
Supporting Information for

Ionic Conductivity, Capacitance, and Viscoelastic Properties of Block Copolymer-Based Ion Gels

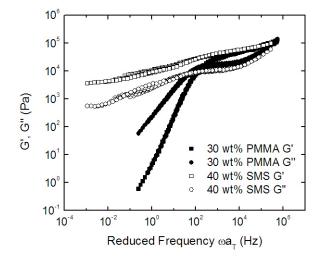
Sipei Zhang,[†] Keun Hyung Lee,[†] C. Daniel Frisbie^{*,†} and Timothy P. Lodge^{*,†,§}

$\sigma = \sigma_0 \exp[-B/(T-T_0)]$					
Polymer Content (wt%)	$\sigma_0 ({\rm mS/cm})$	<i>B</i> (K)	$T_{0}\left(\mathrm{K} ight)$		
10-SMS	246 ± 15	416 ± 18	189 ± 3		
20-SMS	299 ± 29	717 ± 43	161 ± 6		
30-SMS	298 ± 21	873 ± 32	164 ± 4		
40-SMS	231 ± 7	847 ± 12	184 ± 1		
50-SMS	272 ± 6	1045 ± 9	186 ± 8		
10-SOS	325 ± 31	451 ± 28	186 ± 4		
20-SOS	210 ± 27	494 ± 47	183 ± 8		
30-SOS	164 ± 14	457 ± 29	201 ± 5		
40-SOS	137 ± 11	458 ± 26	208 ± 4		
50-SOS	71 ± 4	370 ± 16	223 ± 3		

Table S1. Vogel-Fulcher-Tammann (VFT) Fitting Parameters of Ionic Conductivity for the Ion Gels.

Figure S1. DSC thermograms of (a) [EMI][TFSI] and SMS/[EMI][TFSI] ion gels and (b) SOS/[EMI][TFSI] ion gels with different weight fractions of polymer. Thermal transitions were measured using TA Instruments Q1000 Differential Scanning Calorimeter (DSC). Samples in (a) and (b) weighing $\sim 5 - 10$ mg were sealed in hermetic aluminum pans, heated up to 180 °C and 160 °C, respectively, cooled rapidly to -150 °C, and then heated back up at 10 °C/min. The heating rate for the ion gel with 50 wt% SMS was 20 °C/min. The thermograms shown were taken from the second heating cycle, from which the glass transition temperatures were measured using the mid-point method.

Polymer Content (wt%)	T_{g} (°C)	Transition Range (°C)	$\Delta T_{ m g}$
0	-91	$-96 \sim -89$	7
10-SMS	-88	-95 ~ -58	37
20-SMS	-84	$-92 \sim -40$	52
30-SMS	-69	$-89 \sim -20$	69
40-SMS	-54	-83 ~ -6	77
50-SMS ^a	-47, 3	-81 ~ -23, -16 ~ 20	51, 36
10-SOS	-86	-91 ~ -81	10
20-SOS	-75	-88 ~ -66	22
30-SOS	-70	-83 ~ -63	20
40-SOS	-64	-78 ~ -52	26
50-SOS	-60	$-79 \sim -49$	30


Table S2. Glass Transition Temperatures (T_g) and Associated Transition Ranges for[EMI][TFSI] and the Ion Gels.

^a Heating rate is 20 °C/min.

$\log a_{\rm T} = -C_1 (T - T_{\rm ref}) / (C_2 + T - T_{\rm ref})$						
PMMA (wt%)	C_1	C_2 (°C)	$T_{\rm ref}$ (°C)			
10	4.85 ± 0.19	126 ± 3	0			
20	3.68 ± 0.08	177 ± 2	70			
30	4.73 ± 0.20	262 ± 6	150			
40	6.28 ± 0.33	242 ± 8	140			

Table S3. Williams-Landel-Ferry (WLF) Fitting Parameters of Shift Factors (*a*_T) for

PMMA/[EMI][TFSI] Solutions.

Figure S2. TTS master curves for dynamic storage and loss moduli of PMMA/[EMI][TFSI] solution with 30 wt% PMMA(126) and SMS/[EMI][TFSI] ion gel with 40 wt% SMS(18-86-18). PMMA concentration in the ion gel is 28 wt%. All curves are referenced to 120 °C.