Synthesis and Characterization of Boron Azadipyrromethene Single-Wall Carbon Nanotube Electron Donor-Acceptor Conjugates

Kevin Flavin^a, Katherine Lawrence^b, Juergen Bartelmess^b, Mariusz Tasior^c, Cristina Navio^d, Carla Bittencourt^d, Donal O'Shea^c, Dirk M. Guldi^b, and Silvia Giordani^{a*}

AUTHOR EMAIL ADDRESS

giordans@tcd.ie

Scheme S1: Deprotection of Boc-protected [1].

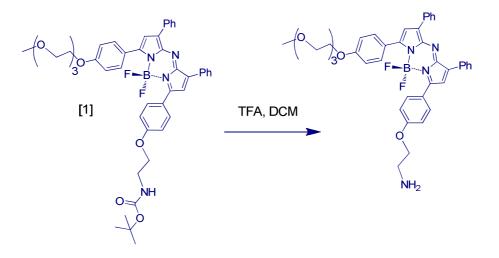


Table S1: XPS C 1s, O 1s, B 1s and N 1s data for [2-5] used for the estimation of efficiency of functionalisation reactions.

r-SWNTs [2]

Name	At. %	Atomic Ratio
C1s	96.93	100.00
O1s	2.17	2.24

p-SWNTs [3]

Name	At. %	Atomic Ratio
C1s	86.85	100.00
O1s	10.96	12.62

f-SWNTs [4]

Name	At. %	Atomic Ratio
C1s	75.35	100.00
O1s	15.32	20.33

f-SWNTs [5]

Name	At. %	Atomic Ratio
C1s	83.83	100.00
B1s	0.50	0.60
N1s	2.28	2.72

Table S2: Using atomic ratios for *f*-SWNT [4] (first column), by subtracting O 1s peak of *f*-SWNT [4] from *f*-SWNT [3] we could estimate the number of benzoic acid groups in the sample. We can subsequently estimate the relative amounts of carbon related to benzoic acid groups attached to the nanotube surface ($C_{attached} = 7$ carbons per added 2 oxygen atoms) and from the nanotube body (C_{nt} = total carbon amount after $C_{attachment}$ subtraction). We renormalized atomic ratios on benzoic acid (second column) and results indicated that there is one group attached every 18.4 carbon nanotube atoms.

XPS Atomic Ratio	<i>f-</i> SWNTs [4]	Atoms per benzoic acid group
C 1s _{f-SWNTs [4]}	100.0	26.3
O 1s _{f-SWNTs [4]}	20.3	5.3
O 1s _{p-SWNTs [3]}	12.6	3.3
O 1s _{f-SWNTs [4]} - O 1s _{p-SWNTs [2]} = O 1s _{Tour}	7.7	2.0
O 1s _{Tour} /2 = number of benzoic acid groups	3.8	1.0
O 1s _{Tour} /2 X 7 = C _{attached}	30.0	7.9
C _{total} - C _{attached} = C _{nt}	70.0	18.4

Table S3: Using atomic ratios for *f*-SWNT [5] (first column), we could estimate from N 1s the quantity of [1] present in the sample. We can subsequently estimate the relative amounts of carbon related to the fluorophore groups attached to the nanotube ($C_{attached} = 48C$ per attached fluorophore) and from the nanotube body (C_{nt} = total carbon amount after $C_{attachment}$ subtraction). We renormalized atomic ratios on [1] (second column) and results indicated that there is one fluorophore attached every 99.1 carbon nanotube atoms.

XPS Atomic Ratio	<i>f-</i> SWNTs [5]	Atoms per attached fluorophore
C 1s _{f-SWNTs [5]}	100	147.1
N 1s _{f-SWNTs [5]}	2.7	4.0
N 1s _{f-SWNTs [5]} /4 = number of molecules of [1]	0.7	1.0
number of dye molecules X 48C = C _{attached}	32.6	47.9
C _{total} - C _{attached} = C _{nt}	67.4	99.1

Table S3: Using atomic ratios for *f*-SWNT [5] (first column), we could estimate from the B 1s peak the quantity of boron present in the sample. We can subsequently estimate the relative amounts of carbon related to the boron chelated fluorophore groups attached to the nanotube ($C_{attached} = 48C$ per attached fluorophore) and from the nanotube body ($C_{nt} =$ total carbon amount after $C_{attachment}$ subtraction). We renormalized atomic ratios on boron chelated [1] (second column) and results indicated that there is one fluorophore attached every 112.3 carbon nanotube atoms.

XPS Atomic Ratio	<i>f</i> -SWNTs [5]	Atoms per attached fluorophore
C 1s _{f-SWNTs} [5]	100	166.7
B 1s _{f-SWNTs [5]}	0.6	1.0
B 1s <i>f</i> -swnts [5] /1 = number of dye molecules	0.6	1.0
number of dye molecules X 48C = C _{attached}	32.6	54.3
C _{total} - C _{attached} = C _{nt}	67.4	112.3

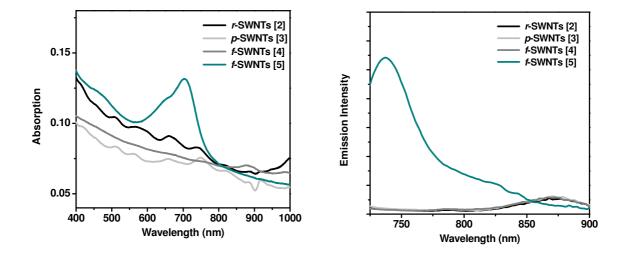


Figure S1: Steady state absorption and emission spectra for raw, purified and functionalised SWNTs.