Supporting Information for

Total Synthesis of (-)-Brevisin: A Concise Synthesis of a New Marine Polycyclic Ether

Takefumi Kuranaga, Naohito Ohtani, Ryosuke Tsutsumi, Daniel G. Baden, Jeffrey L. C. Wright, Masayuki Satake,* and Kazuo Tachibana*

msatake@chem.s.u-tokyo.ac.jp; ktachi@chem.s.u-tokyo.ac.jp

General methods: All moisture and/or air sensitive reactions were carried out in oven-dried ($>100{ }^{\circ} \mathrm{C}$) glassware under argon atmosphere unless otherwise noted. Anhydrous dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ and tetrahydrofuran (THF) were purchased from Kanto Chemical Co. Inc. Other solvents and reagents were purchased at highest commercial grade and used as supplied, unless otherwise noted. Some reactions were firstly run on small scales and perfectly purified for the characterization, and then run on larger scales without perfect purification. Analytical thin-layer chromatography (TLC) was performed on E. Merck silica gel $60 \mathrm{~F}_{254}$ plates (0.25 mm thickness). Column chromatography was performed using Kanto Chemical silica gel 60 N (40-100 mesh, spherical, neutral). Flash column chromatography was performed using Fuji Silysia silica gel BW-300 (200-400 mesh). Optical rotations were recorded on a JASCO DIP-350 digital polarimeter. IR spectra were recorded on a JASCO FT/IR-420 instrument. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded on a JEOL ECA-500 and ECX-400 spectrometer and calibrated with residual undeuterated solvent as an internal reference $\left[{ }^{1} \mathrm{H} \mathrm{NMR}, \mathrm{CHCl}_{3}(7.24), \mathrm{C}_{6} \mathrm{HD}_{5}(7.15), \mathrm{CHD}_{2} \mathrm{OD}(3.31), \mathrm{C}_{5} \mathrm{HD}{ }_{4} \mathrm{~N}(7.58) ;{ }^{13} \mathrm{C}\right.$ NMR, CDCl_{3} (77.0), $\mathrm{C}_{6} \mathrm{D}_{6}$ (128.0), $\mathrm{CD}_{3} \mathrm{OD}$ (49.0), $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$ (135.5)]. Chemical shifts are reported in $\delta(\mathrm{ppm})$. Coupling constants are reported in Hz (hertz). The following abbreviations are used to designate the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. High-resolution mass spectra (HRMS) were recorded on a JEOL JMS-700P mass spectrometer under fast atom bombardment (FAB) conditions using m-nitrobenzylalcohol (NBA) as a matrix and a JEOL JMS-T100TD mass spectrometer under direct analysis in real time (DART) conditions.
enol 8

Exocyclic enol ether $6(1.68 \mathrm{~g}, 3.31 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was treated with $9-\mathrm{BBN}-\mathrm{H}(0.5 \mathrm{M}$ in THF, $13.2 \mathrm{~mL}, 6.62 \mathrm{mmol}$) and stirred for 2 h . To the solution were added 3 M aqueous $\mathrm{Cs}_{2} \mathrm{CO}_{3}(5.5 \mathrm{~mL})$, the ketene acetal phosphate $7(1.35 \mathrm{~g}, 2.73 \mathrm{mmol})$ in DMF $\left(15 \mathrm{~mL}+9.0 \mathrm{~mL}\right.$ rinse) and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(165 \mathrm{mg}, 0.202 \mathrm{mmol})$. The resultant solution was stirred at $50^{\circ} \mathrm{C}$ for 1 h , brine was added. The aqueous phase was extracted twice with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel twice (1st: 15% ethyl acetate/hexane, containing $0.5 \%{ }^{\circ} \mathrm{Et}_{3} \mathrm{~N}, 2 \mathrm{nd}$: 2% acetone/hexane, containing 0.5% of $\left.\mathrm{Et}_{3} \mathrm{~N}\right)$ to afford the enol ether $\mathbf{8}(1.76 \mathrm{~g}, 86 \%)$ as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{28}$ 73.4 (c $0.0273, \mathrm{C}_{6} \mathrm{H}_{6}$); IR (film) 2952, 2875, 2360, 1750, 1698, 1540, 1454, 1105, 1017, 734, 696, $670 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.59(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.23$ (dd, $J=7.6,7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.19-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{dd}, J=7.6,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{dd}, J=8.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.44$ $(\mathrm{d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.36(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=10.1,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}$, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.56(\mathrm{~m}, 4 \mathrm{H}), 2.60(\mathrm{~d}, J=$ $14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{dd}, J=14.3,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.63(\mathrm{~m}, 3 \mathrm{H})$, $1.55(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{q}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 1.01(\mathrm{q}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.95(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.73-0.59(\mathrm{~m}, 12 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 152.7,139.6,139.0,128.9,128.5,128.1,127.9,127.6,127.5,126.8,109.2$, $101.9,85.6,76.9,76.5,73.3,72.9,71.1,70.6,68.0,42.2,40.7,33.1,27.5,22.3,15.1,11.3,7.3,7.2,5.7,5.5$; HRMS (DART) calcd for $\mathrm{C}_{43} \mathrm{H}_{68} \mathrm{O}_{7} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 753.4576$, found 753.4578 .
diol 9

To a solution of the enol ether $8(31.0 \mathrm{mg}, 0.0412 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ was added $\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}(2.0 \mathrm{M}$ in THF, $0.20 \mathrm{~mL}, 0.40 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the resultant mixture was stirred at room temperature for 2 h . The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with $3 \mathrm{M} \mathrm{NaOH}(0.2 \mathrm{~mL})$, followed by $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(0.1$ mL), and the mixture was stirred at room temperature for 2.5 h . The aqueous phase was extracted 4 times with EtOAc. The combined organic fractions were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel ($8-10 \%$ ethyl acetate/hexane) to afford the alcohol $\mathbf{S 1}\left(24.6 \mathrm{mg}, 77 \%\right.$) as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{28}-14.3$ (c $0.100, \mathrm{CHCl}_{3}$); IR (film) 3737, 2959, 2868, 2360, 1650, 1540, 1104, 1033, $737,667 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 1 \mathrm{H})$, 4.55 (d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.48 (d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28$ (ddd, $J=8.8,4.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.07 (dd, $J=9.6$, $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.54(\mathrm{~m}, 3 \mathrm{H}), 3.51-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{dd}, J$ $=9.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{dddd}, J=13.9,8.4,8.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=14.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.78(\mathrm{~m}$, $2 \mathrm{H}), 1.76-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 0.97-0.93(\mathrm{~m}, 18 \mathrm{H}), 0.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $0.66-0.54(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.6,138.0,128.9,128.3,128.2,127.4,127.3,126.2$, 101.6, 82.6, 75.5, 74.4, 72.8, 72.1, 71.5, 71.2, 70.9, 70.5, 69.8, 67.2, 41.6, 32.3, 29.3, 27.4, 25.1, 24.4, 22.6, $15.0,10.9,7.0,6.9,5.2,5.1 ;$ HRMS (FAB) calcd for $\mathrm{C}_{43} \mathrm{H}_{70} \mathrm{O}_{8} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 793.4501$, found 793.4514.

To a solution of alcohol $\mathbf{S} \mathbf{1}(257 \mathrm{mg}, 0.333 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added DIBALH (1.02 M in hexane, $3.26 \mathrm{~mL}, 3.33 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring at room temperature for 2.5 h , additional DIBALH $(1.5 \mathrm{~mL})$ was added. The resultant mixture was stirred for 3.5 h and quenched with saturated aqueous potassium sodium tartrate. The mixture was diluted with ethyl acetate and vigorously stirred for 2.5 h . The aqueous phase was extracted three times with EtOAc. The combined organic fractions were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel ($10-30 \%$ ethyl acetate/hexane) to afford the diol 9 ($189 \mathrm{mg}, 73 \%$) as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{27}-61.9\left(c 0.319, \mathrm{CHCl}_{3}\right.$); IR (film) 3747, 2952, 2876, 2360, 1540, 1455, 1103, 734, 696 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.32(\mathrm{~m}, 8 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.53$ (d, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.21(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=$ 9.7, $9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ (ddd, $J=9.2,3.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.53 (dd, $J=6.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.42$ (dddd, $J=8.8,8.8,8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=9.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.34$ (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{brs}, 1 \mathrm{H}), 1.98-1.92(\mathrm{~m}, 1 \mathrm{H})$, $1.86(\mathrm{dd}, J=14.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.71(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{q}, J=8.0 \mathrm{~Hz}$, $18 \mathrm{H}), 0.90(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.66-0.52(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.5,128.3,128.2$, $127.5,127.5,127.4,80.5,80.0,75.4,73.8,72.9,72.0,71.4,71.3,71.0,69.7,69.1,67.3,41.6,34.4,32.5,27.4$, 22.6, 16.7, 10.8, 7.0, 6.9, 5.2, 5.1; HRMS (FAB) calcd for $\mathrm{C}_{43} \mathrm{H}_{72} \mathrm{O}_{8} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 795.4658$, found 795.4677.

To a solution of diol $9(1.49 \mathrm{~g}, 1.93 \mathrm{mmol})$ in DMF (30 mL) was added TIPSCl ($0.65 \mathrm{~mL}, 3.07 \mathrm{mmol}$) and imidazole ($430 \mathrm{mg}, 6.31 \mathrm{mmol}$) at room temperature. The resultant mixture was stirred at room temperature overnight, diluted with water, and extracted twice with ether. The combined organic fractions were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel (5-15\% ethyl acetate/hexane) to afford crude TIPS ether S2, which was used in the next reaction without further purification.
To a solution of $\mathbf{S} \mathbf{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ were added $4 \AA$ molecular sieves $(850 \mathrm{mg})$, NMO $(640 \mathrm{mg}, 5.46$ mmol) and catalytic amount of TPAP (ca 80 mg) at room temperature. After stirring at room temperature for 13 h , additional TPAP (ca 160 mg) and NMO (670 mg) were added. The resultant mixture was stirred for 6 h , and then directly subjected to column chromatography on silica gel (10% ethyl acetate/hexane) to afford ketone 10 ($1.67 \mathrm{~g}, 93 \%$ for 2 steps) as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{27}-49.1$ (c $0.402, \mathrm{CHCl}_{3}$); IR (film) 2952, 2875, $2360,1716,1540,1456,1106,1004,734,693 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.30(\mathrm{~m}, 5 \mathrm{H})$, 7.29-7.28 (m, 2H), 7.26-7.23 (m, 3H), $4.59(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 4.39(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.32(\mathrm{dd}, J=5.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=6.7,6.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~s}$, $2 \mathrm{H}), 3.52-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{dd}, J=9.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{ddd}, J=12.6,9.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{ddd}, J=$ $11.7,5.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{ddd}, J=13.8,9.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{ddd}, J=13.4,6.7,6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.06-1.03(\mathrm{~m}, 18 \mathrm{H}), 0.96-0.92(\mathrm{~m}, 21 \mathrm{H}), 0.88(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.66-0.53(\mathrm{~m}$, $12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 215.6,138.6,138.4,128.2,128.2,127.6,127.5,127.4,127.4,81.1$, $79.0,76.2,75.5,73.0,71.7,71.3,70.9,70.6,69.1,68.0,41.4,36.4,36.1,32.2,22.9,18.0,17.7,12.3,11.9$, $11.0,7.0,5.2,5.0 ;$ HRMS (FAB) calcd for $\mathrm{C}_{52} \mathrm{H}_{90} \mathrm{O}_{8} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 949.5836$, found 949.5864.
mixed thioacetal 11

To a solution of the ketone $10(31.0 \mathrm{mg}, 0.0334 \mathrm{mmol})$ in THF (2 mL) were added EtSH (0.3 mL) and $\mathrm{Zn}(\mathrm{OTf})_{2}(6.0 \mathrm{mg}, 0.016 \mathrm{mmol})$. After stirring at room temperature for 2.5 h , additional three portions of $\mathrm{Zn}(\mathrm{OTf})_{2}(9.2 \mathrm{mg}, 9.0 \mathrm{mg}, 9.5 \mathrm{mg})$ were added at $2 \mathrm{~h}, 6 \mathrm{~h}, 13 \mathrm{~h}$ intervals. The resultant mixture was quenched with $\mathrm{Et}_{3} \mathrm{~N}$ and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel ($10-20 \%$ ethyl acetate/hexane) to afford the crude mixed thioacetal $\mathbf{S 3}$, which was used in the next reaction without further purification.
To a solution of $\mathbf{S 3}$ in THF (2.5 mL) was added $\mathrm{NaH}(60 \%$ in oil, $25.0 \mathrm{mg}, 0.625 \mathrm{mmol}$) at room temperature. After stirring at room temperature for $2 \mathrm{~h}, \mathrm{BnBr}(0.10 \mathrm{~mL}, 0.842 \mathrm{mmol})$ and $\mathrm{TBAI}(44.0 \mathrm{mg}, 0.119 \mathrm{mmol})$ were added. The reaction mixture was stirred for 15 h , and then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous phase was extracted three times with EtOAc. The combined organic fractions were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel (5-15\% ethyl acetate/hexane) to afford mixed thioacetal 11 (20.3 mg , 73% for 2 steps) as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{28}-34.6$ (c $0.282, \mathrm{CHCl}_{3}$); IR (film) $3747,2939,2865,2360,1650$, $1540,1455,1108,885,808,737,696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.31-7.25(\mathrm{~m}$, $8 \mathrm{H}), 7.23-7.22(\mathrm{~m}, 2 \mathrm{H}), 4.77(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.50$ $(\mathrm{d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{ddd}, J=9.2,2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.96 (ddd, $J=11.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=10.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{ddd}, J=10.5$, $10.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.48(\mathrm{~m}, 3 \mathrm{H}), 3.43(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dq}, J=12.6$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dq}, J=12.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{dddd}, J=12.2,12.2,4.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.03-1.91(\mathrm{~m}, 2 \mathrm{H})$, $1.88-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.57$ (dddd, $J=14.3,7.1,7.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.09-0.96(\mathrm{~m}, 21 \mathrm{H}), 0.94(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.4,138.7,138.6,128.2$, $128.1,127.7,127.5,127.4,127.3,127.1,93.9,82.6,78.9,78.6,72.9,72.8,72.6,71.8,71.4,70.4,70.1,67.4$, $38.8,34.6,32.5,32.2,21.3,19.1,18.9,18.0,14.9,11.8,11.4$; HRMS (FAB) calcd for $\mathrm{C}_{49} \mathrm{H}_{72} \mathrm{O}_{7} \mathrm{SSiNa}$ $[\mathrm{M}+\mathrm{Na}]^{+} 855.4660$, found 855.4670 .
alcohol 12

m CPBA $(65 \%, 1.10 \mathrm{~g}, 4.14 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was washed twice with saturated aqueous NaHCO_{3} and dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$, which was used in the next reaction.
To a solution of mixed thioacetal $11(670 \mathrm{mg}, 0.804 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added the above m CPBA solution. The resultant solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , three portions of $\mathrm{Me}_{3} \mathrm{Al}(2 \mathrm{M}$ in heptane, $1.6 \mathrm{~mL}, 3.2 \mathrm{mmol}$) were added at 50 min intervals while the reaction mixture was allowed to warm up to $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min , and then quenched with MeOH and saturated aqueous potassium sodium tartrate. The mixture was diluted with ethyl acetate and vigorously stirred for 1 h . The aqueous phase was extracted three times with EtOAc. The combined organic fractions were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel (10% ethyl acetate/hexane) to afford crude tricyclic ether $\mathbf{S 4}$, which was used in the next reaction without further purification.

To a solution of S4 in THF (20 mL) was added TBAF (1.0 M in THF, 4.0 mL , 4.0 mmol) at room temperature. After stirring at room temperature for 30 min , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous phase was extracted three times with EtOAc. The combined organic fractions were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel ($20-40 \%$ ethyl acetate/hexane) to afford alcohol 12 ($440 \mathrm{mg}, 87 \%$ for 2 steps) as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{27}-168$ (c $0.117, \mathrm{CHCl}_{3}$); IR (film) $3748,2933,2868,2360$, $1650,1560,1457,1097,1064,737,699,667 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.25(\mathrm{~m}, 15 \mathrm{H}), 4.81$ $(\mathrm{d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00$ (ddd, $J=9.2,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=11.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{ddd}, J=11.8,10.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.56$ (dd, $J=2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=10.5$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.86(\mathrm{ddd}, J=11.7,4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{dddd}, J=14.7,9.6,5.5,5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.67(\mathrm{dd}, J=13.4,13.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.57(\mathrm{ddd}, J=11.3,7.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H})$, $1.18(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.7,138.5,138.4,128.4,128.3$, $128.1,127.7,127.5,127.4,127.4,127.4,127.1,81.0,80.2,79.4,77.2,72.9,71.9,71.8,71.3,71.1,70.2,69.1$, $67.4,39.1,34.9,33.8,32.5,22.6,17.3,15.5,11.6$; HRMS (DART) calcd for $\mathrm{C}_{39} \mathrm{H}_{51} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+} 631.3629$, found 631.3618 .

ketone 4

To a solution of alcohol $12(30.3 \mathrm{mg}, 0.0481 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ were added 2,6-lutidine $(0.10 \mathrm{~mL}, 0.86 \mathrm{mmol})$ and $\mathrm{Tf}_{2} \mathrm{O}(0.050 \mathrm{~mL}, 0.30 \mathrm{mmol})$. The resultant solution was stirred for 15 min and quenched with $\mathrm{Et}_{3} \mathrm{~N}$ and saturated aqueous NaHCO_{3}. The aqueous phase was extracted three times with EtOAc. The combined organic fractions were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to short column chromatography on silica gel (30% ethyl acetate/hexane) to afford crude triflate $\mathbf{S 5}$, which was used in the next reaction without further purification.
To a solution of $\mathbf{S 5}$ in DMSO (1 mL) was added $\mathrm{NaCN}(19.2 \mathrm{mg}, 0.392 \mathrm{mmol})$ at room temperature. After stirring at room temperature for 2.5 h , additional $\mathrm{NaCN}(19.0 \mathrm{mg}, 0.387 \mathrm{mmol})$ was added. The resultant mixture was stirred at $80^{\circ} \mathrm{C}$ for 30 min , and then saturated aqueous NaHCO_{3} was added. The aqueous phase was extracted three times with EtOAc. The combined organic fractions were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to short column chromatography on silica gel (30% ethyl acetate/hexane) to afford crude nitrile S6, which was used in the next reaction without further purification.
To a solution of $\mathbf{S 6}$ in ether (3.5 mL) was added $\mathrm{MeLi}(1.07 \mathrm{M}$ in ether, $0.5 \mathrm{~mL}, 0.54 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. After stirring at the same temperature for 20 min , the reaction mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$. After stirring for 75 min , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous phase was extracted three times with EtOAc. The combined organic fractions were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel (30% ethyl acetate/hexane) to afford ketone $4\left(21.6 \mathrm{mg}, 68 \%\right.$ for 3 steps) as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{28} 1.91(c$ $0.0940, \mathrm{CHCl}_{3}$); IR (film) $3436,2920,2868,2354,1701,1457,1380,1097,1058,737,693 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.25(\mathrm{~m}, 11 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 4 \mathrm{H}), 4.82(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.56(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.99 (ddd, $J=9.2,2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=11.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.49(\mathrm{~m}, 5 \mathrm{H}), 3.40(\mathrm{dd}, J=10.1$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.83$ (ddd, $J=11.3,4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{dddd}, J=14.7,9.6,5.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{dd}, J=14.7,14.7 \mathrm{~Hz}, 1 \mathrm{H})$, $1.57-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{ddd}, J=12.2,12.2,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.0,139.6,138.5,138.4,128.3,128.3,128.1,127.7,127.4,127.3$, $127.1,81.8,80.3,79.4,77.2,72.9,72.8,71.7,71.4,71.0,70.2,67.4,53.7,39.0,34.8,33.8,32.5,32.4,29.7$, $21.7,19.5,15.5,11.6$; HRMS (FAB) calcd for $\mathrm{C}_{41} \mathrm{H}_{52} \mathrm{O}_{7} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 679.3605$, found 679.3597.

hydroxy epoxide 14

To a solution of alcohol $13(1.66 \mathrm{~g}, 4.21 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at room temperature were added iodobenzene diacetate ($1.89 \mathrm{~g}, 5.87 \mathrm{mmol}$) and TEMPO ($210 \mathrm{mg}, 1.34 \mathrm{mmol}$). After stirring for 3.5 h , $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}(2.05 \mathrm{~g}, 5.88 \mathrm{mmol})$ was added. The resultant mixture was stirred for 1.5 h and then saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ was added to the solution. The aqueous phase was extracted three times with ether. The combined organic fractions were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel (5\% ethyl acetate/hexane) to afford the crude ester $\mathbf{S} 7$, which was used in the next reaction without further purification. To a solution of $\mathbf{S} 7$ was added a stock solution of $\mathrm{TBAF} / \mathrm{AcOH}[0.1 \mathrm{M}$ solution prepared from TBAF (1.0 M in THF, $5.0 \mathrm{~mL}, 5.0 \mathrm{mmol}$), $\mathrm{AcOH}(0.30 \mathrm{~mL}, 5.2 \mathrm{mmol})$, and THF $(44.7 \mathrm{~mL}), 50.0 \mathrm{~mL}, 5.0 \mathrm{mmol}]$ at room temperature. The reaction mixture was stirred at room temperature for 13 h , and then quenched with saturated aqueous NaHCO_{3}. The aqueous phase was extracted three times with EtOAc. The combined organic fractions were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel ($30-50 \%$ ethyl acetate/hexane) to afford hydroxy epoxide $14(440 \mathrm{mg}, 87 \%$ for 2 steps $)$ as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{28}-30.3\left(c 0.276, \mathrm{CHCl}_{3}\right)$; IR (film) $3748,3445,2971,2856,2360,1716,1650,1540,1456,1308,1076,1027,977,756,699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}) $\delta 7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 3 \mathrm{H}), 6.74(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=10.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{q}, 7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.89-3.80(\mathrm{~m}, 1 \mathrm{H})$, $3.78-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=10.7,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.23-3.20(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{brs}, 1 \mathrm{H}), 2.21-2.16(\mathrm{~m}, 1 \mathrm{H})$, 2.04-1.99 (m, 1H), $1.45(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0,149.3,137.5$, $129.0,128.3,128.3,126.1,126.1,121.9,101.1,79.7,71.1,64.7,62.1,60.6,58.2,30.8,15.3,14.2$; HRMS (FAB) calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{6} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 349.1465$, found 349.1450.

To a solution of the hydroxy epoxide $14(3.52 \mathrm{~g}, 10.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ at room temperature was added PPTS ($3.51 \mathrm{~g}, 14.0 \mathrm{mmol}$). After stirring for 4 h , PPTS $(1.54 \mathrm{~g}, 6.13 \mathrm{mmol})$ was added. The resultant mixture was stirred for 1 h , quenched with $\mathrm{Et}_{3} \mathrm{~N}$ and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel ($20-40 \%$ ethyl acetate/hexane) to afford the pyran $\mathbf{1 5}$ $(2.71 \mathrm{~g}, 77 \%)$ as a colorless amorphous solid: $[\alpha]_{\mathrm{D}}{ }^{18} 18.8$ (c $0.927, \mathrm{CHCl}_{3}$); IR (film) 3748, 3463, 2982, 2360, $1715,1653,1456,1369,1305,1187,1092,1019,985,754,683 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.39-7.37 (m, 2H), 7.28-7.24 (m, 2H), 7.01 (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 4.15$ (dd, $J=9.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{dd}, J=9.9,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=9.3,9.3,4.2$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.36 (ddd, $J=12.0,8.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.01 (brs, 1 H), 2.10 (ddd, $J=11.8,4.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.73 (ddd, $J=11.8,11.6,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.7$, $150.1,136.8,128.7,127.9,127.9,125.7,125.7,119.0,101.3,76.6,76.4,70.4,69.3,69.5,60.2,33.3,14.6$, 13.8; HRMS (DART) calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 349.1651$, found 349.1660.
ester 16

To a solution of the pyran $15(1.25 \mathrm{~g}, 3.59 \mathrm{mmol})$ in EtOAc $(25 \mathrm{~mL})$ was added $5 \% \mathrm{Pd} / \mathrm{C}(125 \mathrm{mg})$. The reaction mixture was stirred at room temperature overnight under a hydrogen atmosphere. The mixture was filtered through a pad of Celite ${ }^{\circledR}$ and concentrated under reduced pressure to afford ester 16 (1.27 g , quant) as a colorless amorphous solid: $[\alpha]_{\mathrm{D}}{ }^{18} 23.1$ (c 1.22, CHCl_{3}); IR (film) 3838, 3747, 3446, 2980, 2945, 2360, $1731,1540,1455,1374,1290,1186,1098,1017,754,699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.35$ $(\mathrm{m}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 4 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=10.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{dd}$, $J=10.1,10.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.45-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{ddd}, J=12.0,8.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{brs}, 1 \mathrm{H}), 2.42-2.36$ (m, 1H), 2.30-2.23 (m, 1H), 2.11 (ddd, $J=11.8,4.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.72$ (ddd, $J=11.8$, $11.8,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.0,137.4,129.0$, $128.3,128.3,126.1,126.1,101.7,77.7,77.4,69.9,69.8,66.2,60.7,33.7,33.2,27.6,16.0,14.1$; HRMS (DART) calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 351.1802$, found 351.1808.
allylstannane 19

To a solution of ester $16(43.2 \mathrm{mg}, 0.123 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ were added allylstannane $17(112 \mathrm{mg}$, 0.310 mmol) and CSA ($5.4 \mathrm{mg}, 0.0232 \mathrm{mmol}$) at room temperature. The resultant mixture was stirred for 12.5 h , quenched with $\mathrm{Et}_{3} \mathrm{~N}$ and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel (10% ethyl acetate/hexane, containing 0.5% of $\mathrm{Et}_{3} \mathrm{~N}$) to afford mixed acetal 18 as a mixture of the diastereomers, which was used in the next reaction without further purification.

To a solution of 18 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ were added $\mathrm{HMDS}(0.40 \mathrm{~mL}, 1.92 \mathrm{mmol})$ and TMSI $(0.20 \mathrm{~mL}, 1.46$ mmol) at $0{ }^{\circ} \mathrm{C}$. The resultant mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 45 min , saturated aqueous NaHCO_{3} was added. The aqueous phase was extracted three times with EtOAc. The combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel ($3-5 \%$ ethyl acetate/hexane, containing 0.5% of $\mathrm{Et}_{3} \mathrm{~N}$) to afford allylstannane $19\left(44.0 \mathrm{mg}, 56 \%\right.$ for 2 steps) as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{28} 28.7\left(c 0.0516, \mathrm{C}_{6} \mathrm{H}_{6}\right)$; IR (film) 3747, 2959, 2360, 1735, 1650, 1457, 1374, 1181, 1094, 1020, 750, $693 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ $7.75-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.20(\mathrm{~m}, 1 \mathrm{H}), 5.77(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}, 1 \mathrm{H}), 4.78-4.72$ $(\mathrm{m}, 1 \mathrm{H}), 4.20(\mathrm{ddd}, J=7.6,1.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.61-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{dd}, J=11.3$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{ddd}, J=12.1,8.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.09(\mathrm{~m}, 1 \mathrm{H})$, $1.95-1.87(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.65(\mathrm{~m}, 6 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 6 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.08-0.99(\mathrm{~m}, 19 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 173.0,140.4,138.6,128.9,128.8,126.7,126.7,107.6,101.7,80.7,77.3,76.5,70.0,66.6,60.1$, $35.5,32.0,29.7,29.6,29.5,28.4,28.0,27.8,27.5,16.1,14.3,14.0,14.0,14.0,9.7,9.7,9.7,6.5$; HRMS (DART) calcd for $\mathrm{C}_{34} \mathrm{H}_{57} \mathrm{O}_{6} \mathrm{Sn}[\mathrm{M}+\mathrm{H}]^{+}$681.3172, found 681.3171.
alcohol 20

To a solution of allylstannane $19(44.0 \mathrm{mg}, 0.0647 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added DIBALH (1.0 M in hexane, $0.24 \mathrm{~mL}, 0.24 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. After stirring at the same temperature for 5 min , the resultant mixture was quenched with EtOAc and saturated aqueous potassium sodium tartrate. The mixture was diluted with EtOAc and vigorously stirred for 1 h . The aqueous phase was extracted three times with EtOAc. The combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure to afford crude aldehyde $\mathbf{S 8}$, which was used in the next reaction without purification.
To a solution aldehyde $\mathbf{S 8}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.010 \mathrm{~mL}, 0.079 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. After stirring at the same temperature for 5 min , the resultant mixture was quenched with saturated aqueous NaHCO_{3}. The aqueous phase was extracted three times with EtOAc. The combined organic fractions were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel (10% ethyl acetate $/ \mathrm{CHCl}_{3}$) to afford alcohol $20(20.2 \mathrm{mg}$, 90% for 2 steps) as a colorless amorphous solid: $[\alpha]_{\mathrm{D}}{ }^{25}-16.8$ (c $0.196, \mathrm{CHCl}_{3}$); IR (film) $3748,3453,3278$, 2935, 2862, 2361, 1651, 1454, 1383, 1098, 1024, 946, 927, 754, $695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.48-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 3 \mathrm{H}), 5.75(\mathrm{ddd}, J=16.8,11.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~s}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=17.2$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dd}, J=10.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dd}, J=9.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.90(\mathrm{~m}$, $1 \mathrm{H}), 3.81(\mathrm{dd}, J=12.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(J=9.9,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{ddd}, J=9.7,9.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.47$ (ddd, $J=12.0,8.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{ddd}, J=11.8,4.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{ddd}, J=14.3,10.4,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.84-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.60-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.5,136.9,129.0$, $128.3,128.3,126.2,126.2,116.0,101.6,85.1,78.2,77.9,76.5,74.0,70.1,66.0,34.4,32.7,25.5,16.3$; HRMS (DART) calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 347.1853$, found 347.1867.
diol 21

To a solution of alcohol $20(205 \mathrm{mg}, 0.592 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added DIBALH (1.0 M in hexane, $3.0 \mathrm{~mL}, 3.0 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After stirring at room temperature for 22 h , the reaction was quenched with saturated aqueous potassium sodium tartrate. The mixture was diluted with ethyl acetate and vigorously stirred for 18 h . The aqueous phase was extracted three times with EtOAc. The combined organic fractions were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel (50\% ethyl acetate/hexane) to afford the diol 21 (188 $\mathrm{mg}, 91 \%$) as a colorless amorphous solid: $[\alpha]_{\mathrm{D}}{ }^{25} 58.4$ (c 0.367, CHCl_{3}); IR (film) 3421, 2940, 2872, 2360, $1644,1455,1374,1350,1213,1072,1026,923,728,699,679 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.29-7.19(\mathrm{~m}, 5 \mathrm{H}), 5.70(\mathrm{ddd}, J=16.7,11.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}) .5 .26$ (dd, $J=17.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{dd}, J=10.5$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=11.3 \mathrm{~Hz}), 4.03-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{brs}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=$ $10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{br}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=12.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{ddd}, J=10.4,10.4,4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.26(\mathrm{ddd}, J=12.2,4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.21$ (brs, 1H), 2.05 (brs, 1H), 1.90-1.84 (m, 1H), 1.74-1.69 (m, 2H), 1.59-1.48 (m, 2H), $1.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.9,137.1,128.4,128.4,128.3$, $127.7,127.7,116.0,85.3,76.7,76.5,73.9,73.2,72.4,70.7,62.9,34.7,32.5,25.7,16.0$, HRMS (DART) calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 349.2010$, found 349.2009.
tosylate $\mathbf{2 2}$

To a solution of diol $21(101 \mathrm{mg}, 0.290 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added $\mathrm{Et}_{3} \mathrm{~N}(0.20 \mathrm{~mL}, 1.43$ mmol), DMAP ($4.5 \mathrm{mg}, 0.037 \mathrm{mmol}$) and $p-\mathrm{TsCl}(65.0 \mathrm{mg}, 0.341 \mathrm{mmol})$. After stirring at the same temperature for $14.5 \mathrm{~h}, p-\mathrm{TsCl}(60.0 \mathrm{mg}, 0.315 \mathrm{mmol})$ was added. The resultant mixture was stirred for 1.5 h and then TESOTf $(0.10 \mathrm{~mL}, 0.44 \mathrm{mmol})$ was added. The resultant solution was stirred for 30 min and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous phase was extracted twice with EtOAc. The combined organic fractions were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel twice (1st and 2 nd : 10% ethyl acetate/hexane) to afford tosylate $22(136 \mathrm{mg}, 76 \%)$ as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{25} 38.6\left(c 0.0230, \mathrm{CHCl}_{3}\right)$; IR (film) $3447,2920,2360,1650,1540,1093,808,748,671 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78-7.75$ (m, $2 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 7 \mathrm{H}), 5.70(\mathrm{ddd}, J=17.0,10.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}) .5 .24(\mathrm{dd}, J=16.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, J=$ $11.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=10.9 \mathrm{~Hz}), 4.21-4.14(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{dd}, J=6.1,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=12.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dddd}, J=4.9,4.9,4.9,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.30-3.25(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{ddd}, J=12.2,4.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{ddd}, J=12.8$, $12.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{ddd}, J=13.6,5.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $9 \mathrm{H}), 0.58(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.4,137.8,137.2,133.2,129.6,129.6,128.4$, $128.1,128.0,128.0,127.8,127.8,115.3,85.9,76.8,74.9,74.5,72.7,70.6,70.5,70.1,34.0,32.5,25.3,21.6$, 15.3, 6.9, 4.8; HRMS (FAB) calcd for $\mathrm{C}_{33} \mathrm{H}_{48} \mathrm{O}_{7} \mathrm{SiSNa}[\mathrm{M}+\mathrm{Na}]^{+}$639.2782, found 639.2784.
olefin 23

To a solution of tosylate $22(136 \mathrm{mg}, 0.221 \mathrm{mmol})$ in THF $(5.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{LiAlH}_{4}(101 \mathrm{mg}, 2.66$ $\mathrm{mmol})$. The resultant mixture was gradually warmed to room temperature, stirred for 23 h , and then quenched with EtOAc and saturated aqueous potassium sodium tartrate. The mixture was diluted with EtOAc and vigorously stirred for 3 h . The aqueous phase was extracted three times with ether. The combined organic fractions were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel (5% ethyl acetate/hexane) to afford olefin 23 ($59.3 \mathrm{mg}, 60 \%$) as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{28} 23.8$ (c $0.138, \mathrm{CHCl}_{3}$); IR (film) 3447, 2945, 2882, $2360,1650,1457,1096,739 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.17(\mathrm{~m}, 5 \mathrm{H}), 5.65(\mathrm{ddd}, J=17.0$, $10.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{dd}, J=7.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{dd}, J=10.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.36(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=12.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.42$ $(\mathrm{m}, 1 \mathrm{H}), 2.94-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{ddd}, J=12.2,4.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.54(\mathrm{~m}, 2 \mathrm{H})$, $1.48-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 0.89-0.85(\mathrm{~m}, 9 \mathrm{H}), 0.53-0.48$ $(\mathrm{m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.4,137.4,128.4,128.4,127.8,127.8,127.7,115.2,85.9,79.1$, $76.4,75.6,74.6,70.8,68.5,34.5,33.0,25.4,18.7,15.7,6.9,4.8$; HRMS (DART) calcd for $\mathrm{C}_{26} \mathrm{H}_{43} \mathrm{O}_{4} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]^{+} 447.2925$, found 447.2931.
aldehyde 5

A solution of olefin $23(58.0 \mathrm{mg}, 0.130 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$, and ozone was bubbled through the solution turned blue. Oxygen was bubbled through the solution turned colorless, and $\mathrm{PPh}_{3}(88.8 \mathrm{mg}, 0.339 \mathrm{mmol})$ was added. The mixture was warmed to room temperature, stirred for 1 h and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel twice (1st: 10\% ethyl acetate/hexane, 2nd: 8\% ethyl acetate/hexane) to afford aldehyde 5 ($53.8 \mathrm{mg}, 92 \%$) as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{25} 36.7$ (c 1.35, CHCl_{3}); IR (film) 2952, 2879, 1736, 1455, 1376, 1239, 1097, 1002, 812, $739,698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.44(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.16(\mathrm{~m}, 5 \mathrm{H}), 4.57-4.37(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{~d}, J$ $=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=12.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.44(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{ddd}, J=$ $11.4,8.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 1 \mathrm{H})$, $1.42-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}), 0.87-0.80(\mathrm{~m}, 9 \mathrm{H}), 0.54-0.45$ ($\mathrm{m}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 201.3,138.2,128.4,128.4,127.7,127.7,127.7,90.3,78.9,77.1$, $76.2,71.2,71.0,68.5,34.2,32.7,27.5,18.6,15.2,6.8,4.6$; HRMS (DART) calcd for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{O}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$ 449.2718 , found 449.2714 .

To a solution of diisopropylamine $(0.10 \mathrm{~mL}, 0.71 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ was added $n-\mathrm{BuLi}(1.57 \mathrm{M}$ in hexane, $0.30 \mathrm{~mL}, 0.46 \mathrm{mmol}$) at $-15^{\circ} \mathrm{C}$. After stirred at $0^{\circ} \mathrm{C}$ for 30 min , methyl ketone $4(246 \mathrm{mg}, 0.375$ $\mathrm{mmol})$ in THF ($1.0 \mathrm{~mL}+1.0 \mathrm{~mL}$ rinse) was added slowly to the above LDA solution at $0{ }^{\circ} \mathrm{C}$. After stirring at $0^{\circ} \mathrm{C}$ for 1 h , aldehyde $5(479 \mathrm{mg}, 1.07 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL}+1.0 \mathrm{~mL}$ rinse) was added to the solution at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 20 min , and then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous phase was extracted three times with EtOAc. The combined organic fractions were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel three times (1st and 2nd: 20\% ethyl acetate/hexane, 3rd: flash column chromatography 25% ethyl acetate/hexane) to afford ketone $\mathbf{2 4 a}$ ($245 \mathrm{mg}, 59 \%$), ketone $\mathbf{2 4 b}$ ($87.3 \mathrm{mg}, \mathbf{2 1 \%}$) and recovered ketone $4(11.1 \mathrm{mg}, 5 \%)$ and recovered aldehyde $5(258 \mathrm{mg}, 0.576 \mathrm{mmol})$ as colorless oils.
data for 24a: $[\alpha]_{\mathrm{D}}{ }^{28} 2.33\left(c 0.166, \mathrm{CHCl}_{3}\right)$; IR (film) 3743, 3455, 2947, 2882, 2360, 1697, 1457, 1380, 1096, 1065, 735, 699, $676 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.31(\mathrm{~m}, 8 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 8 \mathrm{H}), 7.22-7.21$ $(\mathrm{m}, 4 \mathrm{H}), 4.81(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=11.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.47(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.23(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{ddd}, J=9.2,2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=12.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$ (dddd, $J=$ $8.0,8.0,4.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.55(\mathrm{~m}, 3 \mathrm{H}), 3.53-3.48(\mathrm{~m}, 4 \mathrm{H}), 3.42-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{ddd}, J=10.9,9.6$, $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=17.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=$ $17.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{ddd}, J=11.8,4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.84$ (ddd, $J=11.3,4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.57-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.40(\mathrm{~m}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H})$, $1.22(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.90(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.59(\mathrm{q}$, $J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.8,139.6,138.5,138.3,138.3,128.4,128.4,128.3,128.3$, $128.1,127.7,127.5,127.4,127.3,127.1,87.9,81.7,80.7,79.3,79.1,77.2,77.1,76.6,76.0,72.9,72.8,71.8$, $71.6,71.6,71.0,71.0,70.9,70.2,68.5,67.4,53.4,48.1,39.0,34.8,34.3,33.8,32.7,32.5,26.3,21.7,19.8$, 18.7, 15.7, 15.5, 11.6, 6.9, 4.8; HRMS (FAB) calcd for $\mathrm{C}_{66} \mathrm{H}_{92} \mathrm{O}_{12} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 1127.6250$, found 1127.6234.
data for 24b:
$[\alpha]_{\mathrm{D}}{ }^{28} 9.54\left(c 0.0820, \mathrm{CHCl}_{3}\right)$; IR (film) 3750, 3447, 2933, 2868, 2360, 1701, 1457, 1380, 1097, 1072, 737,

693, $671 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 8 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 4 \mathrm{H})$, $4.81(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.46(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.10(\mathrm{dd}, J=3.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{dd}, J=12.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.63 .-3.47(\mathrm{~m}, 6 \mathrm{H}), 3.41$ $(\mathrm{dd}, J=12.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), \quad 3.38(\mathrm{dd}, J=10.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=3.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{ddd}, J=$ $10.9,9.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=16.8,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.55(\mathrm{dd}, J=16.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18$ (ddd, $J=11.8,4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.88(\mathrm{~m}$, $3 \mathrm{H}), 1.82(\mathrm{ddd}, J=11.3,4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~s}$, $3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, 0.57 (q, $J=8.0 \mathrm{~Hz}, 6 \mathrm{H}){ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.2,139.6,138.5,138.3,138.3,128.4,128.4$, $128.3,128.1,127.7,127.5,127.4,127.3,127.1,88.4,81.7,80.6,79.3,79.2,78.5,77.2,77.2,76.0,72.9,72.8$, $72.3,71.8,71.7,71.5,71.1,71.0,70.2,68.5,67.4,53.8,48.0,39.0,34.7,33.9,32.6,32.5,29.7,28.4,21.7$, $19.6,18.8,15.7,15.6,11.6,6.9,4.8$; HRMS (FAB) calcd for $\mathrm{C}_{66} \mathrm{H}_{92} \mathrm{O}_{12} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 1127.6250$, found 1127.6267 .
alcohol 25

To a solution of the ketone $\mathbf{2 4 a}(74.0 \mathrm{mg}, 0.0669 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(13 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{SiH}(4 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise TMSOTf $\left(0.1 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 4.0 \mathrm{~mL}, 0.40 \mathrm{mmol}\right)$. After stirring for 30 min , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous phase was extracted three times with EtOAc. The combined organic fractions were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel ($30-40 \%$ ethyl acetate/hexane) to afford alcohol $25(63.7 \mathrm{mg}, 98 \%)$ as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{28} 13.1\left(c 0.106, \mathrm{CHCl}_{3}\right)$; IR (film) 3743, 3447, 2933, 2868, $2360,1650,1560,1453,1381,1082,737,699,676 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.25(\mathrm{~m}, 16 \mathrm{H})$, 7.23-7.19 (m, 4H), $4.82(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=$ $11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=$ $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06$ (ddd, $J=2.5,2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{ddd}, J=9.2,2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=11.8,4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.72-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.47(\mathrm{~m}, 7 \mathrm{H}), 3.41-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.15(\mathrm{dd}, J=9.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{ddd}$, $J=10.5,10.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{ddd}, J=12.2,4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 1 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 5 \mathrm{H}), 1.84-1.68$ $(\mathrm{m}, 5 \mathrm{H}), 1.63-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.20-1.19(\mathrm{~m}, 9 \mathrm{H}), 0.92(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.7,138.8,138.6,138.1,128.4,128.3,128.1,127.8,127.7$, $127.4,127.4,127.3,127.0,81.4,81.2,80.3,80.2,79.4,78.9,77.5,77.2,76.5,73.6,72.9,72.9,71.7,71.3$, $71.3,71.1,71.0,68.8,68.1,67.8,67.5,46.9,39.1,38.7,38.5,35.0,34.1,32.7,32.5,29.1,21.8,21.5,18.7$, 17.6, 15.6, 11.6; HRMS (FAB) calcd for $\mathrm{C}_{60} \mathrm{H}_{78} \mathrm{O}_{11} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 997.5436$, found 997.5430 .
alcohol $25(\mathbf{2 4 b} \rightarrow \mathbf{2 5})$

To a solution of the ketone 24b ($36.5 \mathrm{mg}, 0.0330 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{SiH}(2.0 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise $\operatorname{TMSOTf}\left(0.1 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.0 \mathrm{~mL}, 0.20 \mathrm{mmol}\right)$. After stirring for 20 min , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous phase was extracted three times with EtOAc. The combined organic fractions were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel ($30-60 \%$ ethyl acetate/hexane) to afford alcohol S9 (28.2 mg, 88\%) as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{28} 0.016$ (c $0.550, \mathrm{CHCl}_{3}$); IR (film) 3729, 3434, 2933, 2868, 2360, 1650, 1560, 1454, 1380, 1084, 737, 693, $673 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.24(\mathrm{~m}$, $16 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 4 \mathrm{H}), 4.82(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.57$ $(\mathrm{d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}$, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{ddd}, J=9.6,2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=11.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{ddd}, J=11.3$, $11.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.47(\mathrm{~m}, 6 \mathrm{H}), 3.41-3.39(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{dd}, J=12.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{ddd}, J=10.5$, $10.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{brs}, 1 \mathrm{H}), 2.30(\mathrm{ddd}, J=11.7,4.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.97$ (ddd, $J=$ $13.4,4.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.87(\mathrm{~m}, 5 \mathrm{H}), 1.82(\mathrm{ddd}, J=11.3,5.0,5.0 \mathrm{~Hz}), 1.78-1.73(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.60(\mathrm{~m}$, $4 \mathrm{H}), 1.50-1.32(\mathrm{~m}, 4 \mathrm{H}), 1.24-1.18(\mathrm{~m}, 12 \mathrm{H}), 0.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.7$, $138.6,138.5,138.1,128.4,128.3,128.1,127.8,127.7,127.4,127.4,127.0,86.4,81.4,80.9,80.0,79.4,79.0$, $78.0,77.4,77.2,76.4,72.9,72.8,72.2,71.7,71.4,71.2,71.2,71.1,70.1,68.8,67.5,47.3,39.3,39.1,38.4$, $35.0,34.0,32.5,32.2,28.8,21.8,21.5,18.8,17.0,15.6,11.6$; HRMS (FAB) calcd for $\mathrm{C}_{60} \mathrm{H}_{78} \mathrm{O}_{11} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 997.5436 , found 997.5430 .

To a solution of $\mathbf{S 9}(36.0 \mathrm{mg}, 0.0369 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ were added $4 \AA$ molecular sieves (40 mg), NMO ($41.0 \mathrm{mg}, 0.350 \mathrm{mmol}$) and catalytic amount of TPAP (ca 5 mg) at room temperature. After stirring at room temperature for 4 h , the reaction mixture was directly subjected to column chromatography on silica gel (40-80\% ethyl acetate/hexane) to afford ketone $\mathbf{S 1 0}$, which was used in the next reaction without further purification.
To a solution of $\mathbf{S 1 0}$ in THF (2 mL) was added L-Selectride (1.0 M in THF, $0.20 \mathrm{~mL}, 0.20 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After stirring at the same temperature for 3.5 h , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous phase was extracted three times with EtOAc. The combined organic fractions were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel (30% ethyl acetate/hexane) to afford alcohol 25 ($35.5 \mathrm{mg}, 99 \%$ for 2 steps).

To a solution of the alcohol $25(9.7 \mathrm{mg}, 0.010 \mathrm{mmol})$ in THF $(2.0 \mathrm{~mL})$ was added $10 \% \mathrm{Pd} / \mathrm{C}(11.5 \mathrm{mg})$. The reaction mixture was stirred at room temperature overnight under a hydrogen atmosphere. The mixture was directly subjected to column chromatography on silica gel $\left(10-30 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}\right)$ to afford crude pentaol S11, which was used in the next reaction without further purification.

To a solution of $\mathbf{S 1 1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ were added 2,6-lutidine ($\left.0.033 \mathrm{~mL}, 0.285 \mathrm{mmol}\right)$ and TESOTf $(0.034 \mathrm{~mL}, 0.150 \mathrm{mmol})$. The resultant solution was stirred for 45 min and quenched with saturated aqueous NaHCO_{3}. The aqueous phase was extracted twice with EtOAc. The combined organic fractions were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel twice (1 st : 5% ethyl acetate/hexane, 2 nd : 2% ethyl acetate/hexane) to afford pentakis-TES ether $26(882 \mathrm{mg}, 84 \%)$ as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{28} 8.89\left(c 0.0970, \mathrm{CHCl}_{3}\right)$; IR (film) $3743,3438,2945,2868,2360,1650,1560,1451,1386,1084,1014,827,744,667 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 4.09(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{ddd}, J=9.6,2.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=$ $10.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.47$ (ddd, $J=11.7$, $9.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.36$ (dddd, $J=9.2,5.9,5.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=12.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.16$ (m, $2 \mathrm{H}), 3.03(\mathrm{dd}, J=9.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.78(\mathrm{ddd}, J=11.7,4.6,4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.73-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.44(\mathrm{~m}, 5 \mathrm{H}), 1.38(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.29(\mathrm{~m}, 2 \mathrm{H})$, $1.17(\mathrm{~s}, 3 \mathrm{H}), 1.13-1.11(\mathrm{~m}, 9 \mathrm{H}), 0.96-0.89(\mathrm{~m}, 47 \mathrm{H}), 0.62-0.50(\mathrm{~m}, 30 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $82.5,80.2,79.7,77.6,77.2,74.9,73.8,72.9,72.8,70.9,70.4,68.9,68.6,68.0,59.8,47.0,42.0,41.6,38.7$, $36.8,35.4,34.5,34.2,29.4,26.3,21.6,18.6,17.8,15.8,11.4,7.0,6.9,6.8,6.7,5.0,5.0,4.8,4.4$; HRMS (FAB) calcd for $\mathrm{C}_{62} \mathrm{H}_{124} \mathrm{O}_{11} \mathrm{Si}_{5} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$1207.7882, found 1207.7870.
tris-TES ether 27

To a solution of tri- O-acetyl-D-glucal ($\mathbf{S 1 2)}$ ($820 \mathrm{mg}, 3.01 \mathrm{mmol}$) in EtOAc (20 mL) was added $5 \% \mathrm{Pd} / \mathrm{C}$ $(110 \mathrm{mg})$. The reaction mixture was stirred at room temperature for 6 h under a hydrogen atmosphere. The mixture was filtered through a pad of Celite ${ }^{\circledR}$ and concentrated under reduced pressure to afford $\mathbf{S 1 3}$, which was used in the next reaction without further purification.

To a solution of $\mathbf{S 1 3}$ in $\mathrm{MeOH}(15 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(83.0 \mathrm{mg}, 0.600 \mathrm{mmol})$ at room temperature. The mixture was stirred at room temperature overnight and then concentrated under reduced pressure to afford crude triol S14, which was used in the next reaction without purification.
To a solution of $\mathbf{S 1 4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ were added 2,6-lutidine ($2.80 \mathrm{~mL}, 24.2 \mathrm{mmol}$) and TESOTf $(2.70 \mathrm{~mL}, 12.0 \mathrm{mmol})$. The resultant solution was stirred for 20 min and quenched with saturated aqueous NaHCO_{3}. The aqueous phase was extracted twice with EtOAc. The combined organic fractions were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel twice (1 st and 2 nd : 3% ethyl acetate/hexane) to afford tris-TES ether 27 ($780 \mathrm{mg}, 53 \%$ for 3 steps) as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{28} 8.64$ (c $0.754, \mathrm{CHCl}_{3}$); IR (film) 2954, 2907, 2360, $1459,1239,1129,1105,1007,981,811,739 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.86(\mathrm{ddd}, J=12.0,4.6$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=10.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=10.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.32$ (m, 2H), $3.10(\mathrm{ddd}, 8.5,6.2,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.55(\mathrm{~m}, 1 \mathrm{H}), 0.96-0.92(\mathrm{~m}, 27 \mathrm{H})$, $0.65-0.56(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 81.9,74.6,73.2,64.6,63.2,34.7,7.0,7.0,6.8,5.4,5.2$, 4.5; HRMS (FAB) calcd for $\mathrm{C}_{24} \mathrm{H}_{54} \mathrm{O}_{4} \mathrm{Si}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$513.3222, found 513.3212.
alcohol 29

To a solution of tris-TES ether $27(780 \mathrm{mg}, 1.59 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16 \mathrm{~mL})$ was added DIBALH (1.0 M in hexane, $8.0 \mathrm{~mL}, 8.0 \mathrm{mmol}$) at $-40^{\circ} \mathrm{C}$. After stirring at the same temperature for 30 min , the resultant mixture was quenched with EtOAc and saturated aqueous potassium sodium tartrate. The mixture was diluted with EtOAc and vigorously stirred for 8 h . The aqueous phase was extracted three times with EtOAc. The combined organic fractions were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel ($10-20 \%$ ethyl acetate/hexane) to afford alcohol $29(586 \mathrm{mg}, 98 \%)$ as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{28} 3.66\left(c 0.777, \mathrm{CHCl}_{3}\right)$; IR (film) $3469,2954,2877,2360,1459,1415,1380,1239,1127,1103,1007,943,808,739,679 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.88(\mathrm{ddd}, J=11.7,4.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{dt}$, $J=12.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{t}, 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{ddd}, J=8.8,5.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{br}, 1 \mathrm{H}), 1.90-1.87(\mathrm{~m}$, $1 \mathrm{H}), 1.65-1.59(\mathrm{~m}, 1 \mathrm{H}), 0.97-0.92(\mathrm{~m}, 18 \mathrm{H}), 0.65-0.57(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 80.1,74.5$, $73.6,65.1,62.8,34.9,7.0,6.9,5.4,5.1$; HRMS (FAB) calcd for $\mathrm{C}_{18} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 399.2357$, found 399.2369.

To a solution of alcohol 29 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{DMSO}(3: 1,8.0 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(0.83 \mathrm{~mL}, 5.94 \mathrm{mmol})$ and $\mathrm{SO}_{3} \cdot$ pyridine ($601 \mathrm{mg}, 3.78 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The resultant solution was stirred at room temperature for 1.5 h . The reaction mixture was diluted with EtOAc , washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, dried over MgSO_{4}, filtered, and concentrated to afford crude aldehyde $\mathbf{S 1 5}$, which was used in the next reaction without further purification.
To a suspension of $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CH}_{3} \mathrm{Br}^{-}(531 \mathrm{mg}, 1.49 \mathrm{mmol})$ in THF $(10.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added NaHMDS (1.0 M in THF, $1.34 \mathrm{~mL}, 1.34 \mathrm{mmol}$) and the resultant solution was stirred at $0^{\circ} \mathrm{C}$ for 50 min . To the solution was added dropwise a solution of $\mathbf{S 1 5}$ in THF $\left(2.0 \mathrm{~mL}+2.0 \mathrm{~mL}\right.$ rinse) at $0^{\circ} \mathrm{C}$. After stirring at $0{ }^{\circ} \mathrm{C}$ for 30 min , the reaction was quenched with acetone and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous phase was extracted twice with EtOAc. The combined organic fractions were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel (2% ethyl acetate/hexane) to afford olefin $\mathbf{S 1 6}$ ($178 \mathrm{mg}, 64 \%$ for 2 steps) as a colorless oil.

To a solution of olefin $\mathbf{S 1 6}(178 \mathrm{mg}, 0.476 \mathrm{mmol})$ in THF (4.0 mL) was added 9-BBN-H (0.5 M in THF, 1.2 $\mathrm{mL}, 0.60 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After being stirred at $40^{\circ} \mathrm{C}$ for $40 \mathrm{~min}, 3 \mathrm{M} \mathrm{NaOH}(2.0 \mathrm{~mL})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(2.0$ mL) were added at $0^{\circ} \mathrm{C}$. The resultant mixture was stirred at room temperature for 50 min , and then extracted twice with EtOAc. The combined organic fractions were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel (20% ethyl acetate/hexane) to afford alcohol $\mathbf{3 0}$, which was used in the next reaction.
To a solution of alcohol $\mathbf{3 0}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ were added 2,6-lutidine $(0.073 \mathrm{~mL}, 0.632 \mathrm{mmol})$ and TESOTf ($0.11 \mathrm{~mL}, 0.505 \mathrm{mmol}$). The resultant solution was stirred for 15 min and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous phase was extracted twice with EtOAc. The combined organic fractions were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel (5% ethyl acetate/hexane) to afford tris-TES ether 28 (210 $\mathrm{mg}, 87 \%$ for 2 steps) as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{28} 7.02$ (c $0.246, \mathrm{CHCl}_{3}$); IR (film) 2954, 2877, 2360, 1458, 1412, 1380, 1239, 1127, 1103, 1007, 809, 739, $673 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.81$ (ddd, $J=11.7,4.7$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{dd}, J=5.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{ddd}, J=11.9,1.7,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.16-3.10(\mathrm{~m}, 2 \mathrm{H}), 2.06-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.50(\mathrm{~m}, 2 \mathrm{H}), 0.96-0.90(\mathrm{~m}, 27 \mathrm{H})$, $0.65-0.55(\mathrm{~m}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 77.6,77.5,74.6,64.7,59.6,35.4,35.1,7.1,7.0,6.8,5.4$, 5.3, 4.4; HRMS (FAB) calcd for $\mathrm{C}_{25} \mathrm{H}_{57} \mathrm{O}_{4} \mathrm{Si}_{3}[\mathrm{M}+\mathrm{H}]^{+} 505.3559$, found 505.3559.
alcohol 30

To a solution of tris-TES ether $28(201 \mathrm{mg}, 0.398 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$ was added DIBALH $(1.0 \mathrm{M}$ in hexane, $2.0 \mathrm{~mL}, 2.0 \mathrm{mmol}$) at $-40^{\circ} \mathrm{C}$. After stirring at the same temperature for 30 min , the resultant mixture was quenched with EtOAc and saturated aqueous potassium sodium tartrate. The mixture was diluted with EtOAc and vigorously stirred for 4.5 h . The aqueous phase was extracted three times with EtOAc. The combined organic fractions were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel (20% ethyl acetate/hexane) to afford alcohol $30(149 \mathrm{mg}, 96 \%)$ as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{28} 2.33\left(c 0.543, \mathrm{CHCl}_{3}\right)$; IR (film) $3430,2954,2877,2360,1459,1415,1379,1239,1127,1094,1052,1007,970,924,810,738,682 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.86(\mathrm{ddd}, J=11.7,4.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{ddd}, J=11.0,7.5$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.37 (ddd, $J=12.2,1.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{ddd}, J=9.0,2.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.23-3.19(\mathrm{~m}, 1 \mathrm{H})$, $2.69(\mathrm{br}, 1 \mathrm{H}), 2.03-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.58(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.6 \mathrm{~Hz}, 9 \mathrm{H}), 0.94(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 9 \mathrm{H}), 0.65-0.57(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 82.1,77.2,74.4,65.3,61.9,35.0,33.9,7.0$, 7.0, 5.4, 5.3; HRMS (FAB) calcd for $\mathrm{C}_{19} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 413.2514$, found 413.2529.
alcohol 31

To a solution of pentakis-TES ether $26(201 \mathrm{mg}, 0.169 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ was added DIBALH (1.0 M in hexane, $1.7 \mathrm{~mL}, 1.7 \mathrm{mmol}$) at $-40^{\circ} \mathrm{C}$. After stirring at the same temperature for 30 min , the mixture was gradually warmed up to $-20^{\circ} \mathrm{C}$ over 20 min and stirred at $-20^{\circ} \mathrm{C}$ for 1 h . Then the resultant mixture was quenched with EtOAc and saturated aqueous potassium sodium tartrate. The mixture was diluted with EtOAc and vigorously stirred for 5 h . The aqueous phase was extracted three times with EtOAc. The combined organic fractions were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel (20% ethyl acetate/hexane) to afford alcohol $31(159 \mathrm{mg}, 88 \%)$ as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{28} 6.57\left(c 0.167, \mathrm{CHCl}_{3}\right)$; IR (film) 3447, 2952, 2882, 2360, 1457, 1380, 1110, 1085, 1014, 827, 740, $667 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(500} \mathrm{MHz} ,\mathrm{CDCl}{ }_{3}$) δ 4.12 (ddd, $J=10.9,2.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{ddd}, J=2.5,2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ (dddd, $J=10.5,8.4,2.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{ddd}, J=10.5,10.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.59$ (m, 2H), $3.56(\mathrm{ddd}, J=11.7,9.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dddd}, J=9.2,6.3,6.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=12.2$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.15(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{dd}, J=9.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 3 \mathrm{H}), 1.92-1.75(\mathrm{~m}, 5 \mathrm{H})$, $1.73-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.50(\mathrm{~m}, 5 \mathrm{H}), 1.46-1.28(\mathrm{~m}, 4 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.13-1.11(\mathrm{~m}, 9 \mathrm{H}), 0.96-0.90(\mathrm{~m}$, $39 \mathrm{H}), 0.62-0.50(\mathrm{~m}, 24 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 82.5,80.3,79.7,77.5,77.2,75.7,74.9,73.8,72.9$, $72.6,70.8,70.7,70.5,68.6,68.4,67.9,62.8,47.1,42.4,41.6,38.7,36.8,34.5,34.2,34.0,29.4,26.3,21.8$, $18.6,17.8,15.7,11.7,7.0,7.0,6.9,6.8,5.0,5.0,4.8$; HRMS (FAB) calcd for $\mathrm{C}_{56} \mathrm{H}_{110} \mathrm{O}_{11} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$ 1093.7017, found 1093.7002.
iodide 3

To a solution of alcohol $31(159 \mathrm{mg}, 0.149 \mathrm{mmol})$ in benzene $(6.0 \mathrm{~mL})$ at room temperature were added imidazole ($83.0 \mathrm{mg}, 1.22 \mathrm{mmol}$), $\mathrm{PPh}_{3}(145 \mathrm{mg}, 0.553 \mathrm{mmol})$, and $\mathrm{I}_{2}(240 \mathrm{mg}, 0.946 \mathrm{mmol})$. After stirring at room temperature for 30 min , the reaction was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$. The aqueous phase was extracted three times with EtOAc. The combined organic fractions were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel (10% ethyl acetate/hexane) to afford iodide 3 ($171 \mathrm{mg}, 97 \%$) as a colorless oil: $[\alpha]_{\mathrm{D}}{ }^{28} 14.8\left(c 0.118, \mathrm{CHCl}_{3}\right)$; IR (film) 3441, 2952, 2875, 2361, 1460, 1376, 1236, 1106, 1085, 1057, 997, $959,831,727 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.09$ (ddd, $J=2.5,2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.96-3.93 (m, 2H), 3.85 (dddd, $J=10.9,8.4,2.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{ddd}, J=$ $11.8,9.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dddd}, J=8.8,6.3,6.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=12.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.15$ $(\mathrm{m}, 3 \mathrm{H}), 3.03(\mathrm{dd}, J=9.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.94(\mathrm{~m}, 3 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{ddd}, J=11.8,4.6,4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.76-1.68(\mathrm{~m}, 3 \mathrm{H}), 1.55-1.44(\mathrm{~m}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.13-1.12(\mathrm{~m}, 9 \mathrm{H}), 0.96-0.89(\mathrm{~m}, 39 \mathrm{H})$, $0.62-0.50(\mathrm{~m}, 24 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 82.5,80.3,79.7,77.4,77.2,74.8,74.2,73.8,72.9,72.6$, $70.8,70.7,70.5,68.7,68.6,68.0,47.1,41.7,41.6,38.7,36.8,36.7,34.5,34.2,29.4,26.3,21.7,18.6,17.8$, $15.7,11.5,7.0,6.9,6.8,5.0,5.0,4.8,3.6$; HRMS (FAB) calcd for $\mathrm{C}_{56} \mathrm{H}_{109} \mathrm{IO}_{10} \mathrm{Si}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$1203.6035, found 1203.6085.
brevisin (1)

To a solution of iodide $3(159 \mathrm{mg}, 0.134 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ were added $B-\mathrm{MeO}-9-\mathrm{BBN}(1.0$ M in hexane, $0.80 \mathrm{~mL}, 0.80 \mathrm{mmol}), t$ - $\mathrm{BuLi}(1.58 \mathrm{M}$ in heptane, $0.68 \mathrm{~mL}, 1.07 \mathrm{mmol})$. Then THF (1.5 mL) was added dropwise to the solution at the same temperature. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 10 min , the reaction mixture was allowed to warm to room temperature and stirred for 2.5 h . To the solution were added 3 M aqueous $\mathrm{Cs}_{2} \mathrm{CO}_{3}(0.90 \mathrm{~mL})$, bromodienol $2(99.0 \mathrm{mg}, 0.518 \mathrm{mmol})$ in DMF ($2.0 \mathrm{~mL}+1.0 \mathrm{~mL}$ rinse) and $\mathrm{PdCl}_{2}(\mathrm{dppf}) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(23.1 \mathrm{mg}, 0.0283 \mathrm{mmol})$. After stirring at $50{ }^{\circ} \mathrm{C}$ for 8.5 h , brine was added to the solution. The aqueous phase was extracted three times with EtOAc. The combined organic fractions were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel (15% ethyl acetate/hexane) to afford crude S17, which was used in the next reaction without further purification.

To a solution of $\mathbf{S 1 7}$ in THF (3.5 mL) was added TBAF (1.0 M in THF, $1.6 \mathrm{~mL}, 1.6 \mathrm{mmol}$) at room temperature. After stirring at room temperature for $3 \mathrm{~h}, \mathrm{TBAF}$ (1.0 M in THF, $1.6 \mathrm{~mL}, 1.6 \mathrm{mmol}$) was added. The reaction mixture was heated at reflux, stirred for 1 h , and then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous phase was extracted five times with EtOAc. The combined organic fractions were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was subjected to column chromatography on silica gel $\left(5-10 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}\right)$ to afford crude $\mathbf{S 1 8}$, which was used in the next reaction without further purification.

To the solution of $\mathbf{S 1 8}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added $\mathrm{MnO}_{2}(290 \mathrm{mg})$ at $0^{\circ} \mathrm{C}$. After stirring for $15 \mathrm{~min}, \mathrm{MnO}_{2}$ $(310 \mathrm{mg})$ was added to the solution. The mixture was stirred at $0^{\circ} \mathrm{C}$ for $1 \mathrm{~h}, \mathrm{MnO}_{2}(310 \mathrm{mg})$ was added. After stirring for 1 h , the reaction mixture was directly subjected to column chromatography on silica gel ($3-5 \% \mathrm{MeOH} / \mathrm{CHCl}_{3}$) to afford brevisin $\mathbf{1}(71.2 \mathrm{mg}, 75 \%$ for 3 steps) as a colorless amorphous solid.

Data for synthetic 1:
$[\alpha]_{\mathrm{D}}{ }^{28}-25.6(c 0.0620, \mathrm{MeOH})$
IR (film) 3442, 2933, 2360, 1647, 1458, 1420, 1380, 1123, 1084, $1046 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}\right.$, pyridine- $\left.d_{5}\right) \delta 10.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68($ brs, 1 H$), 6.46($ brs, 1 H$), 6.18(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{brs}, 2 \mathrm{H}), 4.48-4.36(\mathrm{~m}, 4 \mathrm{H}), 4.26(\mathrm{brd}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ (brs, 1H), 4.12-4.02 (m, 2H), 3.78-3.67 (m, 3H), 3.66-3.56 (m, 1H), $3.34(\mathrm{dd}, J=9.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}$, $J=10.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{ddd}, J=12.2,4.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.26(\mathrm{~m}, 3 \mathrm{H}), 2.21-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~s}$, $3 \mathrm{H}), 2.08-1.94(\mathrm{~m}, 8 \mathrm{H}), 1.87(\mathrm{ddd}, J=14.3,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.65(\mathrm{~m}$, $1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.47-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 3H)
${ }^{13} \mathrm{C}$ NMR (100 MHz, pyridine- d_{5}) $\delta 191.9,157.6,125.8,83.8,81.1,80.4,78.6,76.9,74.7,74.3,73.2,72.2$, $71.9,71.6,70.4,70.4,68.8,67.6,47.8,41.1,40.9,39.4,37.4,35.6,32.1,30.0,26.7,26.5,21.9,19.2,18.3$, $16.6,14.1,13.6,11.6$, some peaks were overlapped with the residual solvent peaks (C-4, C-5) or each other (C-12, C-14, C-32 at 71.6 ppm$)^{[\mathrm{ref} 1 \mathrm{a}]}$
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 10.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.05(\mathrm{brd}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=4.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.73-3.65(\mathrm{~m}, 2 \mathrm{H})$, $3.61-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=11.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=9.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{ddd}, J=9.7,9.7,5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.34-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.68(\mathrm{~m}, 11 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.68-1.34$ (m, 6H), 1.18 (brs, 3 H), 1.11 (d, $J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.93$ (d, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 194.3,160.9,137.2,136.8,126.2,83.8,81.6,81.3,79.3,77.9,75.5,75.2$, $74.5,73.0,72.9,72.3,72.1,71.7,70.4,69.4,68.8,41.2,41.1,39.7,37.0,35.9,35.4,32.5,30.3,27.0,26.9$, $21.4,18.8,18.3,16.6,14.5,13.9,11.5$, some peaks were overlapped with the residual solvent peaks (H-11, H-32, C-20)

HRMS (FAB) calcd for $\mathrm{C}_{39} \mathrm{H}_{62} \mathrm{O}_{11} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 729.4184$, found 729.4192.

othetic

l

tural

enol 8

mixed thioacetal 11

mixed thioacetal 11

alcohol 12

exaxpunq:
alcohol 12

hydroxy epoxide 14

hydroxy epoxide 14

X: parts per Minion : 11

diol 21

*วxapunqu
diol 21

aldehyde 5

aldehyde 5

alcohol 25

alcohol 31

iodide 3

iodide 3

${ }^{13} \mathrm{C}$ NMR spectrum of natural brevisin

