Giant brain-like aggregates from new fluorocarbon/hydrocarbon hybrid cationic surfactants.

M. Oumar^{a,b}, E. Taffin de Givenchy^a, S. Y. Dieng^b, S. Amigoni^a, F. Guittard^a

^a Université de Nice-Sophia Antipolis, Laboratoire de Chimie des Matériaux Organiques et Métalliques, CMOM, équipe de

Chimie Organique aux interfaces, Parc Valrose, 06108 Nice Cedex 2, France

^b Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Sénégal

1) ¹H NMR, ¹³C NMR, ¹⁹F NMR and MS for all the synthesized surfactants.

Tertiary amine <u>4</u>: colorless liquid; IR (cm⁻¹): 2776-2948 (v_{C-H}), 1100-1460 (v_{C-F}), 847-950 (v_{N-C}); ¹H NMR (CDCl₃) δ (ppm): 2.18 (6H, s, [N(CH₃)₂]); 2.56 (4H, m, [C₄F₉-CH₂-CH₂-S-CH₂-N(CH₃)₂]); 2.69 (4H, m, [-CH₂-S-CH₂-]); ¹⁹F NMR (CD₃OD) δ(ppm): -81.78 (3F, s, CF₃), -115.20 (2F, s, (CF₂)_α), -125.01 (2F, s, (CF₂)_β), -126.70 (2F, s, (CF₂)_ω) for CF₃-(CF₂)_ω-(CF₂)_α-(CF₂)_α-(CF₂)_α-CH₂-...yield : 78 %

Figure 1. ¹H NMR spectra of compound <u>4</u>

Tertiary amine <u>5</u>: colorless liquid; IR (cm⁻¹): 2776-2948 (v_{C-H}), 1100-1460 (v_{C-F}), 847-952 (v_{N-C}); ¹H NMR (CDCl₃) δ (ppm): 2.20 (6H, s,) [N(CH₃)₂]); 2.58 (4H, m, [C₄F₉-CH₂-CH₂-S-CH₂-CH₂-N(CH₃)₂]); 2.71 (4H, m, [-CH₂-S-CH₂-]); ¹⁹F NMR (CD₃OD) δ(ppm): -81.43 (3F, s, CF₃), -114.88 (2F, s, (CF₂)_α), -122.36 (2F, s, (CF₂)_β), -123.81 to -124.12 (4F, s, (CF₂)_{2γ}), -126.52 (2F, s, (CF₂)_ω) for CF₃-(CF₂)_ω-(CF₂)_β- (CF₂)_α-CH₂-... Yield: 82 %

Tertiary amine <u>6</u>: colorless liquid; IR (cm⁻¹): 2776-2948 (v_{C-H}), 1100-1459 (v_{C-F}), 871-954 (v_{N-C}); -¹H NMR (CDCl₃) δ (ppm): 2.18 (6H, s, [N(CH₃)₂]); 2.47 (4H, m, [C₄F₉-CH₂-CH₂-S-CH₂-Q-CH₂-N(CH₃)₂]); 2.64 (4H, m, [-CH₂-S-CH₂-]); ¹⁹F NMR (CD₃OD) δ(ppm): -81.78 (3F, s, CF₃), -115.12 (2F, s, (CF₂)_α), -122.70 (2F, s, (CF₂)_β), -123.50 to -124.20 (8F, s, (CF₂)_{2γ}), -127.03 (2F, s, (CF₂)_α) for CF₃-(CF₂)_α-(CF₂)_{4γ}-(CF₂)_α-(CF

Compound S-F₄H₄: white solid; IR (Cm⁻¹): 2880-2973 (v_{C-H}), 1100-1400 (v_{C-F}), 848-962 (v_{N-C}); ¹H NMR (CD₃OD) δ (ppm), 0.99 (3H, t, [(CH₂)-CH₃]); 1.42 (2H, m, [-(CH₂)-CH₃]); 1.71 (2H, m, [CH₂-(CH₂)-CH₃]); 2.45 (2H, m, [C₄F₉-CH₂-]); 3.02 (4H, m, [-CH₂-S-CH₂-]); 3.46 (6H, s, [-N⁺(CH₃)₂]); 3.63 (2H, m, [N⁺-CH₂-C₂H₄-CH₃]); 3.89 (2H, m, [-N⁺-CH₂-CH₂-S-]); ¹⁹F NMR (CD₃OD) δ (ppm): -81.78 (3F, s, CF₃), -115.20 (2F, s, (CF₂)_a), -125.01 (2F, s, (CF₂)_β), -126.70 (2F, s, (CF₂)_ω) for CF₃-(CF₂)_ω-(CF₂)_α-CH₂...; MS: ESI positive mode; m/z (%) = 408.1 (100) ([M-Br]⁺); MS/MS: CID to 25%); m/z = 307.1 ([M-Br⁻C₆H₁₅N]⁺). Yield: 72 %

Compound S-F₄H₆: white solid; IR (Cm⁻¹): 2868-2939 (v_{C-H}), 1100-1466 (v_{C-F}), 847-926 (v_{N-C}); ¹H NMR (CD₃OD) δ (ppm): 0.83 (3H, t, [(CH₂)-CH₃]); 1.29 (6H, m, [-(CH₂)₃-CH₃]); 1.67 (2H, m, [CH₂-(CH₂)₃-CH₃]); 2.48 (2H, m, [C₄F₉-CH₂-]); 2.82 (4H,

m, [-CH₂-S-CH₂-]); 3.02 (6H, s, [-N⁺(CH₃)₂]); 3.21 (2H, m, [N⁺-CH₂-CH₂-(CH₂)₃-CH₃]); 3.44 (2H, m, [-N⁺-CH₂-CH₂-S-]); ¹⁹F NMR (CD₃OD) δ (ppm): -81.78 (3F, s, CF₃), -115.20 (2F, s, (CF₂)_a), -125.01 (2F, s, (CF₂)_β), -126.70 (2F, s, (CF₂)_ω) for CF₃-(CF₂)_ω-(CF₂)_α-CH₂...; MS: ESI positive mode; m/z (%) = 436.1 (100) ([M-Br]⁺); MS/MS: CID to 25%); m/z = 307.1 ([M-Br⁻-C₈H₁₉N]⁺). Yield: 68 %

Compound S-F₄H₈: white solid; IR (Cm⁻¹): 2864-2937 (v_{C-H}), 1134-1350 (v_{C-F}), 873-954 (v_{N-C}); ¹H NMR (CD₃OD) δ (ppm): 0.78 (3H, t, [(CH₂)₅-CH₃]); 1.25 (10H, m, [-(CH₂)₅-CH₃]); 1.65 (2H, m, [CH₂-(CH₂)₅-CH₃]); 2.45 (2H, m, [C₄F₉-CH₂-]); 2.79 (4H, m, [-CH₂-S-CH₂-]); 2.99 (6H, s, [-N⁺(CH₃)₂]); 3.19 (2H, m, [N⁺-CH₂-CH₂-(CH₂)₅-CH₃]); 3.44 (2H, m, [-N⁺-CH₂-CH₂-S-]); ¹⁹F NMR (CD₃OD) δ (ppm): -81.78 (3F, s, CF₃), -115.20 (2F, s, (CF₂)_α), -125.01 (2F, s, (CF₂)_β), -126.70 (2F, s, (CF₂)_α) for CF₃-(CF₂)_α-(CF₂)_α-CH₂...; MS: ESI positive mode; m/z (%) = 464.1 (100) ([M-Br]⁺); MS/MS: CID to 25%); m/z = 307.1 ([M-Br⁻-C₁₀H₂₃N]⁺). Yield: 60 %

Compound S-F₄H₁₀: white solid; IR (Cm⁻¹): 2861-2935 (v_{C-H}), 1134-1409 (v_{C-F}), 884-1012 (v_{N-C}); ¹H NMR (CD₃OD) δ (ppm): 0.84 (3H, t, [(CH₂)-CH₃]); 1.25 (14H, m, [-(CH₂)₇-CH₃]); 1.72 (2H, m, [CH₂-(CH₂)₇-CH₃]); 2.53 (2H, m, [C₄F₉-CH₂-]); 2.86 (4H, m, [-CH₂-S-CH₂-]); 3.07 (6H, s, [-N⁺(CH₃)₂]); 3.30 (2H, m, [N⁺-CH₂-CH₂-(CH₂)₇-CH₃]); 3.52 (2H, m, [-N⁺-CH₂-CH₂-S-]); ¹⁹F NMR (CD₃OD) δ (ppm): -81.78 (3F, s, CF₃), -115.20 (2F, s, (CF₂)_α), -125.01 (2F, s, (CF₂)_β), -126.70 (2F, s, (CF₂)_ω) for CF₃-(CF₂)_ω-(CF₂)_β-(CF₂)_α-CH₂...; MS: ESI positive mode; m/z (%) = 492.2 (100) ([M-Br]⁺); MS/MS: CID to 25%); m/z = 307.1 ([M-Br⁻-C₁H₂₇N]⁺). Yield: 67 %

Compound S-F₄H₁₂: white solid; IR (Cm⁻¹): 2860-2939 (v_{C-H}), 1134-1409 (v_{C-F}), 884-1012 (v_{N-C}); ¹H NMR (CD₃OD) δ (ppm): 0.98 (3H, t, [(CH₂)₉-CH₃]); 1.38 (18H, m, [-(CH₂)₉-CH₃]); 1.85 (2H, m, [CH₂-(CH₂)₉-CH₃]); 2.64 (2H, m, [C₄F₉-CH₂-]); 2.96 (4H, m, [-CH₂-S-CH₂-]); 3.21 (6H, s, [-N⁺(CH₃)₂]); 3.40 (2H, m, [N⁺-CH₂-CH₂-(CH₂)₉-CH₃]); 3.70 (2H, m, [-N⁺-CH₂-CH₂-S-]); ¹⁹F NMR (CD₃OD) δ (ppm): -81.78 (3F, s, CF₃), -115.20 (2F, s, (CF₂)_α), -125.01 (2F, s, (CF₂)_β), -126.70 (2F, s, (CF₂)_α) for CF₃-(CF₂)_α-(CF₂)_α-CH₂...; MS: positive mode; m/z (%) = 520.2 (100) ([M-Br]⁺); MS/MS: CID to 25%); m/z = 307.1 ([M-Br⁻-C₁₄H₃₁N]⁺). Yield: 54 %

Compound S-F₄H₁₄: white solid; IR (Cm⁻¹): 2836-2923 (v_{C-H}), 1134-1409 (v_{C-F}), 884-1012 (v_{N-C}); ¹H NMR (CD₃OD) δ (ppm): 0.84 (3H, t, [(CH₂)₁₁-CH₃]); 1.29 (22H, m, [-(CH₂)₁₁-CH₃]); 1.72 (2H, m, [CH₂-(CH₂)₁₁-CH₃]); 2.49 (2H, m, [C₄F₉-CH₂-]); 2.85 (4H, m, [-CH₂-S-CH₂-]); 3.29 (6H, s, [-N⁺(CH₃)₂]); 3.34 (2H, m, [N⁺-CH₂-CH₂-(CH₂)₁₁-CH₃]); 3.55 (2H, m, [-N⁺-CH₂-CH₂-S-]); ¹⁹F NMR (CD₃OD) δ (ppm): -81.78 (3F, s, CF₃), -115.20 (2F, s, (CF₂)_{α}), -125.01 (2F, s, (CF₂)_{β}), -126.70 (2F, s, (CF₂)_{ω}) for CF₃-(CF₂)_{ω}-(CF₂)_{α}-CH₂-..; MS: ESI positive mode; m/z (%) = 548.1 (100) ([M-Br]⁺); MS/MS: CID to 25%); m/z = 307.1 ([M-Br⁻-C₁₆H₃₅N]⁺). Yield: 24 %

2) Variation of Log(CMC) as a function of the number of carbon atoms in the hydrophobic chains

Number of carbon atoms in the fluorocarbon chain (m)