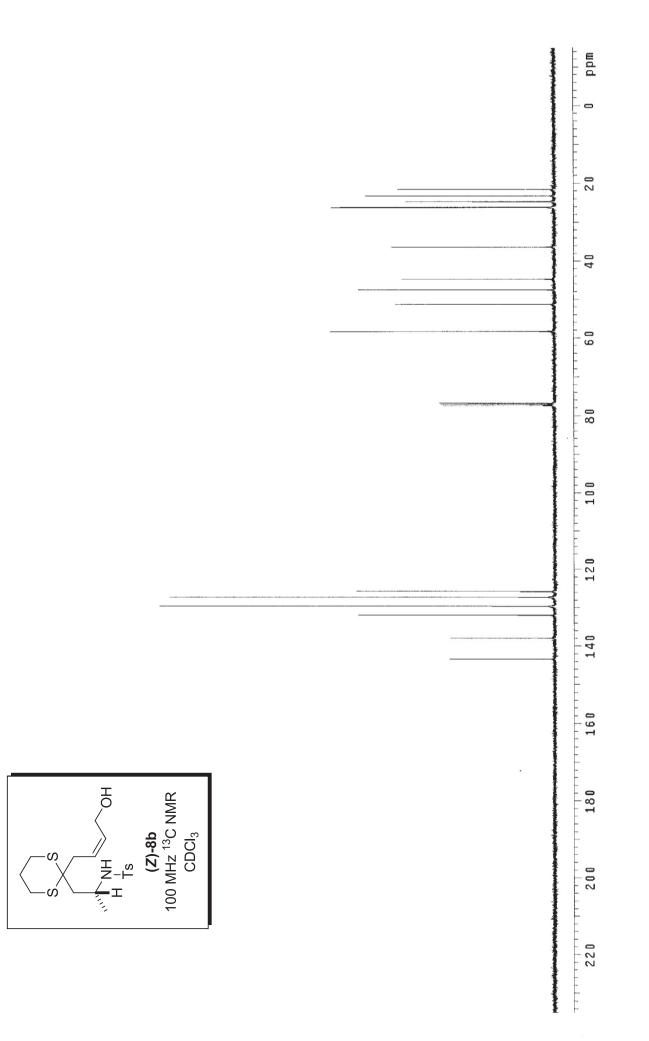


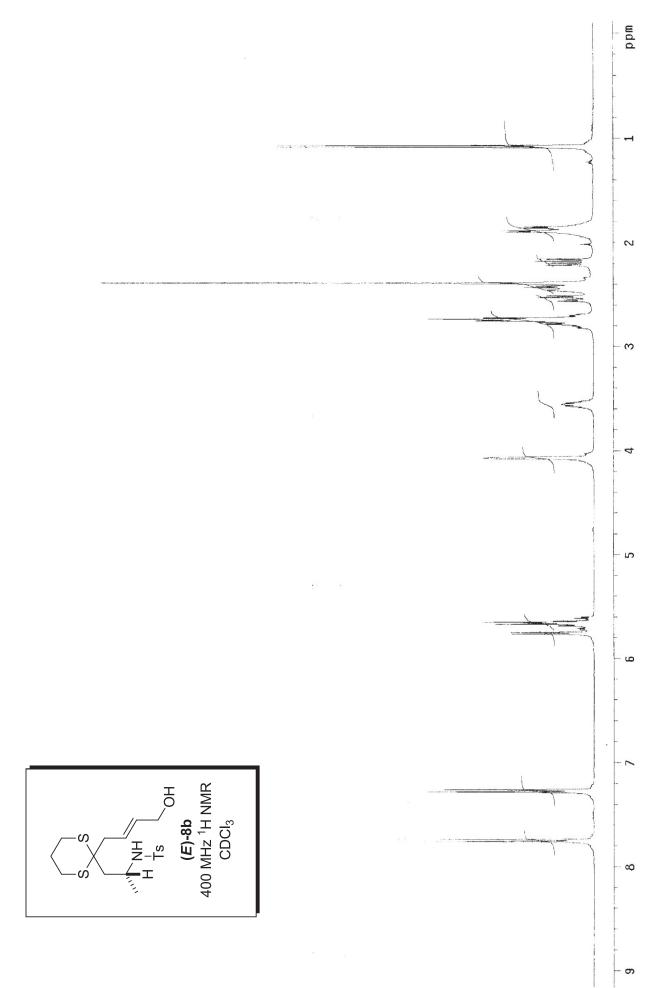


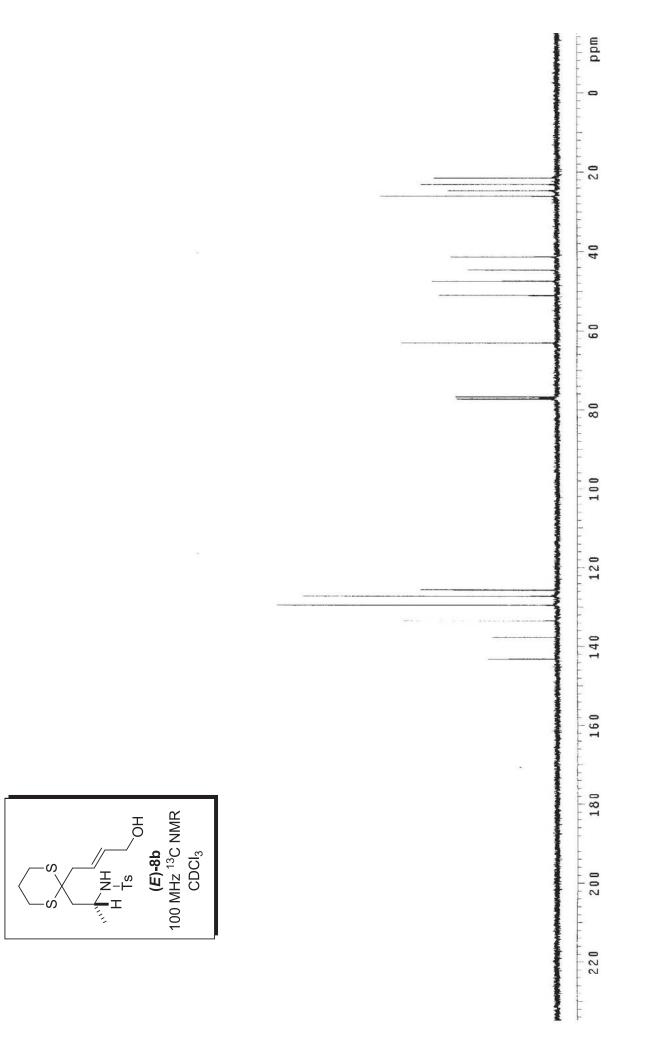


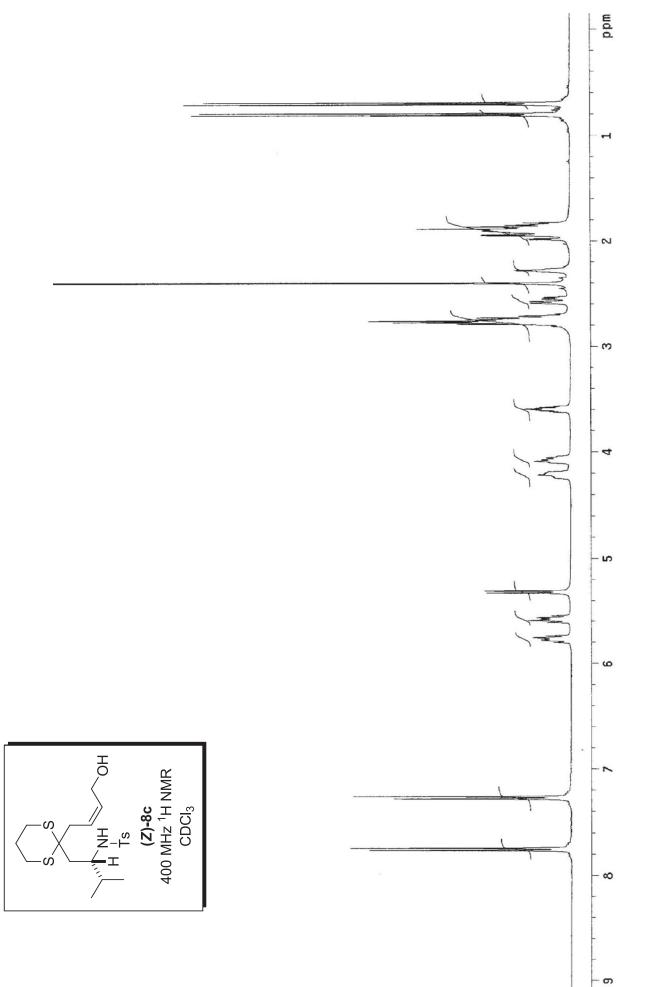


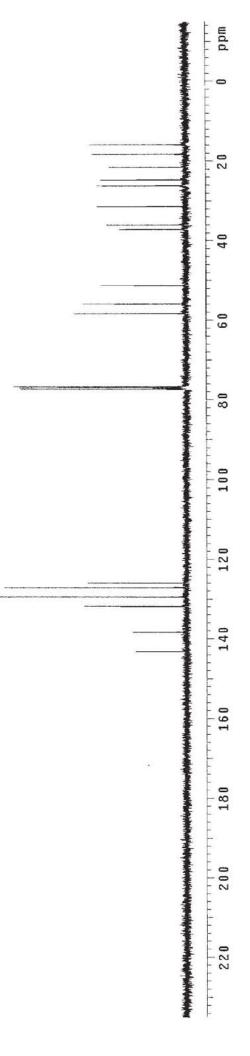


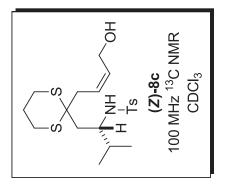


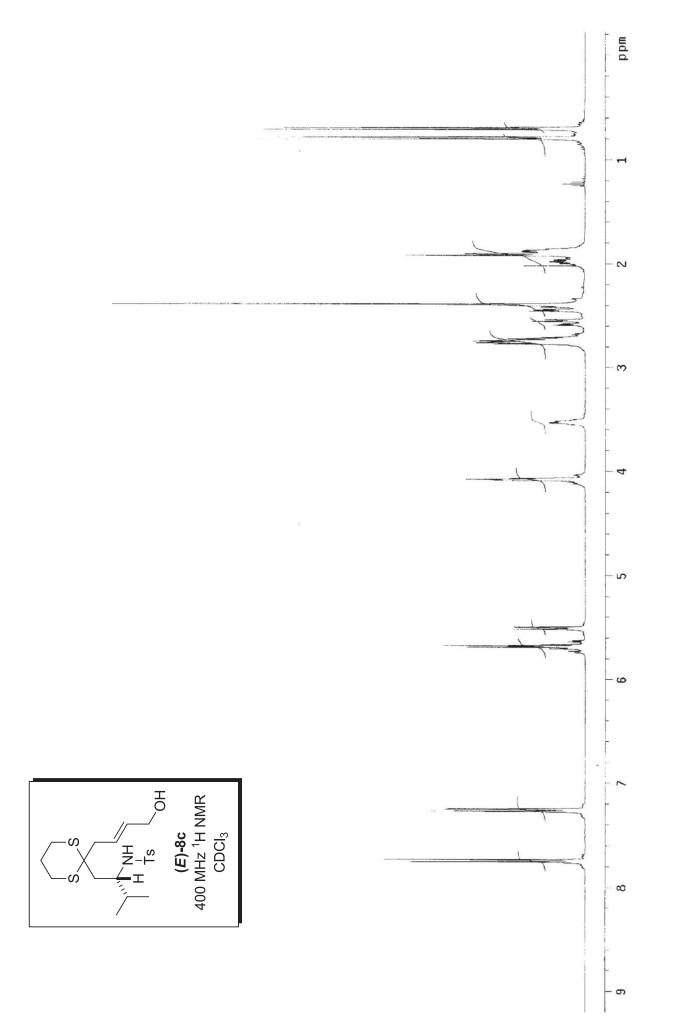


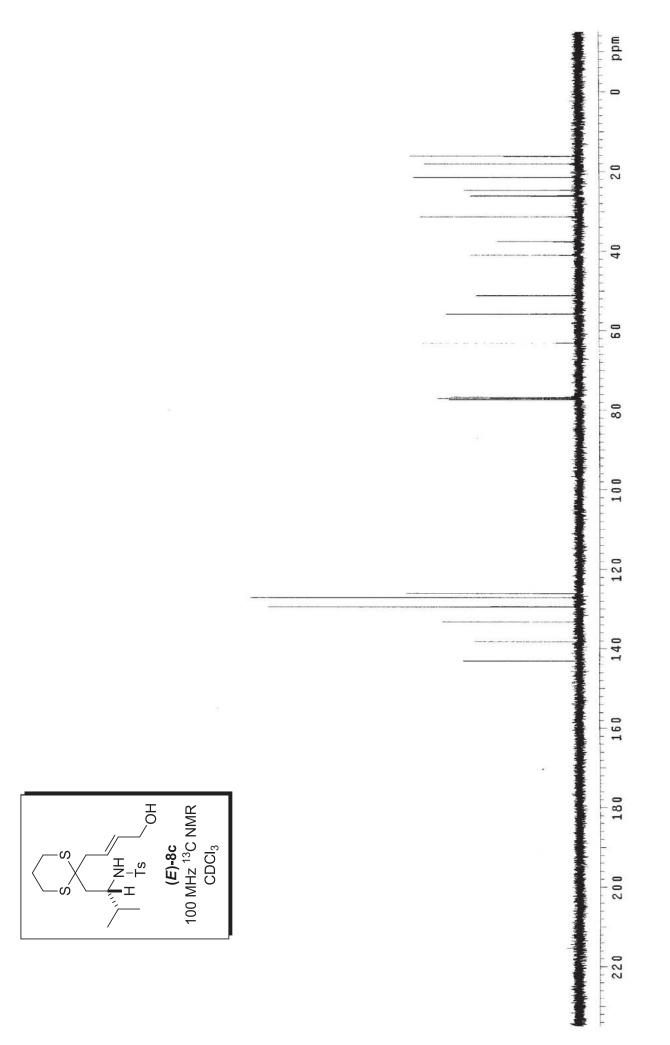


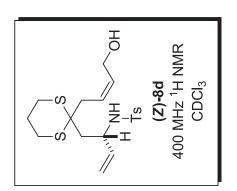


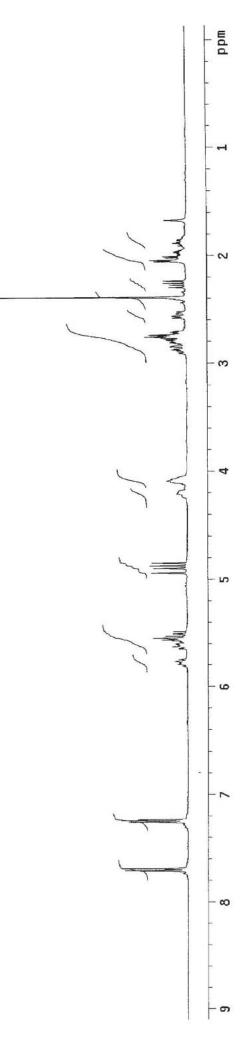


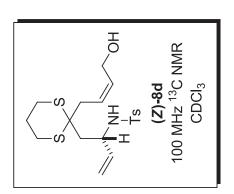


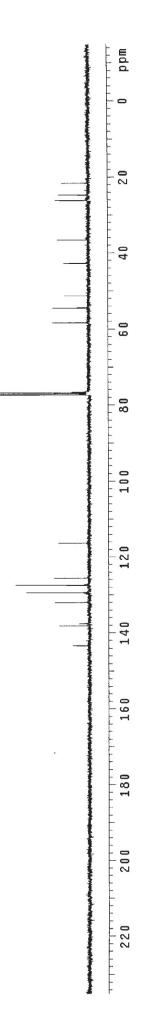


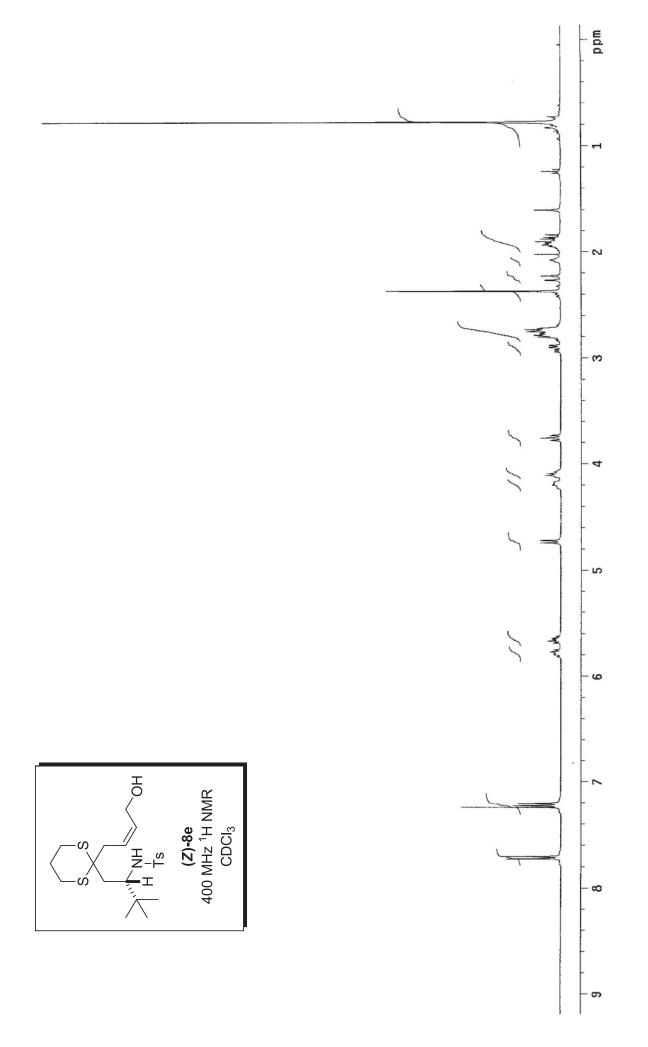


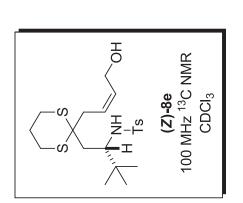


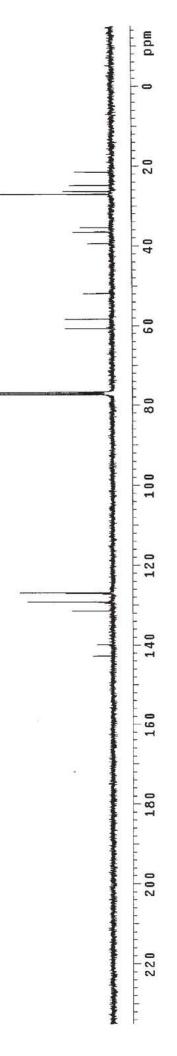


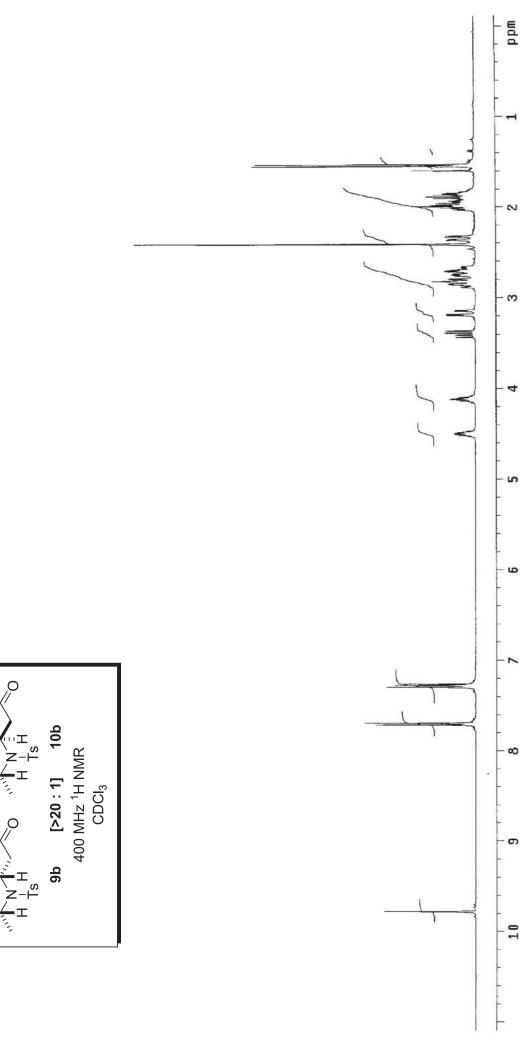


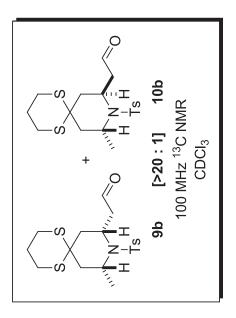


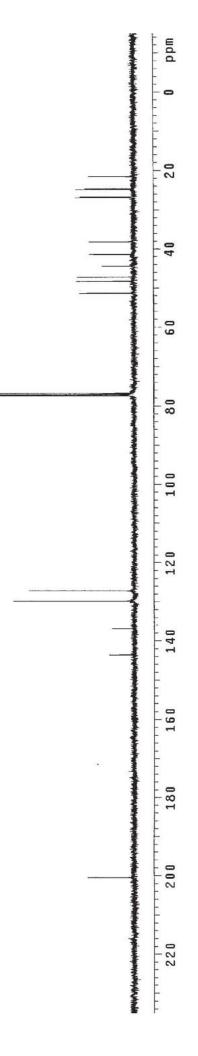


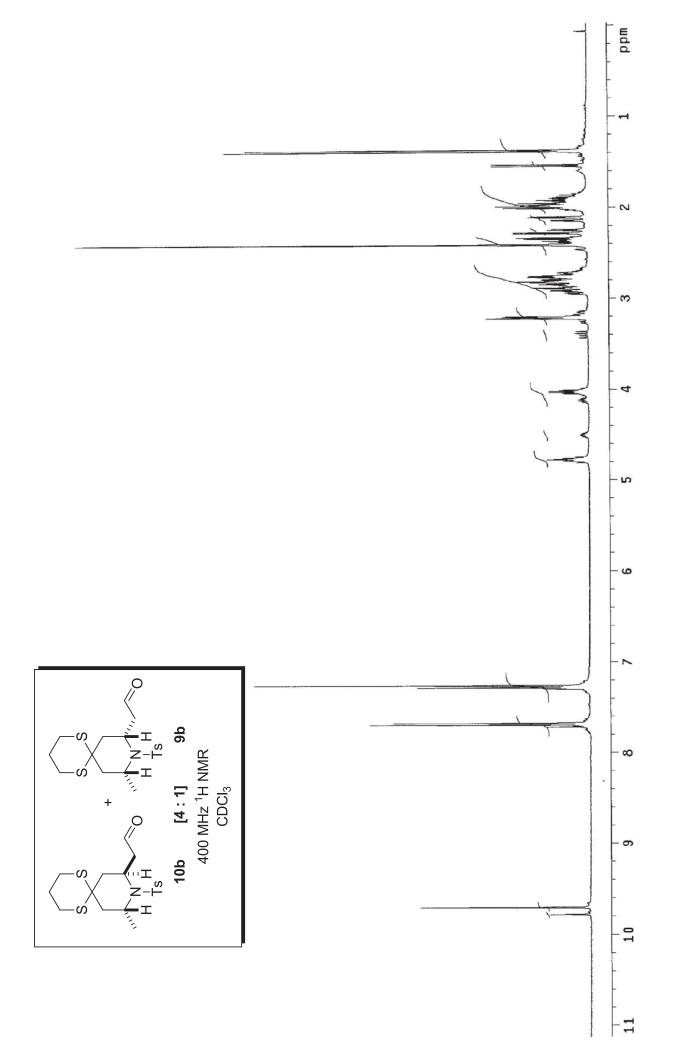


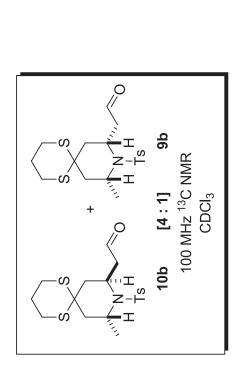


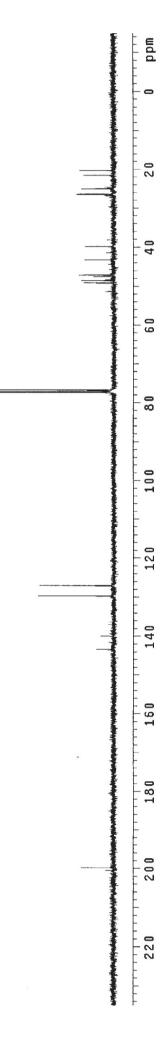


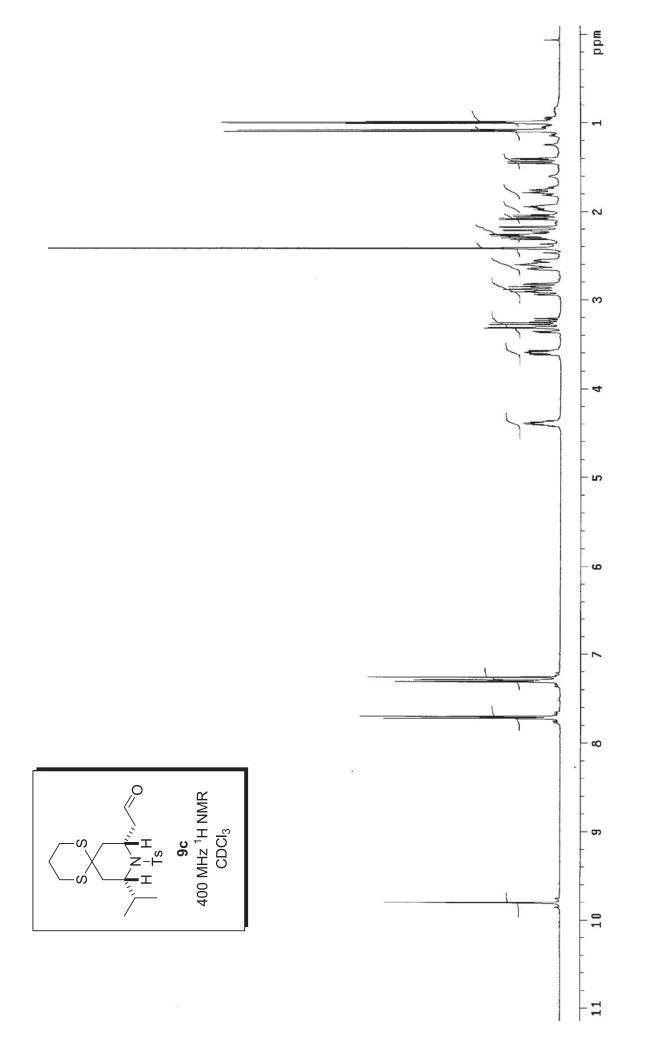


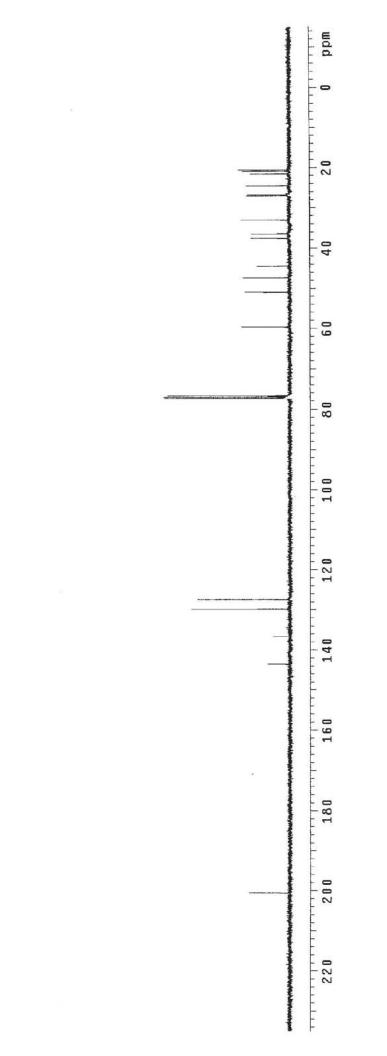


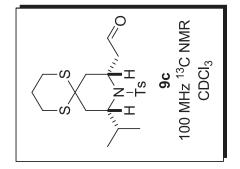


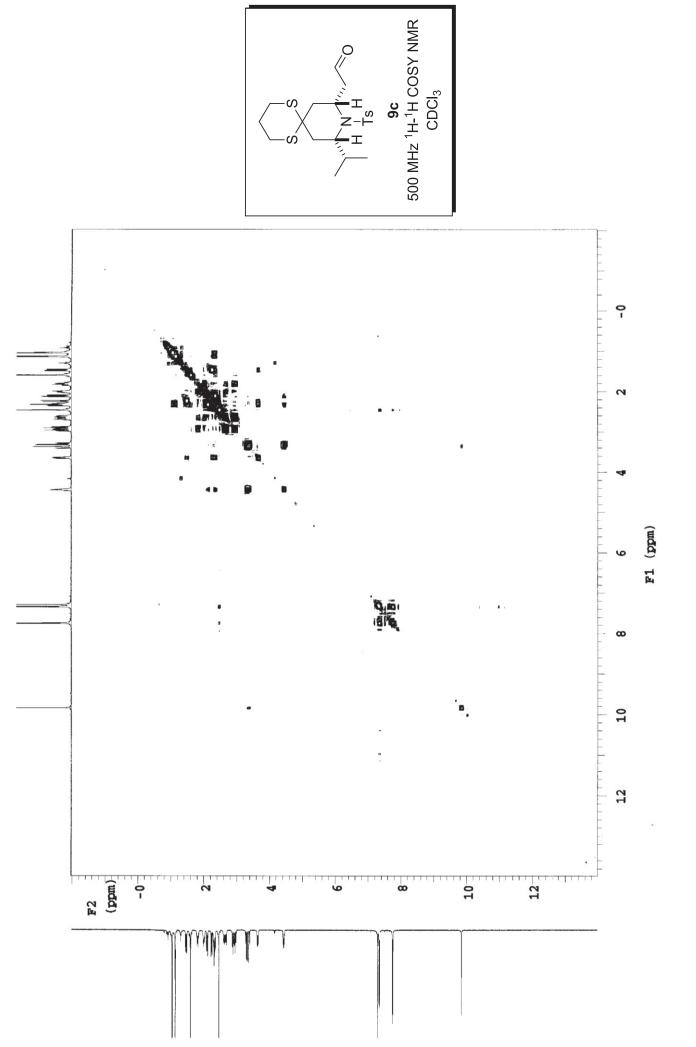

ഗ

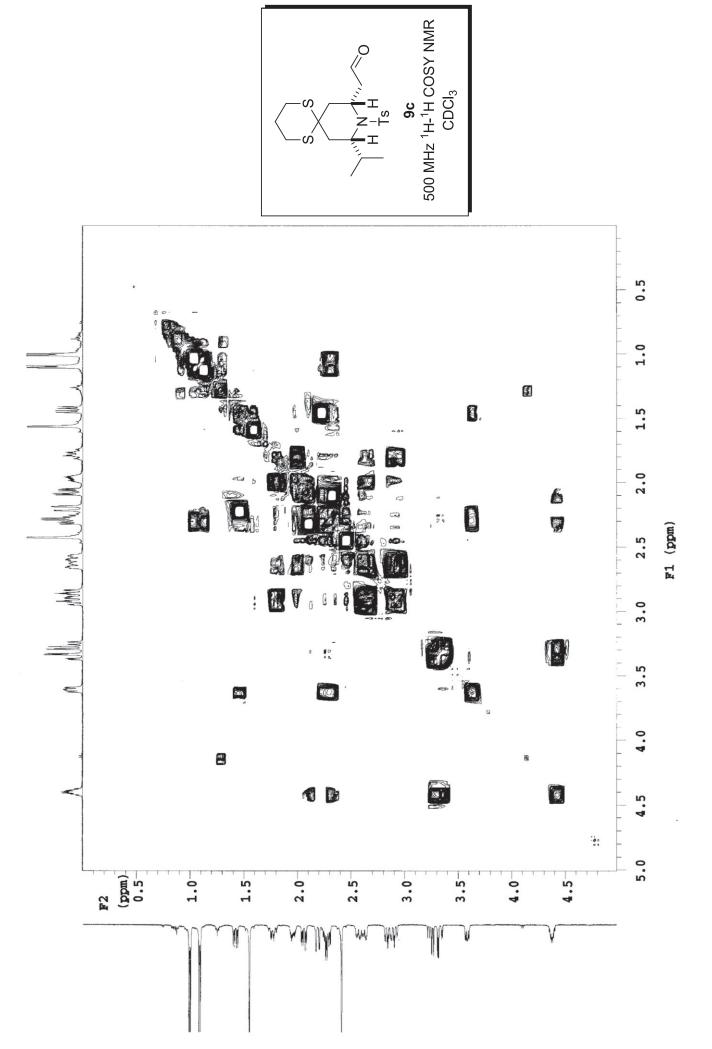


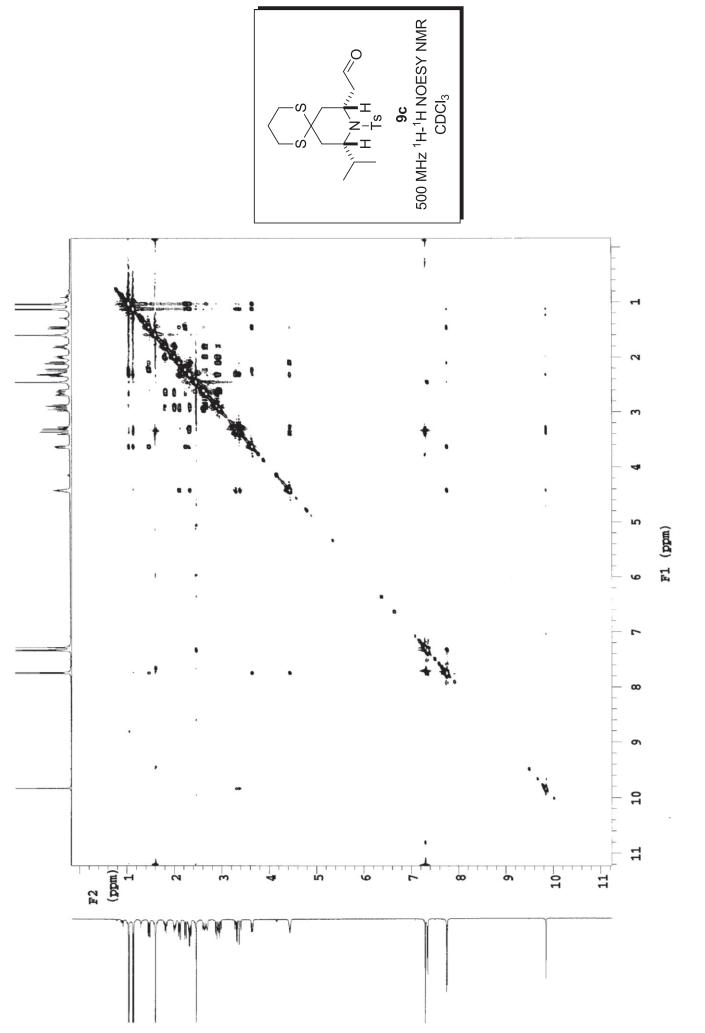


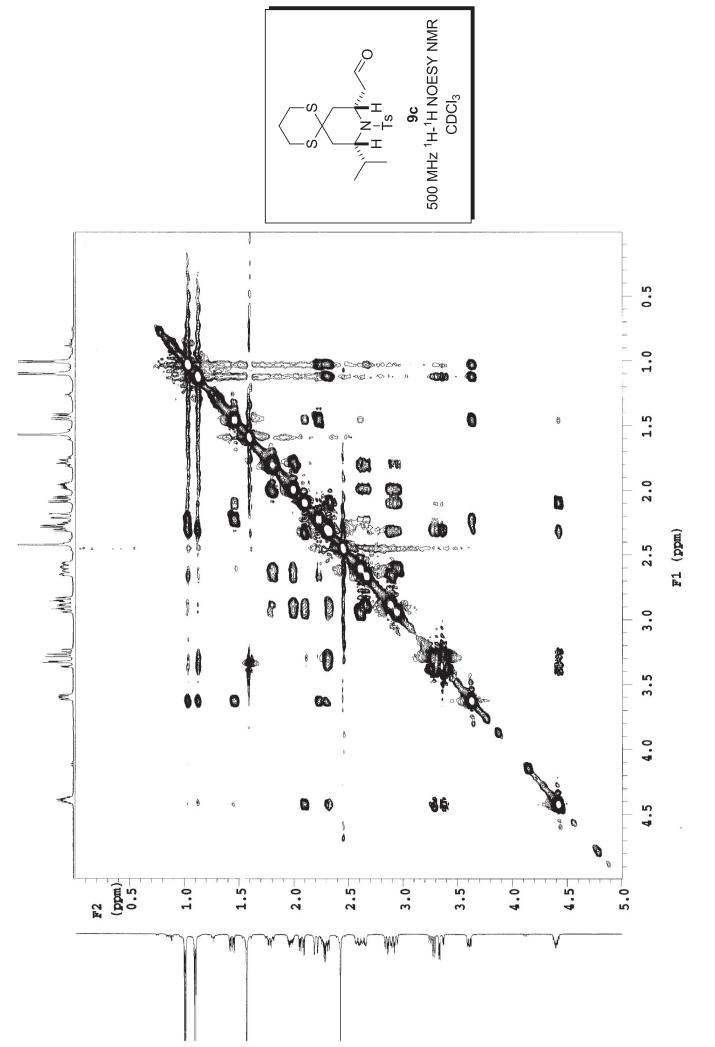


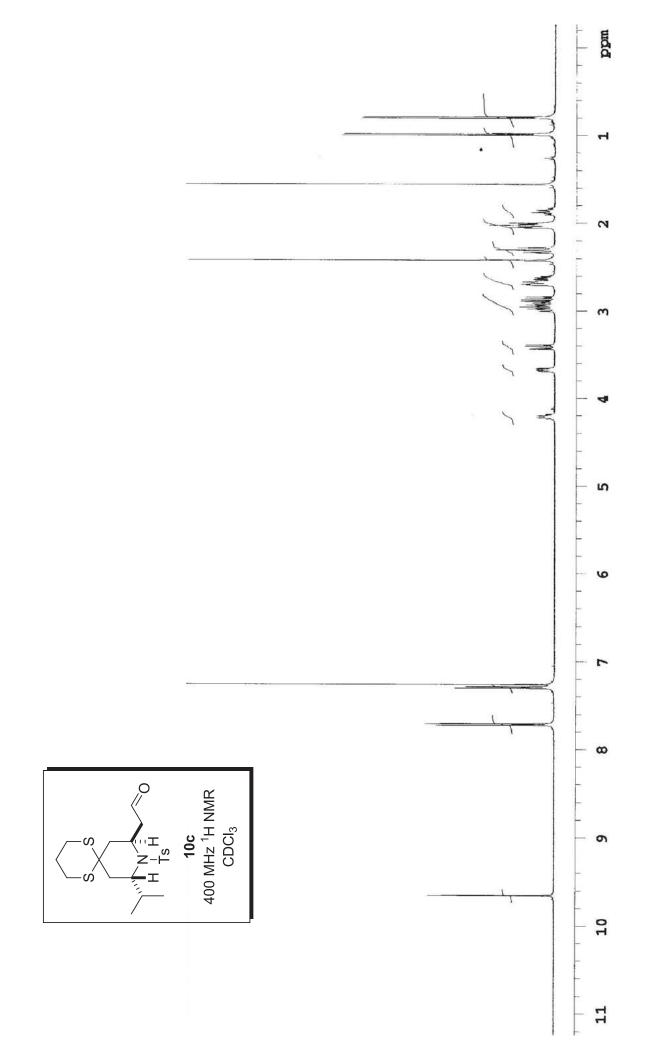


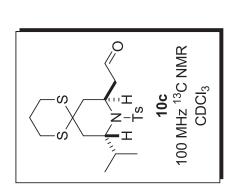


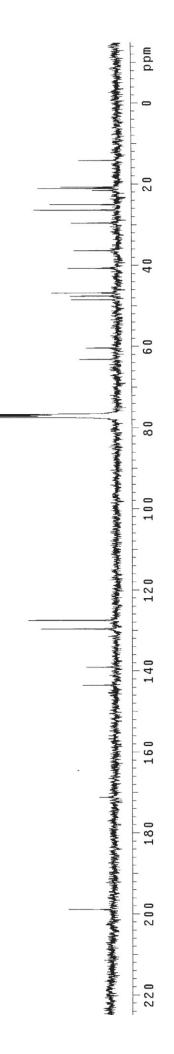


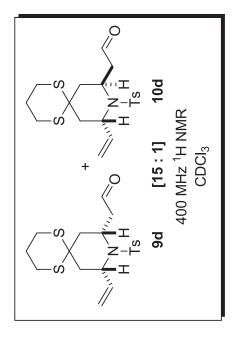


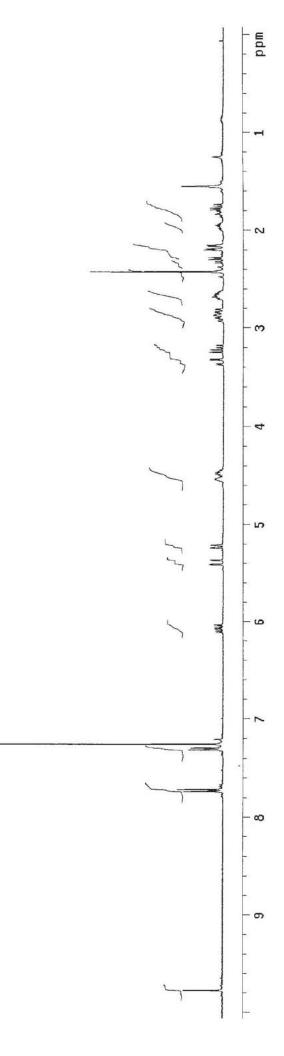


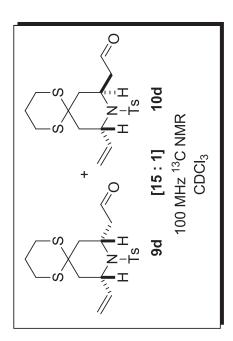


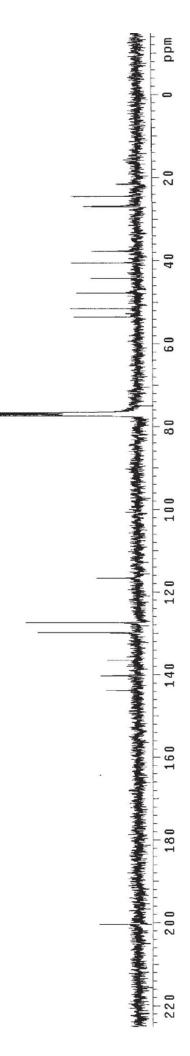


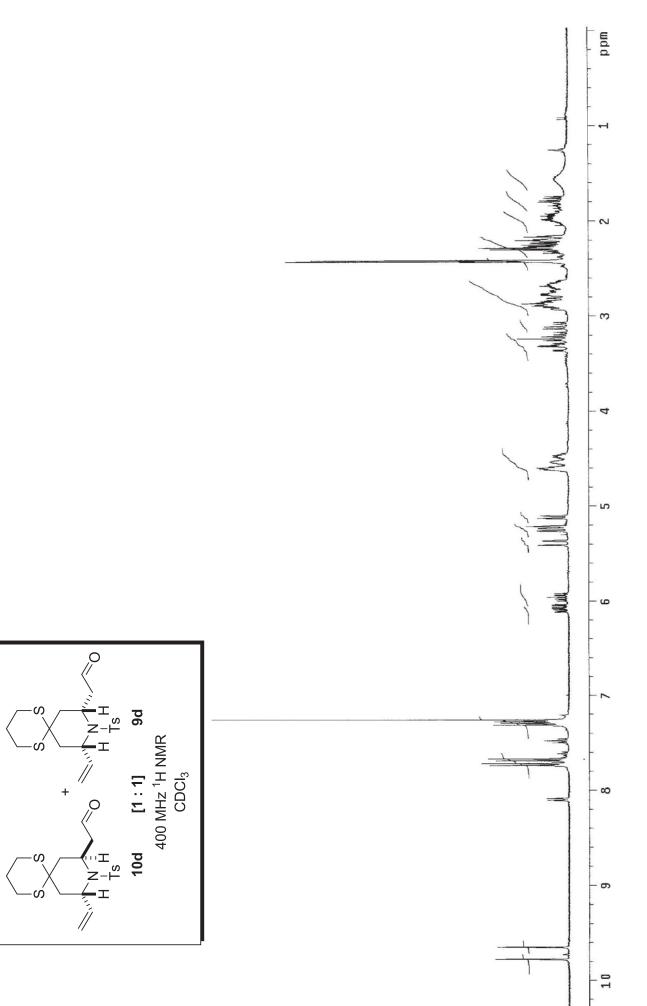


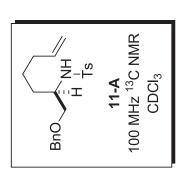


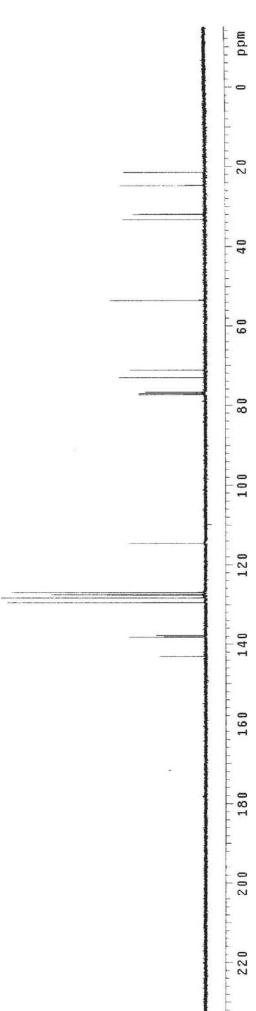


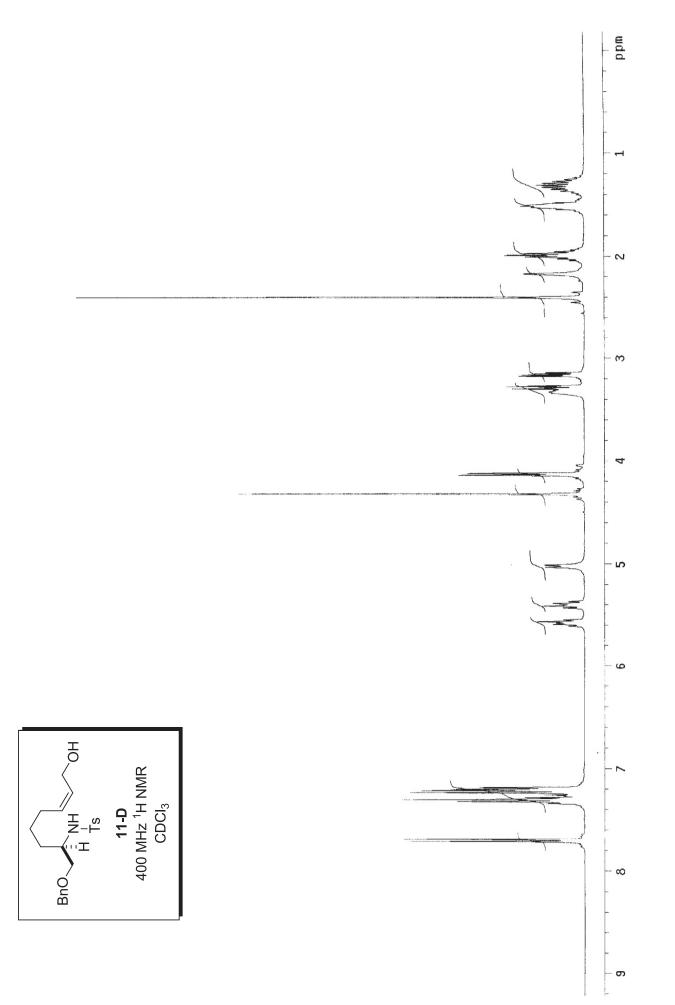


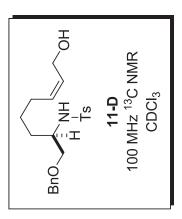


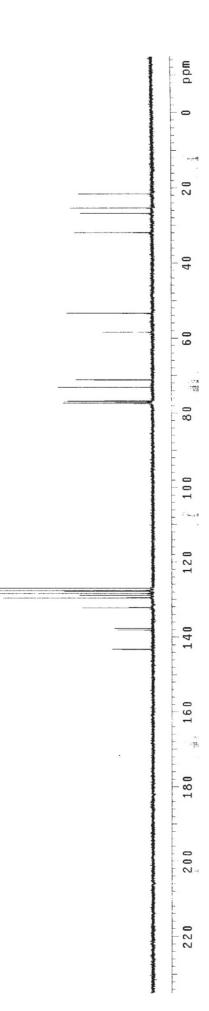


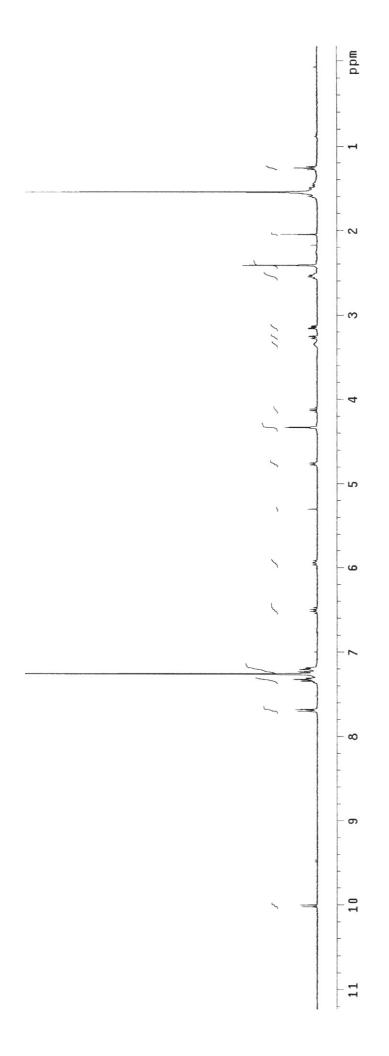


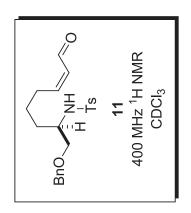


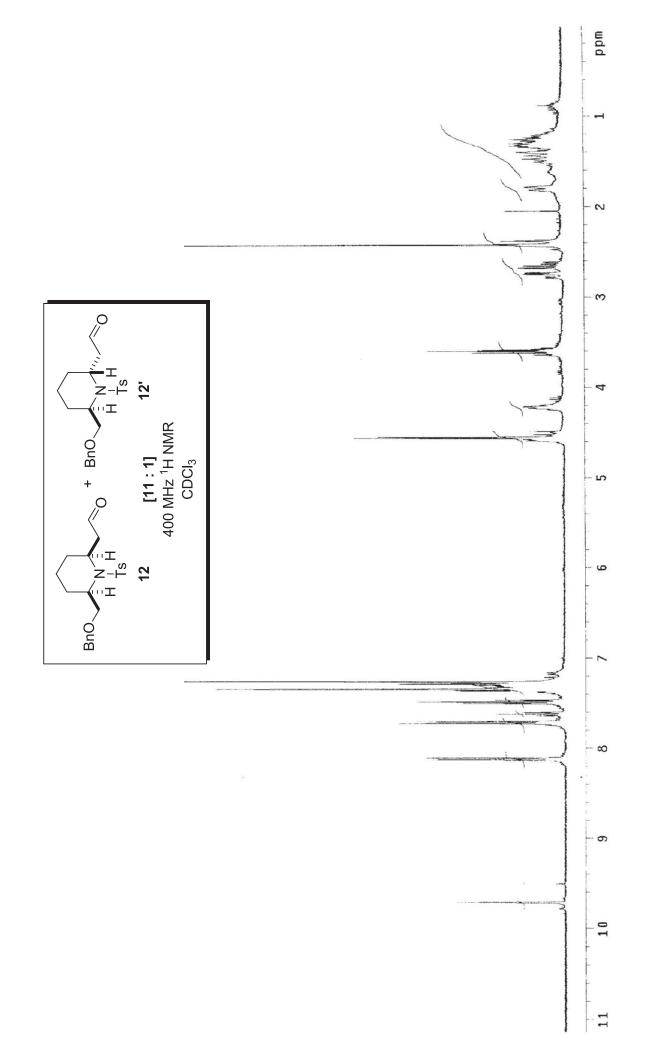


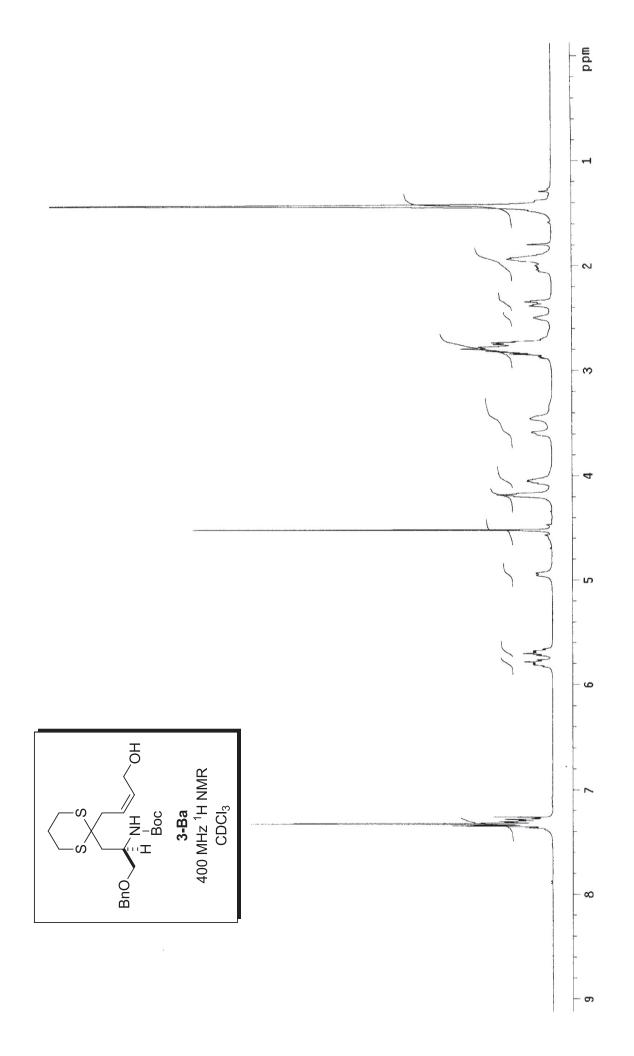


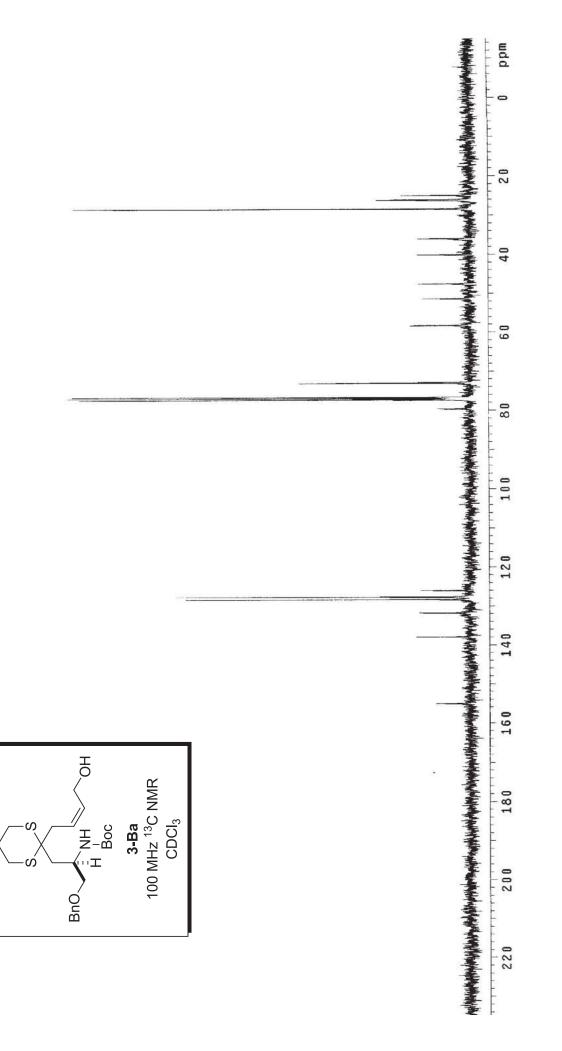


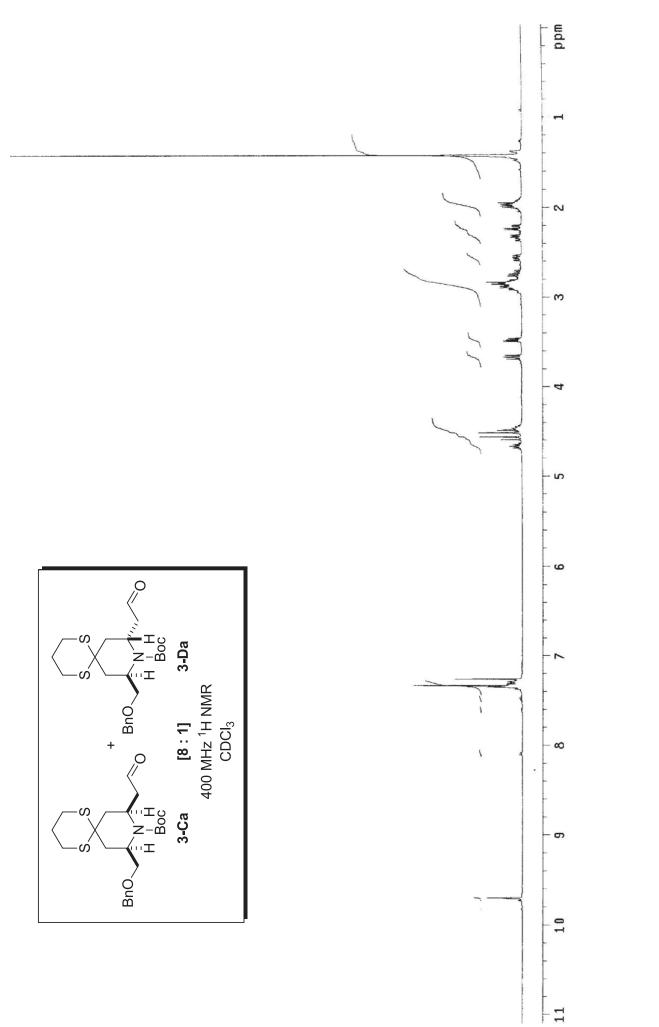




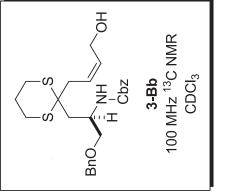


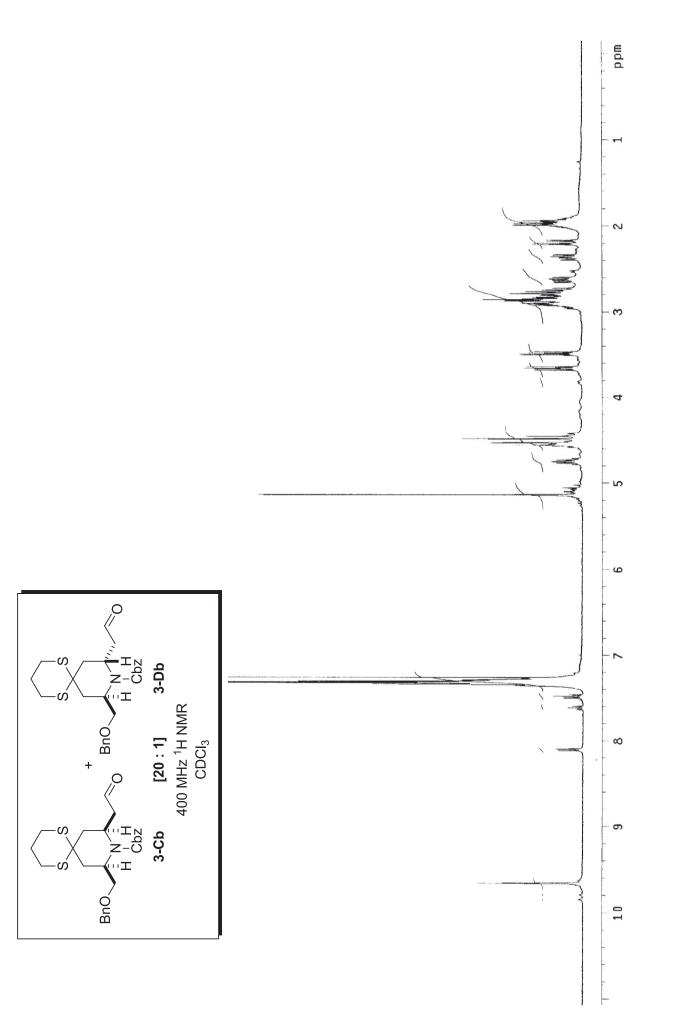


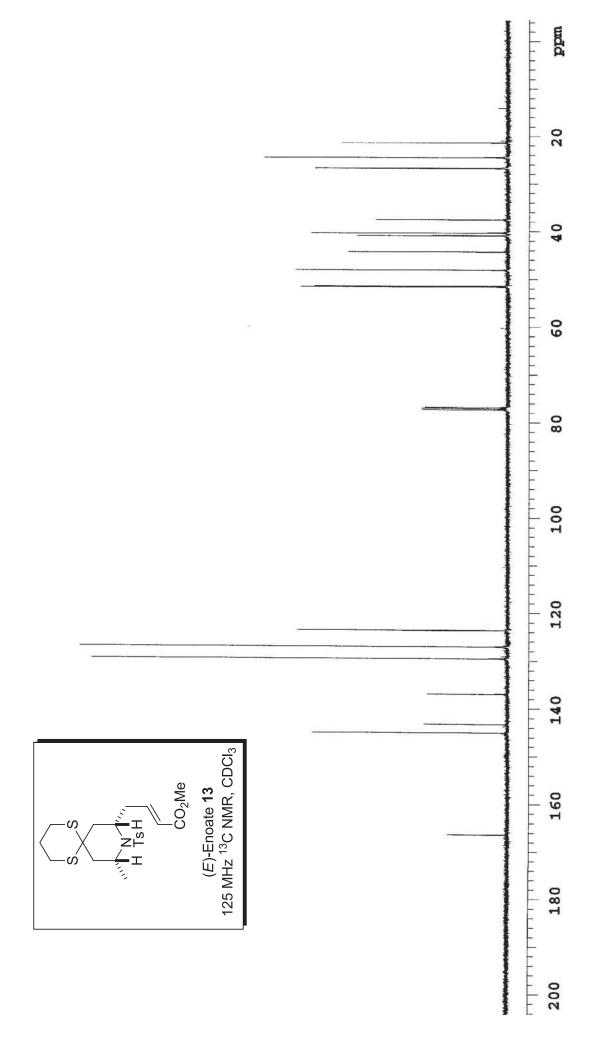


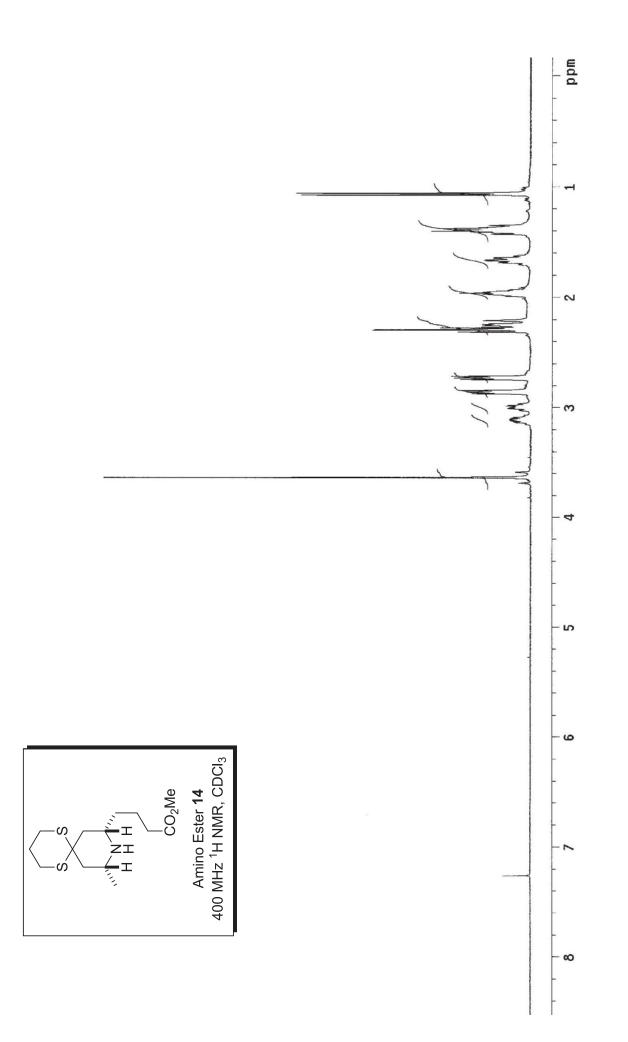









udd


+

