## Carbon Nanotubes: How Strong is Their Bond with the Substrate?

Indranil Lahiri<sup>1#</sup>, Debrupa Lahiri<sup>2#</sup>, Sungho Jin<sup>3</sup>, Arvind Agarwal<sup>2\*</sup>, Wonbong Choi<sup>1\*</sup>

<sup>1</sup>Nanomaterials and Device Laboratory

<sup>2</sup>Nanomechanics and Nanotribology Laboratory

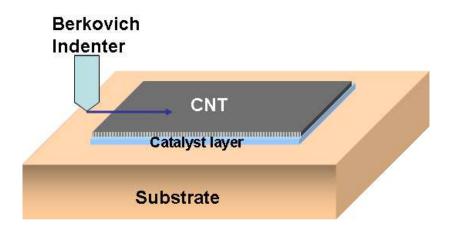
Department of Mechanical and Materials Engineering, Florida International University, Miami, FL

33174, USA

<sup>3</sup>Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla,

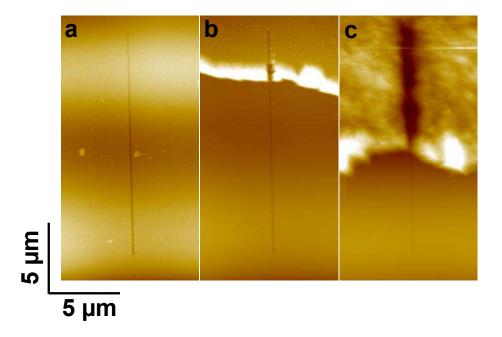
CA 92093, USA

<sup>#</sup> These authors contributed equally in this work.

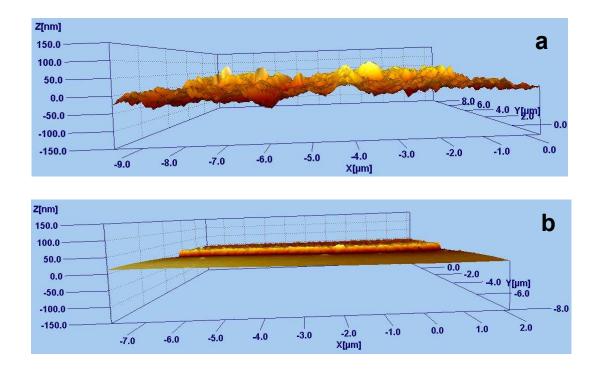

\* To whom correspondence should be addressed. E-mail: choiw@fiu.edu (W.C.), agarwala@fiu.edu (A.A.).

**Supporting Information Table S1:** Overview of literature reported CNT-substrate adhesion testing methods

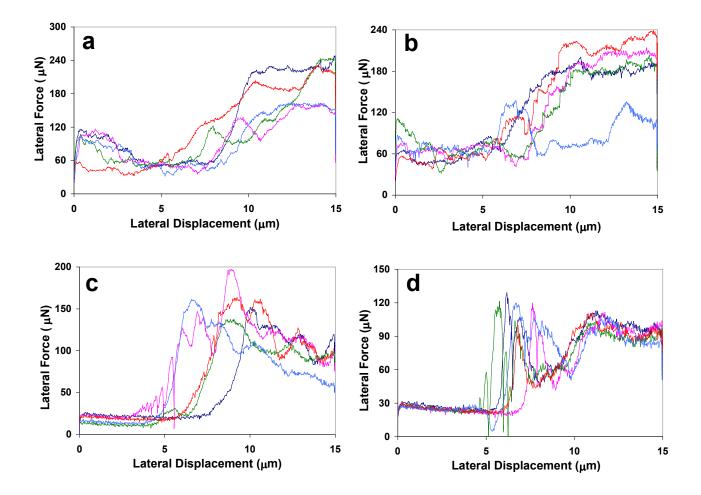
| Techniques              | Adhesion           | Remarks                           | Reference |
|-------------------------|--------------------|-----------------------------------|-----------|
|                         | strength or energy |                                   |           |
| Blowing, rubbing,       | NA                 | Qualitative method, unreliable    | 1         |
| brushing                |                    | technique, extremely user         |           |
|                         |                    | sensitive                         |           |
| Ultrasonication in      | NA                 | Qualitative method, widely used   | 2-6       |
| solvent                 |                    | for understanding bond of CNTs    |           |
|                         |                    | with substrates, results may vary |           |
|                         |                    | in different laboratories         |           |
| Dropping, shaking,      | NA                 | Qualitative method, unreliable    | 7         |
| bending samples several |                    | technique, extremely user         |           |
| times                   |                    | sensitive                         |           |
|                         |                    |                                   |           |
| Peel test using         | NA                 | Qualitative method, widely used   | 7-9       |
| adhesive tape           |                    | for understanding bond of CNTs    |           |
|                         |                    | with substrates, highly operator  |           |
|                         |                    | sensitive                         |           |
| Pulling CNTs by         | NA                 | Qualitative method, result may    | 10        |
| tweezers                |                    | vary for different operators or   |           |
|                         |                    | tweezers                          |           |
| Hanging known           | 0.12-0.18 MPa      | Used for quantifying strength of  | 11, 12    |


| weights from substrate |               | CNT based adhesive tapes:          |        |
|------------------------|---------------|------------------------------------|--------|
|                        |               |                                    |        |
|                        |               | able to quantify adhesion of       |        |
|                        |               | CNTs with substrate but not        |        |
|                        |               | calibrated against standards,      |        |
|                        |               | only a range of de-bonding         |        |
|                        |               | stress could be predicted in       |        |
|                        |               | absence of continuous load-        |        |
|                        |               | displacement plot,                 |        |
|                        |               | stress can not be predicted as     |        |
|                        |               | contact area is not known,         |        |
|                        |               | accurate breaking/de-bonding       |        |
|                        |               | position (whether at CNT-          |        |
|                        |               | substrate interface or along the   |        |
|                        |               | length of CNT itself) is not known |        |
|                        |               | can not predict bond               |        |
|                        |               | strength/energy for single CNTs    |        |
| Tensile test after     | 0.26-0.50 MPa | Used for quantifying bonding of    | 13, 14 |
|                        | 0.20-0.30 MPa |                                    | 13, 14 |
| wrapping the CNTs by   |               | CNTs grown on wire substrates:     |        |
| adhesive tape          |               | not calibrated against standards,  |        |
|                        |               | stress can not be predicted as     |        |
|                        |               | contact area is not known,         |        |
|                        |               | accurate breaking/de-bonding       |        |

|                          |          | position not known<br>can not predict bond              |    |
|--------------------------|----------|---------------------------------------------------------|----|
|                          |          | strength/energy for single CNTs                         |    |
| Compression test         | 2.05 MPa | Used for quantifying bonding of                         | 15 |
| using Cu tape to contact |          | CNTs grown on flat substrates:                          |    |
| CNTs                     |          | not calibrated against standards,                       |    |
|                          |          | stress can not be predicted as                          |    |
|                          |          | contact area is not known,                              |    |
|                          |          | accurate breaking/de-bonding position not known         |    |
|                          |          | can not predict bond<br>strength/energy for single CNTs |    |




Supporting Information Figure S1: Schematic of the nano-scratch method, followed in the present


study. A normal load of 150  $\mu N$  was used for all the scratch tests.



**Supporting Information Figure S2:** 2-dimensional scanning probe microscopy (SPM) images of the nano-scratches, made on samples with Si-substrate. From left to right, (a) scratches are visible on bare sample, (b) only catalyst deposited sample and (c) sample after CNT growth.



**Supporting Information Figure S3:** Scanning probe microscopy (SPM) images of the (a) Cu and (b) Si substrates after catalyst deposition.



**Supporting Information Figure S4:** Nano-scratch tests on Cu (a and b) and Si (c and d) substrates, after a CNT growth time of 2 minutes (a and c) and 30 minutes (b and d). Both the samples have shown approximately same lateral force increment values for 2 minutes and 30 minutes, indicating that length of CNTs (which is much higher for 30 minutes samples) do not affect the scratching force to any significant level.

## **References of Supporting Information**

1. Bower, C.A.; Zhou, O.; Zhu, W. Method for Fabrication of Patterned CNT Films (US Patent # US 627318 B1, Aug 21, 2001).

2. Chen, Z.; Zhang, Q.; Lan, P.; Zhu, B.; Yu, T.; Cao, G.; den Engelsen, D. Ultrahigh-Current Field Emission from Sandwich-Grown Well-Aligned Uniform Multi-Walled Carbon Nanotube Arrays with High Adherence Strength. *Nanotechnology* 2007, 18, 265702.

3. Choi, C.Y.; Zheng, Z.; Wong, K.W.; Du, Z.L.; Lau, W.M.; Du, R.X. Fabrication of Cross-Linked Multi-Walled Carbon Nanotube Coatings with Improved Adhesion and Intrinsic Strength by a Two-Step Synthesis: Electrochemical Deposition and Hyperthermal Proton Bombardment. *Appl. Phys. A* 2008, 91, 403-406.

4. Qin, Y.; Hu, M. Field Emission Properties of Electrophoretic Deposition Carbon Nanotubes Film. *Appl. Surf. Sci.* 2009, 255, 7618-7622.

5. Su, H.-C.; Chen, C.-H.; Chen, Y.-C.; Yao, D.-J.; Chen, H.; Chang, Y.-C.; Ywe, T.-R. Improving the Adhesion of Carbon Nanotubes to a Substrate Using Microwave Treatment. *Carbon* 2010, 48, 805-812.

6. Jeong, T.; Heo, J.; Lee, J.; Lee, S.; Kim, W.; Lee, H.; Park, S.; Kim, J.M.; Oh, T.; Park, C. *et al.* Improvement of Field Emission Characteristics of Carbon Nanotubes through Metal Layer Intermediation. *Appl. Phys. Lett.* 2005, 87, 063112.

7. Thomas, B.J.C.; Boccaccini, A.R.; Shaffer, M.S.P. Multi-Walled Carbon Nanotube Coatings Using Electrophoretic Deposition. *J. Am. Cer. Soc.* 2005, 88, 980-982.

8. Cho, J.; Schaab, S.; Roether, J.A.; Boccaccini, A.R. Nanostructured Carbon Nanotube/TiO<sub>2</sub> Composite Coatings using Electrophoretic Deposition (EPD). *J. Nanopart. Res.* 2008, 10, 99-105. 9. Radhakrishnan, J.K.; Pandian, P.S.; Padaki, V.C.; Bhusan, H.; Rao, K.U.B.; Xie, J.; Abraham, J.K.; Varadan, V.K. Growth of Multiwalled Carbon Nanotube Arrays by Chemical Vapour Deposition over Iron Catalyst and the Effect of Growth Parameters. *Appl. Surf. Sci.* 2009, 255, 6325-6334.

10. Zhu, L.; Hess, D.W.; Wong, C.P. Assembly of Fine-Pitch Carbon Nanotube Bundles for Electrical Interconnect Applications. *Mater. Res. Soc. Symp. Proc.* 2007, 990, 0990-B10-01.

11. Zhao, Y.; Tong, T.; Delzeit, L. Interfacial Energy and Strength of Multiwalled-Carbon-Nanotubebased Dry Adhesive. *J. Vac. Sci. Technol. B* 2006, 24, 331-335.

12. Qu, L.; Dai, L.; Stone, M.; Xia, Z.; Wang, Z.L. Carbon Nanotube Arrays with Strong Shear Binding-On and Easy Normal Lifting-Off. *Science* 2008, 322, 238-42.

13. Cao, A.; Veedu, V.P.; Li, X.; Yao, Z.; Ghasemi-Nejhad, M.N.; Ajayan, P.M. Multifunctional Brushes Made from Carbon Nanotubes. *Nature Mater*. 2005, 4, 540-545.

14. Talapatra, S.; Kar, S.; Pal, S.K.; Vajtai, R.; Ci, L.; Vicor, P.; Shaijumon, M.M.; Kaur, S.; Nalamasu, O.; Ajayan, P.M. Direct Growth of Aligned Carbon Nanotubes on Bulk Metals. *Nature Nanotech.* 2006, 1, 112-116.

15. Zhang, Y.; Suhir, E.; Xu, Y.; Gu, C. Bonding Strength of a Carbon Nanofiber Array to its Substrate. *J. Mater. Res.* 2006, 21, 2922-2926.