Supporting Information for:

Vinyl Diazophosphonates as Precursors to Quaternary Substituted Indolines and Cyclopentenes

Jin Wang, Vyacheslav Boyarskikh and Jon D. Rainier*
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112

Included are experimental data and preparation information for all new compounds

General Information

NMR spectra were recorded on either a Varian Inova-500, a Varian Unity-300, a Varian Inova400 or a Varian VXR-500 spectrometer. Chemical shifts were reported in δ, parts per million (ppm), relative to chloroform (7.25), benzene (7.16), or dichloromethane (5.29) as internal standards. Coupling constants, J, were reported in Hertz (Hz) and refer to apparent peak multiplicities and not true coupling constants. Mass spectra were recorded at the Mass Spectrometry Facility at the Department of Chemistry of the University of Utah at Salt Lake City on a Finnigan MAT 95 mass spectrometer. IR spectra were recorded on a Bruker Tensor 27 FTIR spectrometer. Solvents were purified according to the guidelines in Purification of Common Laboratory Chemicals (Perrin, Armarego, and Perrin: Oxford, 1966). Spectroscopic grade $\mathrm{CH}_{3} \mathrm{CN}$ was stored over activated $4 \AA$ molecular sieves and used without additional purification. All other reagents were used without purification. Unless otherwise stated, all reactions were run under an atmosphere of dried nitrogen in flame-dried glassware. Concentration refers to removal of solvent under reduced pressure (house vacuum at ca. 20 mmHg).

General procedure for the alkylation of phosphonocrotonate 4. To a solution of phosphonocrotonate 4 (ca. 2.0 mmol) in 10 mL of THF at $0^{\circ} \mathrm{C}$ was added LiHMDS (ca. 2.0 mmol) dropwise. After stirring at $0^{\circ} \mathrm{C}$ for 0.5 h , the solution was warmed to rt and a solution of alkyl iodide or triflate (ca. 1.0 mmol) in 2 mL of THF was added dropwise. The resulting reaction mixture was stirred for 2 h and the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ (aq., 10 mL). The organic layer was separated and the aqueous layer was extracted with ethyl acetate (3×10 $\mathrm{mL})$. The organic layers were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Flash chromatography provided the corresponding alkylated phosphonates 5-11.

5
(\boldsymbol{E})-methyl 4-(diethoxyphosphoryl)-2-methylbut-2-enoate (5). Prepared according to the general procedure using phosphonocrotonate $4(0.472 \mathrm{~g}, 2.00 \mathrm{mmol})$, THF (10 mL), LiHMDS (2.0 mL of a 1.0 M solution in THF, 2.0 mmol) and $\mathrm{MeI}(62.3 \mu \mathrm{~L}, 1.00 \mathrm{mmol}$) in THF (2 mL) to give 0.188 g of $\mathbf{5}(75 \%)$ as colorless oil after flash chromatography ($1: 2$ hexanes:ethyl acetate).
5: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.78-6.72(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.07(\mathrm{~m}, 4 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.73$ (ddd, $J=22.6,8.3,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.90-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 6) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $168.0(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 131.7(\mathrm{~d}, J=13.5 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 62.4(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 52.2$, $27.8(\mathrm{~d}, J=138.2 \mathrm{~Hz}), 16.7(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 12.8(\mathrm{~d}, J=2.6 \mathrm{~Hz})$; IR (neat) $2984,1716,1651$, 1437, 1252, 1165, 1049, 1024, $965 \mathrm{~cm}^{-1}$; LRMS m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{P} 273.1\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found 273.0

6
(\boldsymbol{E})-methyl 4-(diethoxyphosphoryl)-2-ethylbut-2-enoate (6). Prepared according to the general procedure using phosphonocrotonate $4(0.472 \mathrm{~g}, 2.00 \mathrm{mmol})$, THF (10 mL), LiHMDS (2.0 mL of a 1.0 M solution in THF, 2.0 mmol) and $\mathrm{EtI}(80.7 \mu \mathrm{~L}, 1.00 \mathrm{mmol})$ in THF (2 mL) to give 0.087 g of $6(33 \%)$ as colorless oil after flash chromatography ($1: 2$ hexanes:ethyl acetate).

6: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.70(\mathrm{dt}, J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.16 - 4.05 (m, 4H), 3.73 (s, 3H), 2.73 (dd, $J=23.4,8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.33 (dq, $J=7.6,2.2 \mathrm{~Hz}, 2 \mathrm{H}$), $1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \delta 167.7,137.7(\mathrm{~d}, J=14.1 \mathrm{~Hz}), 130.2(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 62.4(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 52.1,27.5$ (d, $J=139.5 \mathrm{~Hz}$), $20.4(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 16.7(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 13.7(\mathrm{~d}, J=3.5 \mathrm{~Hz}) ;$ IR (neat) 2978 , 1714, 1646, 1437, 1392, 1294, 1245, 1192, 1165, 1117, 1094, 1050, 1022, $963 \mathrm{~cm}^{-1} ;$ LRMS m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{P} 287.1\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found 287.1

(E)-methyl 2-(2-(diethoxyphosphoryl)ethylidene)pentanoate (7). Prepared according to the general procedure using phosphonocrotonate $4(0.472 \mathrm{~g}, 2.00 \mathrm{mmol})$, THF (10 mL), LiHMDS (2.0 mL of a 1.0 M solution in THF, 2.0 mmol) and $\operatorname{PrI}(97.5 \mu \mathrm{~L}, 1.00 \mathrm{mmol})$ in THF (2 mL) to give 0.0974 g of 7 (35\%) as a colorless oil after flash chromatography (1:2 hexanes:ethyl acetate).

7: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.67(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-3.98(\mathrm{~m}, 4 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.67$ (dd, $J=23.1,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.27-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{qt}, J=7.5,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $6 \mathrm{H}), 0.85(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.8(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 136.2(\mathrm{~d}, J=$ $14.0 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 62.4(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 52.0,28.9(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 27.6(\mathrm{~d}, J=$ 138.7 Hz), $22.4(\mathrm{~d}, J=3.5 \mathrm{~Hz}$), $16.6(\mathrm{~d}, J=6.0 \mathrm{~Hz}$), 14.2; IR (neat) 2961, 1712, 1284, 1251, 1222, 1164, 1018, 957, $853820 \mathrm{~cm}^{-1}$; LRMS m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{P} 301.1\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found 301.1

8
(\boldsymbol{E})-methyl 2-(2-(diethoxyphosphoryl)ethylidene)-4-methylpentanoate (8). Prepared according to the general procedure using phosphonocrotonate 4 ($0.472 \mathrm{~g}, 2.00 \mathrm{mmol}$), THF (10 $\mathrm{mL})$, LiHMDS (2.0 mL of a 1.0 M solution in THF, 2.0 mmol) and $i-\mathrm{BuI}(0.115 \mathrm{~mL}, 1.00 \mathrm{mmol})$ in THF (2 mL) to give 58.3 mg of $\mathbf{8}(20 \%)$ as a colorless oil after flash chromatography (1:2 hexanes:ethyl acetate).
8: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.73(\mathrm{q}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-3.89(\mathrm{~m}, 4 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.68$ (dd, $J=23.1,8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.16 (dd, $J=7.2,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.70(\mathrm{sep}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.81(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.1$, $135.6(\mathrm{~d}, J=14.5$ $\mathrm{Hz}), 131.3(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 62.4(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 52.1,35.7(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 28.4(\mathrm{~d}, J=2.6 \mathrm{~Hz})$, 27.9 (d, $J=138.8 \mathrm{~Hz}$), 22.6, 16.6 (d, $J=6.0 \mathrm{~Hz}$); IR (neat) 2956, 1714, 1289, 1252, 1227, 1163, 1096, 1052, 1021, $961 \mathrm{~cm}^{-1} ;$ LRMS m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{P} 315.1\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found 315.1

9
(E)-methyl 4-(diethoxyphosphoryl)-2-phenethylbut-2-enoate (9). Prepared according to the general procedure using phosphonocrotonate $4(0.472 \mathrm{~g}, 2.00 \mathrm{mmol})$, THF (10 mL), LiHMDS (2.0 mL of a 1.0 M solution in THF, 2.0 mmol) and $\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{OTf}(0.300 \mathrm{~g}, 1.20 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ to give 0.191 g of $9(50 \%)$ as a colorless oil after flash chromatography (1:2 hexanes:ethyl acetate).
9: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 3 \mathrm{H}), 6.76(\mathrm{q}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.12-4.03(\mathrm{~m}, 4 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.74-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{dd}, J=$ $23.1,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.6,141.6,135.1(\mathrm{~d}$, $J=13.8 \mathrm{~Hz}), 131.8(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 128.8(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 128.7(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 126.3,62.4(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}), 52.1,35.2(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 29.3(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 27.3(\mathrm{~d}, J=138.1 \mathrm{~Hz}), 16.6(\mathrm{~d}, J=$
6.1 Hz); IR (neat) $2981,1712,1437,1248,1195,1174,1095,1019,958 \mathrm{~cm}^{-1}$; LRMS m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{5} \mathrm{P} 363.1\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found 363.1.

10
(\boldsymbol{E})-methyl 2-(2-(diethoxyphosphoryl)ethylidene)hex-5-enoate (10). Prepared according to the general procedure using phosphonocrotonate $4(0.472 \mathrm{~g}, 2.00 \mathrm{mmol}$), THF (10 mL), LiHMDS $(2.0 \mathrm{~mL}$ of a 1.0 M solution in THF, 2.0 mmol) and homoallyl triflate $(0.124 \mathrm{mg}, 0.600 \mathrm{mmol})$ in THF (2 mL) to give 75.8 mg of $\mathbf{1 0}(44 \%)$ as a colorless oil after flash chromatography (1:2 hexane/ethyl acetate).
10: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.73(\mathrm{q}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{ddt}, J=17.0,10.3,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.03-4.88(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.00(\mathrm{~m}, 4 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{dd}, J=23.3,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{td}, J$ $=7.9,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{dt}, J=7.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.6,137.8,135.5(\mathrm{~d}, J=13.6 \mathrm{~Hz}), 131.3(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 115.4,62.4(\mathrm{~d}, J=7.0 \mathrm{~Hz})$, 52.1, 33.1 (d, $J=3.0 \mathrm{~Hz}$), 27.7 (d, $J=139.5 \mathrm{~Hz}$), $26.5(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 16.6(\mathrm{~d}, J=6.1 \mathrm{~Hz})$; IR (neat) 2981, 1713, 1642, 1249, 1163, 1020, $962 \mathrm{~cm}^{-1}$; LRMS m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{P}$ $313.1\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found 313.1

(S,E)-methyl 5-(tert-butyldimethylsilyloxy)-2-(2-(diethoxyphosphoryl)ethylidene)-4methylpentanoate (11). Prepared according to the general procedure using phosphonocrotonate $4(59.3 \mathrm{mg}, 2.00 \mathrm{mmol})$, THF (10 mL), LiHMDS $(0.25 \mathrm{~mL}$ of a 1.0 M solution in THF, 0.25 mmol) and (R)-3-(tert-butyldimethylsilyloxy)-2-methylpropyl triflate ($42.2 \mathrm{mg}, 0.125 \mathrm{mmol}$) in THF (2 mL) to give 27.1 mg of $\mathbf{1 1}(51 \%)$ as a colorless oil after flash chromatography (1:2 hexane/ethyl acetate).
11: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.80(\mathrm{q}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.03(\mathrm{~m}, 4 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$, $3.40(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.83$ (ddd, $J=15.1,15.1,8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.71 (ddd, $J=15.3 \mathrm{~m} 15.3,8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.48$ (ddd, $J=13.8,6.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{ddd}, J=13.6,8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.67$ $(\mathrm{m}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.875(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.0,135.2(\mathrm{~d}, J=14.0 \mathrm{~Hz}), 131.8(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 67.5,62.4(\mathrm{~d}, J=3.0$ $\mathrm{Hz}), 62.3(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 52.1,35.9(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 30.1(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 27.7(\mathrm{~d}, J=138.6 \mathrm{~Hz})$, 26.1, 18.5, 16.8, 16.6 (d, $J=6.5 \mathrm{~Hz}$), -5.2, -5.2; IR (neat) 2954, 2930, 2857, 1717, 1253, 1218, 1165, 1086, 1026, $964 \mathrm{~cm}^{-1}$; LRMS m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{39} \mathrm{O}_{6} \mathrm{PSi} 445.2\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found 445.1

General procedure for diazo formation. To a solution of phosphonate (ca. 0.10 mmol) and ABSA in $5 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{CN}$ at $0^{\circ} \mathrm{C}$ was added DBU dropwise. The resulting reaction mixture was warmed to rt and stirred for 12 h . Following concentration, the resulting residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$. Concentration and flash chromatography gave diazo substrates 12-19.

12
(\boldsymbol{E})-methyl 4-diazo-4-(diethoxyphosphoryl)-2-methylbut-2-enoate (12). Prepared according to the general procedure using phosphonate $5(0.200 \mathrm{~g}, 0.800 \mathrm{mmol})$, ABSA ($0.211 \mathrm{~g}, 0.880 \mathrm{mmol}$) and DBU ($0.143 \mathrm{~mL}, 0.960 \mathrm{mmol}$) to give 0.141 g of $\mathbf{1 2}(64 \%)$ as clear orange oil after flash chromatography ($2: 1$ hexane/ethyl acetate).
12: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.61(\mathrm{dq}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.06(\mathrm{~m}, 4 \mathrm{H}), 3.73(\mathrm{~s}$, $3 \mathrm{H}), 1.96(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{dt}, J=7.2,0.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $167.8,124.7(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 122.4(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 63.4(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 52.2,16.3(\mathrm{~d}, J=6.9$ Hz), 12.5; IR (neat) 2985, 2078, 1705, 1616, 1436, 1259, 1133, 1045, 1015, $973 \mathrm{~cm}^{-1}$; LRMS m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P} 299.1\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found 299.1.

13
(E)-methyl 4-diazo-4-(diethoxyphosphoryl)-2-methylbut-2-enoate (13). Prepared according to the general procedure using phosphonate $6(0.106 \mathrm{~g}, 0.401 \mathrm{mmol})$, ABSA ($0.106 \mathrm{~g}, 0.44 \mathrm{mmol}$) and DBU ($72.2 \mu \mathrm{~L}, 0.48 \mathrm{mmol}$) to give 85 mg of $\mathbf{1 3}(73 \%)$ as clear orange oil after flash chromatography ($2: 1$ hexane/ethyl acetate).
13: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.06(\mathrm{~m}, 4 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, $2.37(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.6,128.5(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 124.1(\mathrm{~d}, J=11.4 \mathrm{~Hz}), 63.5(\mathrm{~d}$, $J=5.3 \mathrm{~Hz}$), 52.1, 20.0, 16.4 (d, $J=6.9 \mathrm{~Hz}$), 14.9; IR (neat) 2981, 2078, 1706, 1610, 1436, 1277, 1237, 1134, 1045, 1016, $973 \mathrm{~cm}^{-1}$; LRMS m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P} 313.1\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found 313.0.

14
(E)-methyl 4-diazo-4-(diethoxyphosphoryl)-2-methylbut-2-enoate (14). Prepared according to the general procedure using phosphonate $7(52.7 \mathrm{mg}, 0.190 \mathrm{mmol})$, ABSA ($50.0 \mathrm{mg}, 0.210$ $\mathrm{mmol})$ and DBU ($34.0 \mu \mathrm{~L}, 0.227 \mathrm{mmol}$) to give 44.6 mg of $\mathbf{1 4}(77 \%)$ as clear orange oil after flash chromatography ($2: 1$ hexane/ethyl acetate).

14: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.57(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.06(\mathrm{~m}, 4 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, $2.34-2.29(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.35$ (partially obscured m, 2H), $1.36(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.8,127.2(\mathrm{~d}, J=10.6$ $\mathrm{Hz}), 124.4(\mathrm{~d}, J=10.6 \mathrm{~Hz}), 63.5(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 52.1,28.5,23.6,16.4(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 13.8$; IR (neat) 2961, 2074, 1706, 1607, 1436, 1268, 1218, 1190, 1137, 1046, 1017, $973 \mathrm{~cm}^{-1} ;$ LRMS m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P} 327.1\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found 327.1.

(\boldsymbol{E})-methyl 4-diazo-4-(diethoxyphosphoryl)-2-methylbut-2-enoate (15). Prepared according to the general procedure using phosphonate $\mathbf{8}(29.1 \mathrm{mg}, 0.100 \mathrm{mmol})$, ABSA ($26.4 \mathrm{mg}, 0.11 \mathrm{mmol}$) and $\operatorname{DBU}(18.0 \mu \mathrm{~L}, 0.12 \mathrm{mmol})$ to give 23.6 mg of $\mathbf{1 5}(74 \%)$ as clear orange oil after flash chromatography ($2: 1$ hexane/ethyl acetate).
15: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.06(\mathrm{~m}, 4 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, $2.24(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.71(\mathrm{sep}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.1,126.5(\mathrm{~d}, J=10.6 \mathrm{~Hz}$), 124.7 (d, $J=11.4 \mathrm{~Hz}$), 63.5 (d, $J=5.3 \mathrm{~Hz}$), $52.1,34.6,29.1,22.1,16.4$ (d, $J=6.9 \mathrm{~Hz}$); IR (neat) 2958, 2870, 2076, 1707, 1605, 1270, 1221, 1139, 1046, 1017, $973 \mathrm{~cm}^{-1}$; LRMS m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P} 341.1\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found 341.1.

(\boldsymbol{E})-methyl 4-diazo-4-(diethoxyphosphoryl)-2-methylbut-2-enoate (16). Prepared according to the general procedure using phosphonate $10(38.0 \mathrm{mg}, 0.112 \mathrm{mmol})$, ABSA ($29.6 \mathrm{mg}, 0.120$ $\mathrm{mmol})$ and $\operatorname{DBU}(20.1 \mu \mathrm{~L}, 0.135 \mathrm{mmol})$ to give 35.2 mg of $\mathbf{1 6}(86 \%)$ as clear orange oil after flash chromatography ($2: 1$ hexane/ethyl acetate).
17: ${ }^{1}$ H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 3 \mathrm{H}), 6.64(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.22-4.02(\mathrm{~m}, 4 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.76-2.60(\mathrm{~m}, 4 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.6,141.1,128.7,128.7,126.5,125.9(\mathrm{~d}, J=10.0$ $\mathrm{Hz}), 125.2(\mathrm{~d}, J=11.0 \mathrm{~Hz}), 63.5(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 52.2,36.2,29.0,16.4(\mathrm{~d}, J=6.5 \mathrm{~Hz})$; IR (neat) 2984, 2951, 2077, 1705, 1609, 1261, 1191, 1165, 1045, 1016, $974 \mathrm{~cm}^{-1}$; LRMS m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P} 389.1\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found 389.1.

(E)-methyl 4-diazo-4-(diethoxyphosphoryl)-2-methylbut-2-enoate (17). Prepared according to the general procedure using phosphonate $10(38.0 \mathrm{mg}, 0.120 \mathrm{mmol})$, ABSA ($34.6 \mathrm{mg}, 0.144$ $\mathrm{mmol})$ and DBU $(23.5 \mu \mathrm{~L}, 0.160 \mathrm{mmol})$ to give 31.4 mg of $\mathbf{1 7}(76 \%)$ as clear orange oil after flash chromatography ($2: 1$ hexane/ethyl acetate).
17: ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{ddt}, J=16.9,10.0,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.04 (ddt, $J=17.0,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.99$ (ddt, $J=10.1,1.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.06(\mathrm{~m}, 4 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 2.47-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.6,137.1,126.1$ (d, $J=10.6 \mathrm{~Hz}$), 124.9 (d, $J=11.4 \mathrm{~Hz}$), 115.9, 63.5 (d, $J=5.3 \mathrm{~Hz}$), 52.2, 34.1, 26.1, 16.4 (d, $J=6.1 \mathrm{~Hz}$); IR (neat) 2982, 2076, 1705, 1608, 1436, 1260, 1198, 1137, $973 \mathrm{~cm}^{-1}$; LRMS m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P} 339.1\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found 339.1.

(E)-methyl 4-diazo-4-(diethoxyphosphoryl)-2-methylbut-2-enoate (18). Prepared according to the general procedure using phosphonate $11(14.5 \mathrm{mg}, 0.0343 \mathrm{mmol})$, ABSA $(9.1 \mathrm{mg}, 0.0379$ $\mathrm{mmol})$ and DBU $(6.2 \mu \mathrm{~L}, 0.041 \mathrm{mmol})$ to give 12.8 mg of $\mathbf{1 8}(83 \%)$ as clear orange oil after flash chromatography ($2: 1$ hexane/ethyl acetate).
18: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.06(\mathrm{~m}, 4 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, 3.45 (d, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{dd}, J=14.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{dd}, J=14.2,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-$ $1.70(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.1,125.8(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 124.9(\mathrm{~d}, J=11.0$ $\mathrm{Hz}), 68.2,63.5(\mathrm{~d}, J=5.6 \mathrm{~Hz}), 52.1,36.5,29.7,26.2,18.6,16.4(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 16.1,-5.2,-5.2$; IR (neat) 2954, 2930, 2857, 2075, 1708, 1607, 1472, 1435, 1260, 1210, 1090, 1048, 1019, 973 cm^{-1}; LRMS m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{PSi} 471.2\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found 471.1.

Quaternary Indoline (20). To a solution of thioindole 19 ($0.140 \mathrm{~g}, 0.450 \mathrm{mmol}$) and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(9.9 \mathrm{mg}, 0.022 \mathrm{mmol})$ at rt was added a solution of diazophosphonate $12(0.373 \mathrm{~g}$, $1.35 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.7 \mathrm{~mL})$ over 4 h via syringe pump. After stirring at rt for 24 h , the reaction mixture was concentrated. Flash chromatography ($1: 2$ hexane/ ethyl acetate) gave 89 mg of indoline $\mathbf{2 0}$ (86%) as a pale yellow oil.
20: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.61-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.15-7.03(\mathrm{~m}, 3 \mathrm{H}), 5.86(\mathrm{dd}, J=18,18 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.98(\mathrm{~m}, 4 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~s}$, 3 H), 2.95 (ddd, $J=14,12,5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.49 (ddd, $J=14,11,5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.86 (ddd, $J=16,12,5$ $\mathrm{hz}, 1 \mathrm{H}), 1.32(\mathrm{ddd}, J=16,11,5 \mathrm{~Hz}, 1 \mathrm{H}), 1.31-1.26(\mathrm{~m}, 6 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}){ }^{13}{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 183.8,174.9,157.4,151.0(\mathrm{~d}, J=7 \mathrm{~Hz}), 140.4,137.2,131.8,131.7,131.5,131.2$, $130.3,126.8,125.2,123.2(\mathrm{~d}, J=184 \mathrm{~Hz}), 121.5,70.2,64.1(\mathrm{~d}, J=6 \mathrm{~Hz}), 64.0(\mathrm{~d}, J=6 \mathrm{~Hz}), 55.3$, $54.5,53.6,30.9,29.6,19.2,18.4(\mathrm{~d}, J=2 \mathrm{~Hz}$), 18.3 (d, $J=2 \mathrm{~Hz}$); IR (neat) 3060, 2985, 2952, $1735,1515,1456,1440,1251,1024,965 \mathrm{~cm}^{-1}$; LRMS m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{NO}_{7} \mathrm{PS} 582.2$ $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found 582.1

22
(E)-methyl 4-(diethoxyphosphoryl)-2-ethyl-2-(3-(3-methoxy-3-oxopropyl)-2-(phenylthio)-3H-indol-3-yl)but-3-enoate (22).
22: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dt}, J=7.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J$ $=23.9,18.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{dd}, J=18.3,18.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.88(\mathrm{~m}, 4 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~s}$, $3 \mathrm{H}), 2.74-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.24(\mathrm{~m}, 7 \mathrm{H}), 0.79(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 181.4,173.3,171.5,155.4,147.2(\mathrm{~d}, J=6.9 \mathrm{~Hz})$, $138.3,134.8,129.7,129.6,129.1,128.2,124.5,123.7,121.0(\mathrm{~d}, J=184.6 \mathrm{~Hz}), 120.0,68.7(\mathrm{~d}, J$ $=1.5 \mathrm{~Hz}), 62.1(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 62.0(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 58.5(\mathrm{~d}, J=19.9 \mathrm{~Hz}), 52.2,51.8,29.0,27.4$, 24.2, 16.6, 16.5, 9.9 IR (neat) 2981, 1734, 1514, 1456, 1441, 1250, 1213, 1170, 1052, 1023, 965, $849,748 \mathrm{~cm}^{-1} ;$ LRMS m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{NO}_{7} \mathrm{PS} 574.2\left(\mathrm{M}+\mathrm{H}^{+}\right)$, found 574.2

General procedure for cyclopentene formation. To a solution of vinyl diazophosphonate (ca. 0.10 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}$ (ca. 0.005 mmol) in one portion. After stirring at rt overnight, the reaction mixture was concentrated. The resulting residue was purified by flash chromatography to give cyclopentenes 23-28.
General procedure for equilibration. To a solution of the cyclopentene 24, 26 and 27 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 0.05 mL of DBU dropwise. The reaction mixture was allowed to stir for 1 h before it was concentrated. Preparative TLC (1:2 hexane/ethyl acetate) gave cyclopentenes 24, 26 and 27 as single isomers as determined by ${ }^{1} \mathrm{H}$ NMR analysis in $70 \% \sim 80 \%$ yield.

Methyl 3-(diethoxyphosphoryl)cyclopent-1-enecarboxylate (23). Prepared according to the general procedure using diazo $13(147 \mathrm{mg}, 0.510 \mathrm{mmol})$ and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(11 \mathrm{mg}, 0.025 \mathrm{mmol})$ to give 91.1 mg of cyclopentene 23 (68%) as a colorless oil after flash chromatography (1:2 to 1:3 hexane/ethyl acetate).
23: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.65$ (dddd, $\left.J=4.7,2.2,2.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.17-4.05(\mathrm{~m}, 4 \mathrm{H})$, $3.73(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.2(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 139.5(\mathrm{~d}, J=14.0$ $\mathrm{Hz}), 138.4(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 62.5(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 62.3(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 51.9,44.5(\mathrm{~d}, J=143.2 \mathrm{~Hz})$, 31.5 (d, $J=3.5 \mathrm{~Hz}$), 24.7 (d, $J=3.0 \mathrm{~Hz}$), 16.7 (d, $J=5.5 \mathrm{~Hz}$); IR (neat) 2982, 1717, 1438, 1257, 1214, 1163, 1094, 1053, $1023 \mathrm{~cm}^{-1}$; LRMS m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{5} \mathrm{P} 285.1\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found 285.0

Methyl 3-(diethoxyphosphoryl)-4-methylcyclopent-1-enecarboxylate (24). Prepared according to the general procedure using diazo $14(22.3 \mathrm{mg}, 0.0730 \mathrm{mmol})$ and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(1.6$ $\mathrm{mg}, 0.0037 \mathrm{mmol}$) to give 18.1 mg of cyclopentene 24 (89%) as a colorless oil after flash chromatography ($1: 2$ to $1: 3$ hexane/ethyl acetate).
24 (after equilibration using DBU): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.60$ (dddd, $J=4.6,2.2,2.2$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.05(\mathrm{~m}, 4 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.99-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.32-$ $2.18(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{dt}, J=7.2,0.3 \mathrm{~Hz} 3 \mathrm{H}), 1.30(\mathrm{dt}, J=7.4,0.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{dd}, J=6.8,0.9$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.3,138.1(\mathrm{~d}, J=13.5 \mathrm{~Hz}), 137.5(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 62.4$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}), 62.3(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 52.5(\mathrm{~d}, J=141.6 \mathrm{~Hz}), 51.9,39.9(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 33.8(\mathrm{~d}, J$ $=2.0 \mathrm{~Hz}), 22.2(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 16.7(\mathrm{~d}, J=5.6 \mathrm{~Hz})$; IR (neat) $2959,1718,1635,1438,1249$, 1092, 1052, 1024, $959 \mathrm{~cm}^{-1}$; LRMS m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{5} \mathrm{P} 299.1\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found 299.0

Methyl 3-(diethoxyphosphoryl)-4,4-dimethylcyclopent-1-enecarboxylate (25). Prepared according to the general procedure using diazo $\mathbf{1 5}(11.8 \mathrm{mg}, 0.037 \mathrm{mmol})$ and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(0.8$ $\mathrm{mg}, 0.0018 \mathrm{mmol}$) to give 9.3 mg of cyclopentene $25(86 \%)$ as a colorless oil after flash chromatography ($1: 2$ to $1: 3$ hexane/ethyl acetate).
25: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.64-6.59(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.02(\mathrm{~m}, 4 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.82$ (dddd, $J=25.8,2.6,2.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.58 (dddd, $J=16.1,6.9,2.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.37$ (dddd, $J=$ $16.2,7.4,1.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.27(\mathrm{~m}, 9 \mathrm{H}), 1.18(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.4(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 138.7(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 137.9(\mathrm{~d}, J=13.1 \mathrm{~Hz}), 62.1(\mathrm{~d}, J=7.0 \mathrm{~Hz})$, $62.0(\mathrm{~d}, J=7.5 \mathrm{~Hz}), 55.1(\mathrm{~d}, J=138.7 \mathrm{~Hz}), 51.8,46.7(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 42.3,31.3(\mathrm{~d}, J=10.5 \mathrm{~Hz})$, $25.6(\mathrm{~d}, J=5.5 \mathrm{~Hz}), 16.7(\mathrm{~d}, J=6.0 \mathrm{~Hz})$; IR (neat) $2980,1718,1437,1247,1164,1053,1025$ cm^{-1}; LRMS m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{P} 313.1\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found 313.0. $\mathrm{MeO}_{2} \mathrm{C}$

Methyl 3-(diethoxyphosphoryl)-4-phenylcyclopent-1-enecarboxylate (26). Prepared according to the general procedure using diazo $16(17.6 \mathrm{mg}, 0.0480 \mathrm{mmol})$ and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(1.1$ $\mathrm{mg}, 0.0024 \mathrm{mmol}$) to give 11.9 mg of cyclopentene 26 (78%) as colorless oil after flash chromatography ($1: 2$ to $1: 3$ hexane/ethyl acetate).
26 (after DBU equilibration): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.16(\mathrm{~m}, 5 \mathrm{H}), 6.72$ (dddd, $J=$ $6.2,2.3,2.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-3.98(\mathrm{~m}, 4 \mathrm{H}), 3.90-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.16(\mathrm{~m}$, $2 \mathrm{H}), 2.86-2.72(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.9(\mathrm{~d}, J=$ $3.0 \mathrm{~Hz}), 145.5(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 138.2(\mathrm{~d}, J=13.7 \mathrm{~Hz}), 137.4(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 129.0,127.1,126.9$, $62.6(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 62.4(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 53.6(\mathrm{~d}, J=141.9 \mathrm{~Hz}), 51.9,44.1(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 40.8$ (d, $J=4.6 \mathrm{~Hz}$), $16.7(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 16.6(\mathrm{~d}, J=6.1 \mathrm{~Hz}$); IR (neat) 2983, 2951, 1718, 1634, 1495, 1438, 1391, 1349, 1250, 1195, 1162, 1097, $1023 \mathrm{~cm}^{-1}$; LRMS m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{5} \mathrm{P} 361.1$ $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found 361.0.

Summary of 1D nOe data for the single isomer of compound $\mathbf{2 6}$ after equilibration (500 Hz , $\mathrm{C}_{6} \mathrm{D}_{6}$):

Irradiation at $2.80 \mathrm{ppm}(\mathrm{H}-1)$ resulted in enhancement at $3.30 \mathrm{ppm}(\mathrm{H}-3)$ and $7.05 \mathrm{ppm}(\mathrm{H}-5)$;

Irradiation at $3.30 \mathrm{ppm}(\mathrm{H}-3)$ resulted in enhancement at $2.80 \mathrm{ppm}(\mathrm{H}-1)$;
Irradiation at $3.20 \mathrm{ppm}(\mathrm{H}-2)$ resulted in enhancement at $7.05 \mathrm{ppm}(\mathrm{H}-5), 6.85 \mathrm{ppm}(\mathrm{H}-6), 3.80$ $\mathrm{ppm}(\mathrm{H}-4)$ and $2.80 \mathrm{ppm}(\mathrm{H}-1)$;

Irradiation at $3.90 \mathrm{ppm}(\mathrm{H}-4)$ resulted in enhancement at $7.05 \mathrm{ppm}(\mathrm{H}-5)$ and $3.20 \mathrm{ppm}(\mathrm{H}-2)$.

Methyl 3-(diethoxyphosphoryl)-4-vinylcyclopent-1-enecarboxylate (27). Prepared according to the general procedure using diazo $17(15.7 \mathrm{mg}, 0.0496 \mathrm{mmol})$ and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(1.1 \mathrm{mg}, 0.0025$ mmol) to give 11.9 mg of cyclopentene $27(83 \%)$ as colorless oil after flash chromatography (1:2 to $1: 3$ hexane/ethyl acetate).
27 (after DBU equilibration): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.62-6.60(\mathrm{~m}, 1 \mathrm{H}), 5.85$ (ddd, $J=$ $17.6,10.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.08(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.07$ (m, 4H), 3.74 $(\mathrm{s}, 3 \mathrm{H}), 3.35-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{ddd}, J=7.9,5.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.48$ $(\mathrm{m}, 1 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.0$ $(\mathrm{d}, J=3.1 \mathrm{~Hz}), 140.5(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 138.0(\mathrm{~d}, J=13.7 \mathrm{~Hz}), 137.4(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 114.7(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}), 62.6(\mathrm{~d}, J=7.0 \mathrm{~Hz}), 62.4(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 51.9,50.7(\mathrm{~d}, J=142.7 \mathrm{~Hz}), 42.7(\mathrm{~d}, J=2.3$ Hz), $37.9(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 16.7(\mathrm{~d}, J=1.5 \mathrm{~Hz}), 16.7(\mathrm{~d}, J=2.3 \mathrm{~Hz}$); IR (neat) 2982, 1719, 1635, 1438, 1249, 1096, 1053, 1024, $962 \mathrm{~cm}^{-1}$; LRMS m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P} 311.1\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found 311.1.

28
(4S)-methyl
4-((tert-butyldimethylsilyloxy)methyl)-3-(diethoxyphosphoryl)-4-
methylcyclopent-1-enecarboxylate (28). Prepared according to the general procedure using diazo 18 ($93.1 \mathrm{mg}, 0.21 \mathrm{mmol}$) and $\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(4.6 \mathrm{mg}, 0.010 \mathrm{mmol})$ to give 79.0 mg of cyclopentene 28 ($91 \%, 3: 2$ mixture of isomers) as a colorless oil after flash chromatography (1:2 to $1: 3$ hexanes/ethyl acetate). Analytically pure 28 (major isomer) was obtained following preparatory TLC (1:2 hexanes/ethyl acetate). The minor isomer could not be separated from the major isomer.
28 (major isomer): $[\alpha]_{\mathrm{D}}{ }^{25}=-48.0\left(\mathrm{c}=0.125, \mathrm{CHCl}_{3}\right){ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.63-$ $6.60(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.04(\mathrm{~m}, 4 \mathrm{H}), 3.82(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.89-2.78$ (m, 2H), 2.32 (dddd, $J=17.1,7.8,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.31 (t, $J=7.1 \mathrm{~Hz}, 6 \mathrm{H}$), 1.21 (broad s, 3H), $0.90(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.5,138.0(\mathrm{~d}, J=9.1$ $\mathrm{Hz}), 137.9,67.8(\mathrm{~d}, J=6.0 \mathrm{~Hz}), 62.3(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 62.0(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 53.6(\mathrm{~d}, J=137.6 \mathrm{~Hz})$, $51.8,47.8,42.2(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 26.1,25.8(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 18.5,16.7(\mathrm{~d}, J=6.0 \mathrm{~Hz}),-5.2(\mathrm{~d}, J=$
1.5 Hz); IR (neat) 2954, 2929, 2856, 1721, 1472, 1438, 1249, 1198, 1086, 1053, $1027 \mathrm{~cm}^{-1}$; LRMS m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{37} \mathrm{O}_{6} \mathrm{PSi} 443.2\left(\mathrm{M}+\mathrm{Na}^{+}\right)$, found 443.1.
Complete chirality retention in C-H insertion reactions is identified by HPLC separation of compound 28 (chiral OD-H column, $0.5 \mathrm{ml} / \mathrm{min}, 98: 2$ hexane/isopropanol)

28 from racemic diazo 18: $\mathrm{t}_{\mathrm{R}}=7.92 \mathrm{~min}(50 \%), 24.68(50 \%)$
28 from chiral diazo 18: $\mathrm{t}_{\mathrm{R}}=7.80 \mathrm{~min}$

