Supporting Information

Stereoselective Synthesis of 2,6-cis- and 2,6-trans-Piperidines through Organocatalytic Aza-Michael Reactions:

A Facile Synthesis of (+)-Myrtine and (-)-Epimyrtine

Yongcheng Ying, Hyoungsu Kim, and Jiyong Hong*
Department of Chemistry, Duke University, Durham, NC 27708

* To whom correspondence should be addressed.

Tel: 919-660-1545, Fax: 919-660-1605, E-mail: jiyong.hong@duke.edu

Contents

Experimental Section
Page Number

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR

(Z)-Allyl Alcohol (Z)-3

(Z)-1

2

(Z)-3

To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $(Z) \mathbf{- 1}(100 \mathrm{mg}, 0.53 \mathrm{mmol})$ in HMPA/THF $(1: 10,11 \mathrm{~mL})$ was added dropwise t - $\mathrm{BuLi}(0.63 \mathrm{~mL}, 1.7 \mathrm{M}$ in pentane, 1.07 mmol), and the resulting mixture was stirred for 5 min before aziridine $\mathbf{2}^{1}(167 \mathrm{mg}, 0.53 \mathrm{mmol})$ was added. After stirred for 1 h at -78 ${ }^{\circ} \mathrm{C}$, the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted with EtOAc. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, $2 / 1$ to $1 / 1$) to afford (Z)-3 (201 mg, 75%): $[\alpha]^{26}{ }_{\mathrm{D}}=+11.5\left(c 0.92, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.36(\mathrm{~m}, 7 \mathrm{H}), 5.74(\mathrm{ddd}, J=11.2,7.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{ddd}, J=$ $11.2,7.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29\left(\mathrm{AB}, J_{\mathrm{AB}}=12.0 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=14.8 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 4.15-4.22 (m, 1H), 4.03-4.10(m, 1H), 3.71-3.78(m, 1H), 3.36(dd, $J=10.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.15$ (dd, $J=10.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61-2.83(\mathrm{~m}, 5 \mathrm{H}), 2.55(\mathrm{dd}, J=15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.31$ (dd, $J=15.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dd}, J=15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.93(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.2,137.8,137.5,131.8,129.5,128.2,127.7,127.6,127.0,125.5,72.9,71.8$, 58.2, 51.4, 51.1, 40.0, 36.3, 26.0, 25.8, 24.6, 21.4; IR (neat) $3273,1156,1090,668 \mathrm{~cm}^{-1}$; HRMS (FAB) found 525.1902 [calcd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{3}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} 525.1910$].

[^0]
(E)-Allyl Alcohol (E)-3

(E) -1

2

(E) -3

To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $(E) \mathbf{- 1}(150 \mathrm{mg}, 0.79 \mathrm{mmol})$ in HMPA/THF $(1: 10,11 \mathrm{~mL})$ was added dropwise $t-\mathrm{BuLi}(0.93 \mathrm{~mL}, 1.7 \mathrm{M}$ in pentane, 1.58 mmol$)$, and the resulting mixture was stirred for 5 min before aziridine $2(167 \mathrm{mg}, 0.53 \mathrm{mmol})$ was added. After stirred for 0.5 h at -78 ${ }^{\circ} \mathrm{C}$, the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted with EtOAc. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, $2 / 1$ to $1 / 1$) to afford $(E)-\mathbf{3}(285 \mathrm{mg}, 71 \%):[\alpha]^{26}{ }_{\mathrm{D}}=+22.5\left(c 2.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.34(\mathrm{~m}, 7 \mathrm{H}), 5.63-5.75(\mathrm{~m}, 2 \mathrm{H}), 5.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{AB}$, $\left.J_{\mathrm{AB}}=12.0 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=18.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.04(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=$ 9.6, 3.6 Hz, 1H), $3.22(\mathrm{dd}, J=9.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.82(\mathrm{~m}, 4 \mathrm{H}), 2.54(\mathrm{dd}, J=15.6,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.43(\mathrm{dd}, J=15.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{dd}, J=15.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{dd}, J=$ $15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.94(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.2,137.8,137.5,133.5$, $129.5,128.2,127.6,127.0,125.7,72.9,71.8,63.1,51.2,51.0,41.3,39.9,26.0,25.8,24.6,21.4 ;$ IR (neat) $3289,1597,1326,1092 \mathrm{~cm}^{-1}$; HRMS (FAB) found 525.1901 [calcd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{3}$ $\left.\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} 525.1910\right]$.

Secondary Amine-Catalyzed Aza-Michael Reaction

(Z)-3

4

To a stirred solution of $(Z) \mathbf{- 3}(10.0 \mathrm{mg}, 0.0197 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL}, 0.02 \mathrm{M})$ was added $\mathrm{MnO}_{2}(34.3 \mathrm{mg}, 0.394 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$. After stirred for 3 h at the same temperature, the reaction mixture was then filtered through celite and concentrated in vacuo. The crude α, β-unsaturated aldehyde 4 was employed in the next step without further purification: ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.90(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.34(\mathrm{~m}, 7 \mathrm{H}), 6.68(\mathrm{ddd}, J=$ $11.2,7.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{ddd}, J=11.2,8.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~s}$, 2H), 3.70 (brs, 1H), 3.41 (dd, $J=9.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=9.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=$ $16.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=16.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.72(\mathrm{~m}, 3 \mathrm{H}), 2.38$ (s, 3H), $2.36(\mathrm{dd}, J=15.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dd}, J=15.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.96(\mathrm{~m}, 2 \mathrm{H})$.

To a stirred solution of α, β-unsaturated aldehyde $4(10.0 \mathrm{mg}, 0.0197 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL}$, 0.02 M) was added pyrrolidine•TFA ($0.1 \mathrm{~mL}, 7.3 \mathrm{mg}$ pyrrolidine \cdot TFA dissolved in 1.0 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) at $0{ }^{\circ} \mathrm{C}$. After stirred for 20 h at the same temperature, the reaction mixture was concentrated and purified by column chromatography (silica gel, hexanes/EtOAc, 3/1) to afford an inseparable mixture of 2,6-cis-piperidine $\mathbf{5}$ and 2,6-trans-piperidine $\mathbf{6}(8.0 \mathrm{mg}, 80 \%$, 5:6 $=$ 4:1) as a colorless oil: [For 5] $[\alpha]^{28}=+10.3\left(c 0.32, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$9.72(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.37(\mathrm{~m}, 7 \mathrm{H}), 4.57\left(\mathrm{AB}, J_{\mathrm{AB}}=11.6 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=20.4\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 4.46-4.53(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=8.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=8.8$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=18.0,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=18.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.86(\mathrm{~m}, 4 \mathrm{H})$, $2.51(\mathrm{dd}, J=15.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{dd}, J=14.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=14.8$, 6.4 Hz, 1H), 1.83-1.94(m, 2H), $1.79(\mathrm{dd}, J=15.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $200.2,143.7,137.9,136.7,129.8,128.4,127.9,127.7,127.2,73.3,73.0,51.6,46.8,44.3,38.6$, $35.3,26.8,26.7,24.6,21.5$; IR (neat) 1721, 1327, $1098 \mathrm{~cm}^{-1}$; HRMS (FAB) found 506.1482 [calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{~S}_{3}(\mathrm{M}+\mathrm{H})^{+}$506.1488]. [For 6] ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.50(\mathrm{~s}, 1 \mathrm{H})$, $7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.14(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.51\left(\mathrm{AB}, J_{\mathrm{AB}}=11.6 \mathrm{~Hz}\right.$, $\left.\Delta v_{\mathrm{AB}}=24.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.37-4.47(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{dd}, J=9.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=10.0,6.8$ Hz, 1H), 3.12 (dd, $J=18.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.97$ (dd, $J=18.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.90(\mathrm{~m}, 4 \mathrm{H})$, $2.35(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{dd}, J=6.4,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 1.86-2.00 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 198.9,143.3,139.4,138.0,129.5,128.3$, $127.8,127.7,127.6,73.0,70.6,54.5,47.7,47.5,46.5,40.7,37.8,26.33,26.29,24.9,21.5 ;$ IR (neat) 1722, 1326, 1305, $1085 \mathrm{~cm}^{-1}$; HRMS (FAB) found 506.1489 [calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{~S}_{3}$ $(\mathrm{M}+\mathrm{H})^{+}$506.1488].

Representative Procedures for Organocatalytic Allylic Oxidation/Aza-Michael Reactions

To a stirred solution of $(Z)-\mathbf{3}(13.0 \mathrm{mg}, 0.0256 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL}, 0.0171 \mathrm{M})$ was added $\mathrm{MnO}_{2}(50.6 \mathrm{mg}, 0.512 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$. After stirred for 4 h at the same temperature, the reaction mixture was then filtered through celite and concentrated in vacuo. To a stirred solution of α, β -
unsaturated aldehyde 4 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL}, 0.0256 \mathrm{M})$ was added $(R)-\mathbf{I} \cdot \mathrm{BzOH}(2.3 \mathrm{mg}, 0.0051$ mmol) at $0{ }^{\circ} \mathrm{C}$. After stirred for 20 h at the same temperature, the reaction mixture was concentrated and purified by column chromatography (silica gel, hexanes/EtOAc, 3/1) to afford an inseparable mixture of 2,6-cis-piperidine 5 and 2,6-trans-piperidine $\mathbf{6}(12.1 \mathrm{mg}, 92 \%, \mathbf{5}: \mathbf{6}=$ 11:1) as a colorless oil.

(Z)-3
(Z)
a. $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $25^{\circ} \mathrm{C}, 4 \mathrm{~h}$, filtration
b. $(S)-\mathrm{I} \cdot \mathrm{BzOH}(20 \mathrm{~mol} \%)$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 20 \mathrm{~h}$ 88% for two steps

To a stirred solution of $(Z)-\mathbf{3}(13.0 \mathrm{mg}, 0.0256 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL}, 0.0171 \mathrm{M})$ was added $\mathrm{MnO}_{2}(50.6 \mathrm{mg}, 0.512 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$. After stirred for 4 h at the same temperature, the reaction mixture was then filtered through celite and concentrated in vacuo. To a stirred solution of α, β unsaturated aldehyde 4 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL}, 0.0256 \mathrm{M})$ was added $(S)-\mathbf{I} \cdot \mathrm{BzOH}(2.3 \mathrm{mg}, 0.0051$ mmol) at $0{ }^{\circ} \mathrm{C}$. After stirred for 20 h at the same temperature, the reaction mixture was concentrated and purified by column chromatography (silica gel, hexanes/EtOAc, 3/1) to afford an inseparable mixture of 2,6-cis-piperidine 5 and 2,6-trans-piperidine $\mathbf{6}(11.5 \mathrm{mg}, 88 \%, \mathbf{5}: \mathbf{6}=$ 1:3) as a colorless oil.

Optimization of Reaction Conditions

(Z)-3

(R)-I

(R)-II

(2R,5R)-III

entry	catalyst	solvent	temp (${ }^{\circ} \mathrm{C}$)	time (h)	yield (\%) ${ }^{\text {a }}$	dr^{b}
1	(R)-I	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0	20	92	11:1
2	(R)-II	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0	20	92	11:1
3	$(2 R, 5 R)$-III	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0	24	73	4:1
4	(R)-I	toluene	0	20	94	9:1
5	(R)-I	ether	0	48	45	4.5:1
6	(R)-I	MeOH	0	48	86	4:1
7	(R)-I	MeCN	0	48	86	4.5:1
8	(R)-I	DMF	0	72	28	4:1
9	(R)-I	THF	0	72	NR^{c}	NA^{d}
10	(R)-I	dioxane	25	72	NR^{c}	NA^{d}

${ }^{a}$ Combined yield of $\mathbf{5}$ and $\mathbf{6}$. ${ }^{b}$ Diastereomeric ratio (5:6) determined by integration of the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude product. ${ }^{c}$ No reaction. ${ }^{d}$ Not applicable

To a stirred solution of $(E) \mathbf{- 3}(23.0 \mathrm{mg}, 0.0453 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL}, 0.0302 \mathrm{M})$ was added $\mathrm{MnO}_{2}(89.6 \mathrm{mg}, 0.906 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$. After stirred for 4 h at the same temperature, the reaction mixture was then filtered through celite and concentrated in vacuo. To a stirred solution of α, β unsaturated aldehyde intermediate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL}, 0.0227 \mathrm{M})$ was added $(R)-\mathbf{I} \cdot \mathrm{BzOH}(4.0$ $\mathrm{mg}, 0.0091 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After stirred for 20 h at the same temperature, the reaction mixture was concentrated and purified by column chromatography (silica gel, hexanes/EtOAc, 3/1) to afford an inseparable mixture of 2,6-cis-piperidine 5 and 2,6-trans-piperidine 6 ($22.0 \mathrm{mg}, 96 \%$, 5:6 $=15: 1$) as a colorless oil.

To a stirred solution of $(E)-\mathbf{3}(23.0 \mathrm{mg}, 0.0453 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL}, 0.0302 \mathrm{M})$ was added $\mathrm{MnO}_{2}(89.6 \mathrm{mg}, 0.906 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$. After stirred for 4 h at the same temperature, the reaction mixture was then filtered through celite and concentrated in vacuo. To a stirred solution of α, β unsaturated aldehyde intermediate in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL}, 0.0227 \mathrm{M})$ was added (S)-I $\cdot \mathrm{BzOH}(4.0$ $\mathrm{mg}, 0.0091 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After stirred for 20 h at the same temperature, the reaction mixture was concentrated and purified by column chromatography (silica gel, hexanes/EtOAc, 3/1) to afford an inseparable mixture of 2,6-cis-piperidine 5 and 2,6-trans-piperidine $6(21.0 \mathrm{mg}, 91 \%$, $\mathbf{5 : 6}=1: 5)$ as a colorless oil.

Substrate Scope of the Organocatalytic Aza-Michael Reaction

			b or c OH		
entry	R	allyl alcohol (yield)	Reaction conditions (time) ${ }^{a}$	major product (yield ${ }^{b}$)	dr^{c}
1	OBn	(Z)-8a (75\%)	b (24 h)	9a (91\%)	11:1
			c (24 h)	10a (82\%)	1:3
		(E)-8a (81\%)	b (20 h)	9a (93\%)	15:1
			c (20 h)	10a (86\%)	1:5
2	Me	(Z)-8b (60\%)	b (7 h)	9b (90\%)	>15:1
			c (10 h)	10b (75\%)	1:2
		(E)-8b (66\%)	b (7 h)	9b (97\%)	>20:1
			c (9 h)	10b (80\%)	1:4
3	$i-\mathrm{Pr}$	(Z)-8c (30\%)	b (45 h)	9c (78\%)	10:1
			c (64 h)	10c (78\%)	1:8
		(E)-8c (50\%)	b (45 h)	9c (87\%)	12:1
			c (67 h)	10c (79\%)	1:10
4	$\mathrm{CH}=\mathrm{CH}_{2}$	(Z)-8d (30\%)	b (15 h)	9d (90\%)	15:1
			c (18 h)	10d (86\%)	1:1
5	t-Bu	(Z)-8e (14\%)	b (24 h)	$\mathrm{NR}^{\text {d }}$	NA^{e}
			c (24 h)	$\mathrm{NR}^{\text {d }}$	

${ }^{a}$ Reagents and conditions: (a) t-BuLi, HMPA/THF (1:10), $-78{ }^{\circ} \mathrm{C}, 5 \mathrm{~min}$, then, $7 \mathrm{a}-\mathrm{e}^{2}{ }^{2}-78{ }^{\circ} \mathrm{C}, 0.5-1 \mathrm{~h}, 14-81 \%$; (b) $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 3 \mathrm{~h}$, filtration; (S)-I $\cdot \mathrm{BzOH}\left(20 \mathrm{~mol} \%\right.$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; (c) i. $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 3 \mathrm{~h}$, filtration; ii. (R)-I•BzOH (20 mol \%) , $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}$. ${ }^{b}$ Combined yield of $\mathbf{9}$ and 10. ${ }^{c}$ Diastereomeric ratio (2,6-cis-piperidine:2,6-trans-piperidine) determined by integration of the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude product. ${ }^{d}$ No reaction. ${ }^{e}$ Not applicable.

[^1]

A colorless oil: $[\alpha]^{27}{ }_{\mathrm{D}}=-1.7\left(c\right.$ 1.00, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.71$ (ddd, $J=11.2,7.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.53(\mathrm{ddd}, J=10.8$, $7.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=12.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=12.4,6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.52-3.62(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.80(\mathrm{~m}, 5 \mathrm{H}), 2.46-2.52(\mathrm{~m}, 1 \mathrm{H})$, $2.36(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{dd}, J=15.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{dd}, J=15.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.94(\mathrm{~m}, 2 \mathrm{H})$, $1.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.2,137.8,131.8,129.5,127.1$, $125.6,58.2,51.2,47.4,44.6,36.2,26.0,24.5,23.0,21.4$; IR (neat) $3279,1320,1158,668 \mathrm{~cm}^{-1}$; HRMS (FAB) found 419.1491 [calcd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{3}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$419.1491].
 A colorless oil: $[\alpha]^{28.0}{ }_{\mathrm{D}}=-14.9\left(c \quad 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.76(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.60-5.73(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.51-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.68-$ $2.82(\mathrm{~m}, 4 \mathrm{H}), 2.54(\mathrm{dd}, J=14.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}$, $3 \mathrm{H}), 2.19$ (dd, $J=15.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.96(\mathrm{~m}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 143.2,137.7,133.5,129.5,127.2,125.6,63.0,51.0$, 47.4, 44.6, 41.3, 26.0, 24.6, 23.1, 21.4; IR (neat) $3280,1321,1158,1090,668 \mathrm{~cm}^{-1}$; HRMS (FAB) found 419.1487 [calcd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{3}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} 419.1491$].

A colorless oil: $[\alpha]^{22}{ }_{\mathrm{D}}=-3.1\left(c 0.15, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.77$ (ddd, $J=11.2,7.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.58$ (ddd, $J=11.2,7.2,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.32(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.04-4.10(\mathrm{~m}$, $1 \mathrm{H}), 3.56-3.62(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.81(\mathrm{~m}, 5 \mathrm{H}), 2.56(\mathrm{dd}, J=16.0,5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.82-1.99(\mathrm{~m}, 5 \mathrm{H}), 0.80(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.70(\mathrm{~d}, J=$ 6.8 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 143.2,138.3,131.9,129.5,127.1,125.9,58.3,55.9$,
$51.3,37.1,36.0,31.3,26.2,26.1,24.6,21.5,18.2,15.9$; IR (neat) $3288,1320,1157,1092,668$ cm^{-1}; HRMS (FAB) found 447.1793 [calcd for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{3}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} 447.1804$].

A colorless oil: $[\alpha]^{28}{ }_{\mathrm{D}}=-9.5\left(c\right.$ 1.06, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.62-5.75$ $(\mathrm{m}, 2 \mathrm{H}), 5.51(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.50-3.56(\mathrm{~m}, 1 \mathrm{H})$, 2.67-2.82 (m, 4H), 2.56 (dd, $J=14.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=14.0$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.84-2.01(\mathrm{~m}, 5 \mathrm{H}), 0.79(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $0.70(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.1,138.1,133.3,129.4,127.1$, $126.0,63.1,55.8,51.1,40.9,37.6,31.4,26.1,26.0,24.6,21.4,18.0,16.1$; IR (neat) 3280,1318 , 1155, $666 \mathrm{~cm}^{-1}$; HRMS (FAB) found 447.1793 [calcd for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{3}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} 447.1804$].

A colorless oil: $[\alpha]^{28}{ }_{\mathrm{D}}=+7.3\left(c\right.$ 0.48, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.78$ (ddd, $J=11.6,7.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.48-5.65(\mathrm{~m}, 3 \mathrm{H}), 4.92(\mathrm{~d}, J=17.6$ Hz, 1H), 4.86 (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.25(\mathrm{~m}, 1 \mathrm{H}), 4.04-4.12$ $(\mathrm{m}, 1 \mathrm{H}), 2.70-2.91(\mathrm{~m}, 5 \mathrm{H}), 2.55(\mathrm{dd}, J=15.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}$, $3 \mathrm{H}), 2.27(\mathrm{dd}, J=15.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), \quad 2.03(\mathrm{dd}, J=15.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.82-$ $1.92(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 143.4,138.1,137.6,132.0,129.4,127.5,125.6$, $116.3,58.3,54.4,51.2,42.7,36.6,26.2,26.1,24.7,21.5$; IR (neat) $3270,1324,1158,1093,668$ cm^{-1}; HRMS (FAB) found 431.1482 [calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{3}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$431.1491].

A colorless oil: $[\alpha]^{27}{ }_{\mathrm{D}}=-5.0\left(c \quad 0.14, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.77-$ $5.83(\mathrm{~m}, 1 \mathrm{H}), 5.67(\mathrm{ddd}, J=12.0,6.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.16-4.26(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.16(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{ddd}, J=9.2$, $9.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=17.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.86(\mathrm{~m}, 5 \mathrm{H})$,
$2.39(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{dd}, J=15.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 1 \mathrm{H}), 1.89-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{dd}, J=15.2$, $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.7,139.8,131.4,129.2,127.0$, $126.9,60.7,58.3,51.8,39.4,36.5,35.4,27.0,26.29,26.25,24.8,21.5$; IR (neat) $1653,1153 \mathrm{~cm}^{-}$ ${ }^{1}$; HRMS (FAB) found 461.1962 [calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{3}\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} 461.1961$].

An inseparable mixture (9b:10b $>20: 1$): $[\alpha]^{25}{ }_{\mathrm{D}}=+15.7\left(c 0.4, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.47-4.53(\mathrm{~m}, 1 \mathrm{H}), 4.06-4.17(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{dd}$, $J=18.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=18.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.89(\mathrm{~m}$, $4 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{dd}, J=15.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-2.03(\mathrm{~m}, 5 \mathrm{H}), 1.54$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 200.5,143.5,136.8,129.8,127.1,51.3,48.2$, 47.1, 44.4, 41.3, 38.0, 26.8, 26.7, 24.8, 24.6, 21.5; IR (neat) $1720,1160 \mathrm{~cm}^{-1}$; HRMS (FAB) found 400.1067 [calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}_{3}(\mathrm{M}+\mathrm{H})^{+} 400.1069$].

An inseparable mixture (9b:10b = 1:4): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.71(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.74-4.81(\mathrm{~m}, 1 \mathrm{H}), 3.98-4.08(\mathrm{~m}$,

$1 \mathrm{H}), 3.13-3.27(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.95(\mathrm{~m}, 4 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{dd}, J$ $=14.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{dd}, J=14.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{dd}, J=14.4,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.84-2.04(\mathrm{~m}, 3 \mathrm{H}), 1.38(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.8,143.3,139.9,129.6,127.0,49.1,48.5,47.5,47.1$, 43.2, 39.8, 26.4, 26.3, 25.0, 21.5, 20.2.

A colorless crystal: $[\alpha]^{27}{ }_{\mathrm{D}}=+69.6\left(c \quad 0.43, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.65(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.18-4.24(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=18.4,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.89-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{dd}, J=18.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.70$ (m, 2H), $2.42(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{dd}, J=14.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{dd}, J=$
$15.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{dd}, J=14.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.43$ $(\mathrm{dd}, J=15.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.09(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.5,143.6,136.6,129.8,127.4,59.7,50.9,47.3,44.4,37.5,36.5,33.0,27.0$, 26.7, 24.5, 21.5, 20.9, 20.6; IR (neat) 1720, 1598, 1338, 1326, $1095 \mathrm{~cm}^{-1}$; HRMS (FAB) found 428.1385 [calcd for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}_{3}(\mathrm{M}+\mathrm{H})^{+} 428.1381$].

A colorless crystal: $[\alpha]^{23}{ }_{\mathrm{D}}=-9.10\left(c \quad 0.083, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 4.36-4.43(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=18.4,4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=18.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.66$ (m, 2H), $2.42(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{dd}, J=15.2,9.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.99-2.06(\mathrm{~m}, 3 \mathrm{H}), 1.82-1.92(\mathrm{~m}, 1 \mathrm{H})$, $0.99(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 198.9,143.5$, $139.1,129.6,127.5,63.2,48.4,47.5,46.7,40.7,36.3,29.6,26.3,25.0,21.6,20.7$; IR (neat) $1724,1155,754 \mathrm{~cm}^{-1}$.

An inseparable mixture (9d:10d $=15: 1):[\alpha]^{25}{ }_{\mathrm{D}}=+22.6\left(c \quad 0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$,

$\left.\mathrm{CDCl}_{3}\right) \delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$,), $7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.07$ (dddd, $J=16.8,10.4,5.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{dd}, J=16.8$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{dd}, J=10.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.57(\mathrm{~m}, 2 \mathrm{H}), 3.35$
(dd, $J=18.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=18.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.93$ (m, 2H), 2.62-2.71(m, 2H), $2.43(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{dd}, J=14.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{dd}, J=15.2,4.8$ $\mathrm{Hz}, 2 \mathrm{H}), 1.93-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{dd}, J=15.2,6.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.4,143.8,140.2,136.5,129.8,127.4,116.6,53.5,51.5,47.7,44.2,40.5$, 37.7, 27.0, 26.9, 24.5; IR (neat) 1721, 1325, 1162, $1094 \mathrm{~cm}^{-1}$; HRMS (FAB) found 412.1070 [calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}_{3}(\mathrm{M}+\mathrm{H})^{+}$412.1069].

An inseparable mixture (9d:10d $=1: 1):{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.65(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$,), $7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.96$ (dddd, $J=16.8,10.0,5.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.12$ $(\mathrm{d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.64(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{dd}, J=18.0,6.4 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.10(\mathrm{dd}, J=18.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.22-$ $2.30(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.88$ (m, 1H).

Preparation of Allyl Alcohol 11-D

Preparation of Alkene 11-A

To a cooled $\left(-40{ }^{\circ} \mathrm{C}\right)$ solution of 3-butene magnesium bromide $(0.13 \mathrm{M}, 15 \mathrm{~mL})$ in THF (15 $\mathrm{mL}, 0.13 \mathrm{M})$ was added $\mathrm{CuI}(18 \mathrm{mg}, 0.095 \mathrm{mmol})$ and aziridine $2(300 \mathrm{mg}, 0.95 \mathrm{mmol})$. The resulting mixture was warmed to $-10^{\circ} \mathrm{C}$, stirred at $-10^{\circ} \mathrm{C}$ for 1 h , and quenched with 4 mL $\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{NH}_{4} \mathrm{OH}(3: 1)$. After stirred at $25^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was diluted with EtOAc. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined
organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 3/1) to afford alkene 11-A (340 mg, 96\%): $[\alpha]^{26}{ }_{\mathrm{D}}=+18.1\left(c 0.68, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.34(\mathrm{~m}, 7 \mathrm{H}), 5.68(\mathrm{dddd}, J=17.2,10.4,6.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 3.27-3.36(\mathrm{~m}$, $2 \mathrm{H}), 3.20(\mathrm{dd}, J=9.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.43-1.58(\mathrm{~m}, 2 \mathrm{H})$, 1.18-1.39 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 143.0,138.2,138.1,137.7,129.5,128.3$, $127.6,127.5,126.9,114.6,73.0,71.2,53.4,33.2,31.9,24.7,21.4$; IR (neat) $1640,1598,1453$, $1416,1323,1157,1090,1022 \mathrm{~cm}^{-1}$.

Preparation of Aldehyde 11-B

To a stirred solution of alkene $\mathbf{1 1 - A}(297 \mathrm{mg}, 0.795 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL}, 0.053 \mathrm{M})$ was added $\mathrm{Boc}_{2} \mathrm{O}(208 \mathrm{mg}, 0.954 \mathrm{mmol})$ and DMAP $(19 \mathrm{mg}, 0.159 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$. After stirred at $25^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was concentrated and purified by purified by column chromatography (silica gel, hexanes/EtOAc, 10/1) to afford Boc-protected alkene (340 mg , $96 \%)$. To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of the known Boc protected alkene ($300 \mathrm{mg}, 0.634 \mathrm{mmol}$) in EtOAc ($50 \mathrm{~mL}, 0.013 \mathrm{M}$) was bubbled O_{3} until blue color was persisted (ca. 10 min). After purging the reaction with N_{2} gas, EtOAc was removed and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$ before $\mathrm{Ph}_{3} \mathrm{P}$ was added. The resulting mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 3 h and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 4/1) to afford aldehyde 11-B ($260 \mathrm{mg}, 84 \%$ for three steps): ${ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.76(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.75-4.82(\mathrm{~m}, 1 \mathrm{H}), 4.49\left(\mathrm{AB}, J_{\mathrm{AB}}=11.6 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=45.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.97(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.58(\mathrm{dd}, J=10.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.57(\mathrm{~m}, 2 \mathrm{H}), 1.94-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.87(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 202.1,150.5,143.5,137.8,137.6,128.7,128.27,128.25,127.8$, $127.5,84.1,73.0,70.5,58.1,43.2,29.7,27.8,21.5,19.0$.

Preparation of Aldehyde 11-C

To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of methyl bis(2,2,2-trifluoroethyl)phosphonoacetate $(0.23 \mathrm{~mL}$, 1.06 mmol) and 18 -crown-6 ($1.4 \mathrm{~g}, 5.3 \mathrm{mmol}$) in THF ($30 \mathrm{~mL}, 0.035 \mathrm{M}$) was added KHMDS ($0.5 \mathrm{M}, 2.1 \mathrm{~mL}$). After stirred at the same temperature for 0.5 h , aldehyde $\mathbf{1 1 - B}(250 \mathrm{mg}, 0.53$ mmol) was added to the reaction mixture. After stirred for 1 h at $-78^{\circ} \mathrm{C}$, the reaction mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted with EtOAc. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, $8 / 1$ to $4 / 1$) to afford enoate 11-C (236 $\mathrm{mg}, 85 \%):{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.05(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.22(\mathrm{ddd}, J=11.2,7.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{ddd}, J=11.2,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.75-$ $4.83(\mathrm{~m}, 1 \mathrm{H}), 4.49\left(\mathrm{AB}, J_{\mathrm{AB}}=11.6 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=47.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.98(\mathrm{dd}, J=9.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ (s, 3H), $3.57(\mathrm{dd}, J=10.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.93-2.03(\mathrm{~m}, 1 \mathrm{H})$, $1.53-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7,150.5,150.0,143.4$,
$137.9,137.7,128.7,128.3,128.2,127.8,127.5,119.6,84.0,72.9,70.6,58.4,50.9,29.9,28.6$, 27.8, 25.8, 21.5.

Preparation of Allylic Alcohol 11-D

[DIBAL-H Reduction] To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of enoate 11-C ($230 \mathrm{mg}, 0.433 \mathrm{mmol}$) in toluene ($8 \mathrm{~mL}, 0.054 \mathrm{M}$) was added DIBAL-H ($1.73 \mathrm{~mL}, 1.0 \mathrm{M}$ in toluene, 1.732 mmol). After stirred at the same temperature for 2 h , the reaction mixture was quenched with MeOH , and diluted with $\mathrm{Et}_{2} \mathrm{O}$. The resulting mixture was stirred for 5 h at $25^{\circ} \mathrm{C}$, filtered through a pad of celite and concentrated in vacuo. This crude alcohol was employed in the next step without purification. [Boc-Deprotection] To the crude Boc-sulfonamide ($105 \mathrm{mg}, 0.21 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4.2 \mathrm{~mL})$ was added TFA $(0.8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After stirred at the same temperature for 2 h , the reaction mixture was concentrated in vacuo and purified by column chromatography (silica gel, hexanes/EtOAc, 1/1) to afford 11-D (54 mg, 64% for two steps) as a colorless oil: $[\alpha]^{26}{ }_{D}=+8.5$ (c $0.20, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.35(\mathrm{~m}, 7 \mathrm{H})$, $5.58(\mathrm{ddd}, J=12.8,6.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{ddd}, J=15.2,10.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.28-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=9.2,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.16(\mathrm{dd}, J=8.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 1 \mathrm{H}), 1.92-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.58(\mathrm{~m}, 2 \mathrm{H})$, 1.21-1.40 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 143.1,138.0,137.6,132.1,129.5,128.8$, $128.3,127.7,127.6,126.9,73.1,71.1,58.3,53.3,31.8,26.7,25.3,21.4$; IR (neat) 1598, 1453, $1323,1157,1091,1024 \mathrm{~cm}^{-1}$.

Allylic Oxidation/Aza-Michael Reaction of 11-D

[Allylic Oxiation] To a stirred solution of 11-D ($41 \mathrm{mg}, 0.102 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL}, 0.0331$ M) was added $\mathrm{MnO}_{2}(196.3 \mathrm{mg}, 1.986 \mathrm{mmol})$ at $25{ }^{\circ} \mathrm{C}$. After stirred for 4 h at the same temperature, the reaction mixture was then filtered through celite and concentrated in vacuo. This crude α, β-unsaturated aldehyde $11(40 \mathrm{mg}, 0.0998 \mathrm{mmol})$ was employed in the next step without purification. [Aza-Michael Reaction] To a stirred solution of α, β-unsaturated aldehyde 11 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL}, 0.0248 \mathrm{M})$ was added $(R)-\mathbf{I} \cdot \mathrm{BzOH}(8.9 \mathrm{mg}, 0.0197 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirred for 45 h at the same temperature, the reaction mixture was concentrated and purified by column chromatography (silica gel, hexanes/EtOAc, 3/1) to afford 2,6-cis-piperidine 12 as the major diastereomer ($6 \mathrm{mg}, 15 \%$ for two steps, $\mathrm{dr}=11: 1$) as a colorless oil: [For 11] ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.34(\mathrm{~m}, 8 \mathrm{H})$, $6.51(\mathrm{ddd}, J=11.2,8.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{dd}, J=11.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.33 (brs, 2H), 3.30-3.39(m, 1H), $3.26(\mathrm{dd}, J=9.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=9.6,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.51-2.57 (m, 2H), $2.41(\mathrm{~s}, 3 \mathrm{H})$; [For 12] ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.71(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.38(\mathrm{~m}, 7 \mathrm{H}), 4.56(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.18-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=17.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{ddd}, J=17.2,8.8,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.17-1.56(\mathrm{~m}, 6 \mathrm{H})$.

Preparation of Allyl Alcohols 3-Ba and 3-Bb

To a stirred solution of sulfonamide ($\mathbf{Z}) \mathbf{- 3}(200 \mathrm{mg}, 0.39 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL}, 0.13 \mathrm{M})$ was added $\mathrm{TBSCl}(66 \mathrm{mg}, 0.437 \mathrm{mmol})$ and imidazole $(80 \mathrm{mg}, 1.18 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirred at 0 ${ }^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was concentrated and purified by purified by column chromatography (silica gel, hexanes/EtOAc, 10/1) to afford the corresponding TBS-protected allyl alcohol ($210 \mathrm{mg}, 86 \%$). To a stirred solution of the TBS-protected allyl alcohol (105 mg , 0.17 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(6 \mathrm{~mL}, 0.03 \mathrm{M})$ was added $\mathrm{Boc}_{2} \mathrm{O}(55 \mathrm{mg}, 0.253 \mathrm{mmol})$ and DMAP (5 $\mathrm{mg}, 0.04 \mathrm{mmol}$) at $25^{\circ} \mathrm{C}$. After stirred at $25^{\circ} \mathrm{C}$ for 17 h , the reaction mixture was concentrated and purified by purified by column chromatography (silica gel, hexanes/EtOAc, 10/1) to afford 3-Aa (100 mg, 71\% for two steps): [For 3-Aa] ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83$ (d, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.18-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.64(\mathrm{ddd}, J=12.0,6.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.55$ (ddd, $J=12.0,6.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{brs}, 1 \mathrm{H}), 4.44\left(\mathrm{AB}, J_{\mathrm{AB}}=11.6 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=60.8 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $4.21(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{dd}, J=9.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.53-2.79(\mathrm{~m}$, $4 \mathrm{H}), 2.23-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 0.82$ (s, 9H), 0.00 (s, 6H).

Cbz-protected sulfonamide $\mathbf{3 - A b}$ was prepared from (\mathbf{Z}) $\mathbf{- 3}$ in the same manner in 71% for two steps. [For 3A-b] ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71$ (d, $\left.J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.17-7.26$ (m, 6H), $7.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.62(\mathrm{ddd}, J=11.6$, $5.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.50(\mathrm{ddd}, J=12.0,6.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.91-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=12.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.33(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{dd}, J=9.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.80(\mathrm{~m}, 7 \mathrm{H})$, 2.23-2.31 (m, 1H), $2.24(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.90(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~s}, 6 \mathrm{H})$.

To a stirred solution of Boc-protected sulfonamide 3-Aa ($65 \mathrm{mg}, 0.09 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{OH}(3 \mathrm{~mL}$, 0.03 M) was added Mg powder $(66 \mathrm{mg}, 2.7 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{Cl}(49 \mathrm{mg}, 0.9 \mathrm{mmol})$ at room temperature. After stirring at room temperature for 24 h , the reaction mixture was diluted with water and then extracted three times with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 10/1) to afford the corresponding Bocprotected amine ($44 \mathrm{mg}, 86 \%$). To a stirred solution of the Boc-protected amine ($42 \mathrm{mg}, 0.074$ mmol) in THF ($3 \mathrm{~mL}, 0.025 \mathrm{M}$) was added TBAF (1.0 M in THF, 0.11 mL) at $0^{\circ} \mathrm{C}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 1 h , the reaction mixture was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and then extracted three times with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 2/1) to afford 3-Ba (32 mg, 82\% for two steps): [For 3-Ba] $[\alpha]^{21}{ }_{\mathrm{D}}=+9.0(c$ $\left.0.49, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.38(\mathrm{~m}, 5 \mathrm{H}), 5.80(\mathrm{ddd}, J=12.4,6.8,5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.69$ (ddd, $J=12.4,7.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18$ (brs, 2H), 4.00$4.09(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{brs}, 1 \mathrm{H}), 3.45(\mathrm{brs}, 1 \mathrm{H}), 2.68-2.88(\mathrm{~m}, 6 \mathrm{H}), 2.50(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=14.8$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{dd}, J=14.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.1,138.0,131.8,128.4,127.7,126.0,79.6,73.1,72.9,58.3,51.4,47.5,40.1$, $36.0,28.4,26.2,26.1,24.9$. IR (neat) $1695,1506,1455,1366,1390,1252,1170,1050 \mathrm{~cm}^{-1}$; HRMS (FAB) found 454.2080 [calcd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{NO}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+} 454.2080$].

Cbz-protected allyl alcohol 3-Bb was prepared from 3-Bb in the same manner in 82% for two steps. [For 3-Bb] $[\alpha]^{27}{ }_{\mathrm{D}}=+18.6\left(c 0.87, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.35(\mathrm{~m}$, 9H), 5.78 (ddd, $J=12.4,7.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{ddd}, J=12.4,6.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=8.8$
$\mathrm{Hz}, 1 \mathrm{H}), 5.10$ (br s, 2H), $4.51(\mathrm{~s}, 2 \mathrm{H}), 4.09-4.19(\mathrm{~m}, 3 \mathrm{H}), 3.60(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (dd, $J=8.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.85(\mathrm{~m}, 6 \mathrm{H}), 2.42(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=15.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.08$ $(\mathrm{dd}, J=15.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.99(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.6,137.8$, $136.4,131.8,128.4,128.3,128.0,127.7,125.9,73.1,72.6,66.7,58.3,51.3,48.2,40.0,36.1$, 26.2, 26.1, 24.8. IR (neat) 1699, 1520, 1268, 1238, $1052 \mathrm{~cm}^{-1}$; HRMS (FAB) found 488.1921 [calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{NO}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+} 488.1924$].

Aza-Michael Reaction with 3-Ba and 3-Bb

${ }^{a}$ Combined yield of 3-C and 3-D. ${ }^{b}$ Diastereomeric ratio (2,6-cis-piperidine:2,6-trans-piperidine) determined by integration of the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude product.

To a stirred solution of 3-Ba $(10 \mathrm{mg}, 0.022 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL}, 0.02 \mathrm{M})$ was added MnO_{2} (220 mg, 0.55 mmol) at $25^{\circ} \mathrm{C}$. After stirred for 4 h at the same temperature, the reaction mixture was then filtered through celite and concentrated in vacuo. To a stirred solution of α, β unsaturated aldehyde intermediate ($9 \mathrm{mg}, 0.02 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL}, 0.02 \mathrm{M})$ was added $(R)-\mathbf{I} \cdot \mathrm{BzOH}(1.8 \mathrm{mg}, 0.004 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirred for 20 h at the same temperature, the reaction mixture was concentrated and purified by column chromatography (silica gel,
hexanes/EtOAc, 3/1) to afford 2,6-cis- piperidine 3-Ca as the major diastereomer ($8 \mathrm{mg}, 80 \%$ for two steps, 3-Ca:3-Da $=8: 1$, Entry 3) as a colorless oil: [For 3-Ca] ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.70(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.37(\mathrm{~m}, 5 \mathrm{H}), 4.67(\mathrm{ddd}, J=14.4,7.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{AB}$, $\left.J_{\mathrm{AB}}=11.6 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=30.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.47(\mathrm{ddd}, J=14.0,7.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=9.6,6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=9.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.94(\mathrm{~m}, 4 \mathrm{H}), 2.73(\mathrm{dd}, J=16.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56$ (dd, $J=15.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=14.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{dd}, J=14.8,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 1.90-2.04 (m, 3H), $1.42(\mathrm{~s}, 9 \mathrm{H})$; HRMS (FAB) found 452.1924 [calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NO}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$ 452.1924].

2,6-cis-piperidine $\mathbf{3 - C b}$ was prepared as the major diastereomer from $\mathbf{1 3 - B b}$ in the same manner in 67% for two steps (3-Cb:3-Db $=20: 1$, Entry 5): [For 3-Cb] ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $9.66(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.36(\mathrm{~m}, 10 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 4.75(\mathrm{ddd}, J=14.8,7.6,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.51-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.51\left(\mathrm{AB}, J_{\mathrm{AB}}=12.4 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=30.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.66(\mathrm{dd}, J=9.6,6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.48(\mathrm{dd}, J=9.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.96(\mathrm{~m}, 5 \mathrm{H}), 2.62(\mathrm{ddd}, J=14.4,8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.36 (ddd, $J=14.8,8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{dd}, J=14.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-2.04(\mathrm{~m}, 3 \mathrm{H})$; HRMS (FAB) found 486.1766 [calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+} 486.1767$].

Preparation of (E)-Enoate 13

To a solution of aldehyde $\mathbf{9 b}(104.8 \mathrm{mg}, 0.262 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added methyl 2(triphenylphosphoranylidene) acetate at $25^{\circ} \mathrm{C}$, and the resulting mixture was stirred at the same temperature for 5 h before concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 10/1) to afford (E)-enoate $13(119.5 \mathrm{mg}, 92 \%)$ as a
colorless oil: $[\alpha]^{25}{ }_{\mathrm{D}}=+42.6\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.27(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{ddd}, J=16.0,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.03-4.12 (m, 2H), $3.73(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{ddd}, J=14.5,8.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.84(\mathrm{~m}, 5 \mathrm{H}), 2.17$ $(\mathrm{dd}, J=15.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{dd}, J=15.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=14.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-$ $1.91(\mathrm{~m}, 3 \mathrm{H}), 1.50(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.4,145.0,144.3$, $136.7,129.5,127.0,123.7,51.6,51.4,48.0,44.3,40.9,40.3,37.5,26.77,26.69,24.47,24.44$, 21.4; IR (neat) $2947,1716,1158 \mathrm{~cm}^{-1}$; HRMS (ESI) found 456.1328 [calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{~S}_{3}$ $\left.(\mathrm{M}+\mathrm{H})^{+} 456.1331\right]$.

Preparation of Ester 14

To a solution of (E)-enoate $13(102.0 \mathrm{mg}, 0.224 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(4 \mathrm{~mL})$ was added Mg powder (272.0 mg, 11.2 mmol) at $25^{\circ} \mathrm{C}$. After stirred at the same temperature for 20 h , the reaction mixture was diluted with diethyl ether and saturated aqueous NaHCO_{3}. The resulting cloudy mixture was stirred vigorously for 1 h , filtered through a pad of Celite, concentrated in vacuo, and partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$. The layers were separated, and the aqueous layer was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 10 / 1\right.$ to $\left.5: 1\right)$ to give ester $\mathbf{1 4}$ as a colorless oil ($60.0 \mathrm{mg}, 88 \%):[\alpha]^{28}{ }_{\mathrm{D}}=+31.5\left(c 0.21, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.64(\mathrm{~s}, 3 \mathrm{H})$, 3.11 (ddddd, $J=12.8,6.8,6.8,6.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.99$ (dddd, $J=13.2,6.8,6.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$
(dd, $J=6.4,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{dd}, J=6.0,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-$ $2.29(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.06(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.8,51.5,48.8,47.3,45.5,43.4,35.7,33.9,26.00,25.86$, 25.63, 22.0, 21.2; IR (neat) 2930, $1730 \mathrm{~cm}^{-1}$; HRMS (ESI) found 304.1394 [calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+}$304.1399].

Preparation of Quinolizidine 15

[LiAlH_{4}-Reduction] To a cooled $\left(-20{ }^{\circ} \mathrm{C}\right)$ solution of ester $\mathbf{1 4}(60.0 \mathrm{mg}, 0.198 \mathrm{mmol})$ in anhydrous THF (6 mL) was added $\mathrm{LiAlH}_{4}(0.2 \mathrm{~mL}, 2.0 \mathrm{M}$ in THF, 0.4 mmol$)$. After stirred at the same temperature for 3 h , the reaction mixture was quenched with MeOH and diluted with THF (20 mL) and saturated aqueous NaHCO_{3}. The resulting cloudy mixture was stirred vigorously for 2 h , filtered through a pad of Celite, and concentrated in vacuo to afford crude alcohol, which was employed in next step without further purification. [Cyclization] To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of crude alcohol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(0.14 \mathrm{~mL}, 0.99 \mathrm{mmol})$ and $\mathrm{MsCl}\left(2.38 \mathrm{~mL}, 0.1 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.24 \mathrm{mmol}\right)$. The reaction mixture was allowed to warm to $-20^{\circ} \mathrm{C}$ for 1 h and quenched with saturated aqueous NaHCO_{3}. The resulting mixture was allowed to warm to $25^{\circ} \mathrm{C}$ over 4 h with continuous stirring. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc only) to give quinolizidine 15 as a colorless oil (35.4 mg ,
70% for two steps $):[\alpha]^{25}{ }_{\mathrm{D}}=-21.4\left(c 0.57, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.22(\mathrm{br} \mathrm{d}, J$ $=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{dd}, J=9.5,9.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.19$ (ddd, $J=14.0,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{ddd}, J=14.5,3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.99$ $(\mathrm{m}, 2 \mathrm{H}), 1.64-1.83(\mathrm{~m}, 5 \mathrm{H}), 1.50-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 57.6,53.8,51.1,48.2,46.1,45.0,33.1,26.21,26.04,25.97,25.69$, 24.3, 20.0; IR (neat) 2930, $1423 \mathrm{~cm}^{-1}$; HRMS (ESI) found 258.1347 [calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NS}_{2}$ $\left.(\mathrm{M}+\mathrm{H})^{+} 258.1344\right]$.

Completion of Synthesis (-)-Epimyrtine 16

15

(-)-Epimyrtine

To a solution of quinolizidine $\mathbf{1 5}(35.4 \mathrm{mg}, 0.137 \mathrm{mmol})$ in $\mathrm{TFA} / \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(1: 10: 10$, total 2.1 $\mathrm{mL})$ was added $\left[\right.$ bis(trifluoroacetoxy)iodo]benzene (PIFA) ($178.3 \mathrm{mg}, 0.411 \mathrm{mmol}$) at $25{ }^{\circ} \mathrm{C}$. After stirred at the same temperature for 3 h , the reaction mixture was quenched with saturated aqueous NaHCO_{3}. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc only) to give (-)-epimyrtine 16 as a colorless oil (16.8 mg, 73%): $[\alpha]^{25}=-17.8\left(c 0.18, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.32(\mathrm{br} \mathrm{d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.44(\mathrm{~m}, 3 \mathrm{H}), 2.22-2.29(\mathrm{~m}$, $2 \mathrm{H}), 2.17(\mathrm{dd}, J=11.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{ddd}, J=11.0,11.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.77(\mathrm{~m}, 2 \mathrm{H})$, $1.55-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.21-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
(125 MHz, CDCl_{3}) $\delta 208.4,62.0,59.3,51.0,49.7,48.6,34.0,25.8,23.9,20.6$; IR (neat) 2930, $1716 \mathrm{~cm}^{-1}$; HRMS (ESI) found 168.1378 [calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}$168.1382].

Preparation of (Z)-Enoate 17

$(10 b: 9 b=4: 1)$

KHMDS 18-c-6, THF
$\overrightarrow{-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}}$
57\%

17

To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of methyl 2-(bis(2,2,2-trifluoroethoxy)phosphoryl)acetate (0.15 $\mathrm{mL}, 0.702 \mathrm{mmol}$) and 18-Crown-6 ($264.3 \mathrm{mg}, 1.05 \mathrm{mmol}$) in THF ($10 \mathrm{~mL}, 0.19 \mathrm{M}$) was added KHMDS ($0.7 \mathrm{~mL}, 1.0 \mathrm{M}$ in THF, 0.7 mmol). The resulting mixture was stirred at the same temperature for 30 min . A mixture of aldehydes $\mathbf{1 0 b}$ and $\mathbf{9 b}(4: 1,140.3 \mathrm{mg})$ was added, and the resulting mixture was stirred at the same temperature for 1 h before quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and diluted with diethyl ether. The layers were separated, and the aqueous layer was extracted with diethyl ether. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexane/ EtOAc, 1/1) to give (Z)-enoate ester 17 as a colorless oil (90.5 mg, 57\%): $[\alpha]^{25}{ }_{\mathrm{D}}=-25.3\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.20(\mathrm{ddd}, J=11.0,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dd}, J=11.0,1.0$ Hz, 1H), 4.43-4.49 (m, 1H), 3.95-4.01 (m, 1H), 3.68 (s, 3H), 3.58 (ddd, $J=15.5,9.0,9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.02$ (ddd, $J=16.0,7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.88(\mathrm{~m}, 4 \mathrm{H}), 2.23(\mathrm{dd}, J=15.0,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.16(\mathrm{dd}, J=14.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.99(\mathrm{~m}, 3 \mathrm{H}), 1.34(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.4,146.5,142.9,129.4,127.0,121.0,54.6,51.1$,
48.1, 47.8, 43.2, 39.9, 32.6, 26.39, 26.26, 25.1, 21.4, 19.7; IR (neat) $1716,1147 \mathrm{~cm}^{-1}$; HRMS (ESI) found 456.1333 [calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{~S}_{3}(\mathrm{M}+\mathrm{H})^{+} 456.1331$].

Preparation of Ester 17-A

To a solution of (E)-enoate $17(70.1 \mathrm{mg}, 0.154 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(4 \mathrm{~mL}, 0.044 \mathrm{M})$ was added Mg powder ($50 \mathrm{mesh}, 187.0 \mathrm{mg}, 7.7 \mathrm{mmol}$). After stirred at room temperature for 20 h , the reaction mixture was diluted with diethyl ether $(10 \mathrm{~mL})$ and saturated aqueous NaHCO_{3}. The layers were separated, and the aqueous layer was extracted with diethyl ether. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexane/ EtOAc, 1/1) to give ester 17-A as a colorless oil (30.0 mg, 64\%): $[\alpha]^{28}{ }_{\mathrm{D}}=+11.5\left(c \quad 0.47, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.24-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.89(\mathrm{~m}, 4 \mathrm{H}), 1.91-$ $1.98(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{dd}, J=14.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.23(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.8,51.5,49.8,47.7,44.4,44.1,41.0,34.3,33.8,26.43,26.42$, 25.3, 22.1, 21.6; IR (neat) 2930, 1732, $1158 \mathrm{~cm}^{-1}$; HRMS (ESI) found 304.1395 [calcd for $\left.\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}_{2}(\mathrm{M}+\mathrm{H})^{+} 304.1399\right]$.

Preparation of Quinolizidine 17-B

[LiAlH4-Reduction] To a cooled $\left(-20^{\circ} \mathrm{C}\right)$ solution of ester $\mathbf{1 7 - A}(38.4 \mathrm{mg}, 0.127 \mathrm{mmol})$ in anhydrous THF (5 mL) was added $\mathrm{LiAlH}_{4}(0.51 \mathrm{~mL}, 2.0 \mathrm{M}$ in THF, 1.02 mmol$)$. After stirred at the same temperature for 3 h , the reaction mixture was quenched with MeOH and diluted with THF (10 mL) and saturated aqueous NaHCO_{3}. The cloudy mixture was stirred vigorously for 2 h , filtered through a pad of Celite, and concentrated in vacuo to afford crude amino alcohol, which was employed in next step without further purification. [Cyclization] To a cooled ($-20^{\circ} \mathrm{C}$) solution of crude alcohol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(0.07 \mathrm{~mL}, 0.50 \mathrm{mmol})$ and MsCl ($1.40 \mathrm{~mL}, 0.1 \mathrm{M}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.140 \mathrm{mmol}$). After stirred at the same temperature for 1 h , the reaction mixture was quenched saturated aqueous NaHCO_{3}. The resulting mixture was allowed to warm to $25^{\circ} \mathrm{C}$ over 4 h with continuous stirring. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc only) to give quinolizidine 17-B as a colorless oil (23.9 $\mathrm{mg}, 73 \%):[\alpha]^{25}{ }_{\mathrm{D}}=+19.3\left(c 0.41, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.23$ (ddddd, $J=7.5$, $7.5,7.5,7.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{ddd}, J=17.5,8.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.74$ (m, 3H), 2.48 (ddd, $J=11.5,11.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.33$ (ddd, $J=13.5,2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.28$ (dd, J $=14.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{ddd}, J=14.0,2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-2.02(\mathrm{~m}, 3 \mathrm{H}), 1.76(\mathrm{dd}, J=14.0$, $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{br} \mathrm{d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.21-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{~d}, J=$
$7.5 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 53.9,51.3,50.2,47.4,45.0,43.3,32.7,26.54,26.35$, 25.4, 24.1, 14.6; IR (neat) 2928, 1436, 1422, 1309, 1272, $1123 \mathrm{~cm}^{-1}$; HRMS (ESI) found 258.1345 [calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NS}^{2}(\mathrm{M}+\mathrm{H})^{+}$258.1344].

Completion of Synthesis (+)-Myrtine 18

To a solution of quinolizidine $\mathbf{1 7 - B}(23.9 \mathrm{mg}, 0.093 \mathrm{mmol})$ in TFA/ $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(1: 10: 10$, total 2.1 mL) was added [bis(trifluoroacetoxy)iodo]benzene (PIFA, $120.8 \mathrm{mg}, 0.278 \mathrm{mmol}$) at $25^{\circ} \mathrm{C}$. After stirred at the same temperature for 3 h , the reaction mixture was quenched with saturated aqueous NaHCO_{3}. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc only) to give $(+)$-myrtine 18 as a colorless oil (12.8 mg, 83\%): $[\alpha]^{25}{ }_{\mathrm{D}}=+14.1\left(c 0.11, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.93$ (ddddd, $\left.J=6.5,6.5,6.5,6.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), \quad 2.85(\mathrm{dd}, J=14.0$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{br} \mathrm{d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dddd}, J=10.0,10.0,5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48$ (ddd, $J=11.0,11.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{ddd}, J=13.5,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.73$ $(\mathrm{m}, 4 \mathrm{H}), 1.14-1.36(\mathrm{~m}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.5,57.0$, 53.5, 51.4, 48.6, 48.0, 34.1, 25.7, 23.4, 11.1; IR (neat) 2930, 1716, 1335, 1289, 1279, 1173, 1114 cm^{-1}; HRMS (ESI) found 168.1380 [calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}(\mathrm{M}+\mathrm{H})^{+}$168.1382].

S31

S33

S38

S42

S46

S48

S50

S52

S54

S59

S62

S63

S64

S67

S76

S77

S83

S85

S87

S88

S91

[^0]: ${ }^{1}$ Righi, P; Scardovi, N; Marotta, E; ten Holte, P; Zwanenburg, B. Org. Lett. 2002, 4, 497-500.

[^1]: ${ }^{2}$ (a) Lapinsky, D. J; Bergmeier, S. C. Tetrahedron Lett. 2001, 42, 8583-8586. (b) Vicario, J. L; Badia, D; Carrillo, L. ARKIVOC 2007, 304-311.

