Approximate	Wava1	Intervit	
description	wavenumber	Intensity	PED.
v(C-H1)	3159	1.7	S ₃₇ (95)
v(C-H5) v(C-H2)	3146	3.0 16.0	$S_{41}(80)$ $S_{28}(84)$
v(C-H2)	3121	9.9	S ₃₀ (93)
v(C-H4)	3111	0.1	S ₄₀ (94)
vCH ₃ as	3107	11.0	S ₈ (97)
vCH ₃ as ~	3070	16.3	S ₉ (100)
vCH ₃ s	2998	34.3	S ₇ (97)
v(C=O)	1753	237.5	$S_2(\delta /)$ $S_{22}(63) S_{22}(10)$
vr113 vPh4	1014 1501	1.0 1.9	$S_{24}(55), S_{24}(10)$ $S_{24}(55), S_{22}(11)$
vIsox3	1570	13.1	$S_{34}(33), S_{22}(11)$ $S_{24}(44), S_{6}(13), S_{34}(12)$
δ(C-H4)	1499	1.8	$S_{35}(26), S_{49}(14), S_{24}(12), S_{52}(16), S_{50}(11)$
δCH ₃ as ´	1469	5.2	$S_{11}(73), S_{10}(13)$
δ (C-H1), vIsox1	1459	83.7	$S_{10}(12), S_{49}(11), S_{22}(11), S_{11}(11), S_1(10)$
δCH₃ as″	1457	11.6	$S_{12}(90)$
OCH ₃ S	1448	29.7	$S_{10}(33), S_{36}(14), S_{49}(12), S_{51}(12)$ $S_{22}(14), S_{22}(14), S_{22}(12)$
visox4	1440 1416	55.1 25.5	$S_{23}(29), S_{10}(14), S_{22}(12)$ $S_{25}(29), S_{10}(24), S_{1}(15)$
δ(C-H2)	1339	5.6	$S_{50}(31), S_{52}(28), S_{49}(16)$
vPh2	1312	12.1	$S_{32}(51), S_{36}(16)$
$vIsox2, v(C-C_{IR})$	1258	94.7	$S_{23}(16), S_6(13), S_{28}(10), S_{32}(10)$
v(C-O)	1215	465.5	$S_3(38), S_{13}(11)$
δ(C-H3)	1190	5.8	$S_{33}(24), S_{50}(19), S_{52}(18), S_{49}(15), S_{51}(12), S_{53}(12)$
γCH_3	1182	34.2	$S_{13}(05)$ $S_{14}(48)$ $S_{14}(24)$
о(С-H3) уСНа"	1105	0.5	$S_{53}(40), S_{51}(24)$ $S_{14}(92)$
vIsox1	1149	19.6	$S_{26}(22), S_{22}(17)$
vPh6	1084	14.7	$S_{36}(29), S_{32}(13), S_{49}(12), S_{52}(10)$
δIsox2	1060	111.5	$S_{28}(25), S_4(15), S_5(12)$
vPh5	1031	0.5	$S_{35}(45), S_{31}(20)$
δPh1, vPh1	997	0.6	$S_{42}(61), S_{31}(38)$
γ(C-H2)	989	0.1	$S_{45}(20), S_{56}(23), S_{57}(21), S_{55}(16)$ S (32) S (17) S (14)
v_{1SOX3}	9/8	55.5	$S_{26}(32), S_{25}(17), S_{4}(14)$ $S_{47}(26), S_{27}(21), S_{29}(17), S_{27}(17), S_{27}(16)$
$v(O-CH_2)$	953	5.5	$S_4(48), S_{26}(18)$
δIsox1	932	8.1	$S_{27}(44), S_{23}(12)$
γ(C-H5)	924	2.6	$S_{56}(28), S_{54}(28), S_{58}(26), S_{46}(12)$
γ(C-H1)	840	0.4	$S_{54}(28); S_{58}(26), S_{57}(24), S_{55}(22)$
δ(OCO)	809	31.9	$S_{19}(36), S_3(17), S_{63}(14)$
γ (C=O)	791	9.5	$S_{21}(62), S_{60}(22)$ $S_{21}(62), S_{21}(241)$
γ(C-H3) δPh3	769	23.2	$S_{56}(27), S_{62}(24.1)$ $S_{44}(46), S_{4}(11), S_{57}(10)$
τPh1	691	0.1 44 0	$S_{44(10)}, S_{57(23)}, S_{55(23)}$
τIsox1	680	23.4	$S_{29}(35), S_{61}(25)$
τIsox2	632	4.3	$S_{30}(72), S_{21}(10)$
δPh2	621	0.1	S ₄₃ (86)
w(Isox-E),w(Isox-Ph),w(C-Cl)	573	1.1	$S_{66}(16), S_{65}(16), S_{64}(16), S_{20}(11)$
v(C-Cl)	540	2.7	$S_5(39), S_{20}(10), S_{22}(12)$ $S_{-}(24), S_{-}(10), S_{-}(11)$
γ (Pn-ISOX) γ (C-C)	485	2.7	$S_{62}(3+), S_{46}(19), S_{29}(11)$ $S_{4}(22), S_{44}(16), S_{19}(10)$
$\tau Ph3$	447	0.02	$S_{47}(72)$
$\delta(CC=O)$	362	10.3	$S_{20}(22), S_{63}(18), S_5(13), S_{48}(11)$
γ(Isox-E)	326	4.2	$S_{46}(19), S_{61}(16), S_{60}(13)$
δ(C-O-CH ₃)	302	13.7	$S_{63}(38), S_{60}(10), S_{19}(10)$
γ(C-Cl)	278	3.0	$S_{59}(51), S_{60}(10)$
$v(C-C\alpha), v(C-C_{IR})$	250	0.4	$S_6(19), S_1(14), S_{44}(12), S_{28}(12)$
w(U-U) τ Isox1 $v(C-C1)$	215 178	1.1	$S_{64}(47), S_{20}(15), S_{48}(11)$ $S_{17}(26), S_{20}(16), S_{50}(15), S_{46}(13)$
w(C-Cl), w(Ph-Isox)	150	1.1	$S_{64}(18), S_{65}(17), S_{66}(15), S_{48}(12), S_{29}(10)$
τCH ₃	135	0.1	S ₁₅ (75)
τ(C-O)	116	1.1	$S_{17}(42), S_{15}(16)$
w(Isox-Ph)	85	1.8	$S_{66}(29), S_{65}(28), S_{48}(13, S_{20}(10))$
γ (Isox-E), γ (Isox-Ph)	45	0.5	$S_{60}(28), S_{61}(27), S_{29}(20)$
$\tau(C-C_{\rm IR})$	29	0.1 2.6	$S_{18}(73)$ $S_{16}(100)$
$(C C_{\alpha})$	20	2.0	010(100)

Table S3 - Calculated [scaled, DFT(B3LYP)/6-311++G(d,p)] wavenumbers, IR intensities and Potential Energy Distributions (PED) for conformer I of MCPIC.^{*a*}

^{*a*} Wavenumbers (cm⁻¹, scaled by 0.9817), v, bond stretching, δ , bending, γ , rocking, w, wagging, τ , torsion, s, symmetric, as, antisymmetric, IR, inter–ring; Isox, isoxazole ring; Ph, phenyl ring; E, ester. See Table S2 for definition of internal coordinates. ^{*b*} Only PED values greater than 10% are given.