Supporting information

RNA Aptamer-Mediated Gene Activation Systems for Inducible Transgene Expression in Animal Cells

Feiyang Zheng, Yoshinori Kawabe, and Masamichi Kamihira*

Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan *Corresponding Author. E-mail: kamihira@chem-eng.kyushu-u.ac.jp Tel: +81 92 802 2743; Fax: +81 92 802 2793

Contents:

1.	Table S1. Sequences of trigger RNAs. S2
2.	Table S2. Oligonucleotide sequences for real-time PCR. S4
3.	Figure S1. Schematic illustrations of transgene expression based on the RNA Aptamer-Mediated Gene Activation (RAMGA) system S5
4.	Figure S2. Schematic diagrams of plasmid structuresS6
5.	Figure S3. Predicted secondary structures of trigger RNAs along with their free energy calculationsS7
6.	Figure S4. Phase-contrast and fluorescence images of CHO cells transfected with the RAMGA/MA-PT system, either with or without the presence of MS2-PP7 trigger RNA variants, which include MPx1S, MPx2S, MPx4S- α , MPx4S- β , and MPx4S- γ S8
7.	Figure S5. Relative GFP mRNA levels in CHO cells transfected with the RAMGA/MA-PT system in the presence or absence of MS2-PP7 trigger RNA variants containing MPx4S- α , MPx4S- β , and MPx4S- γ S9
8.	Figure S6. Phase-contrast and fluorescence images of CHO cells for post-transfection using RAMGA/MA-PT system with or without MPx4S- α as a trigger, in the absence (–) or presence (+) of doxycyclineS10

9. Figure S7. Phase-contrast and fluorescence images of CHO cells for posttransfection using various RAMGA systems.______S11

Trigger RNA	Sequence $(5' \rightarrow 3')$
MPx1	GGUGAGUAGAGCGAGGAGCAUCAGCCCUCGCGUGUGACGAGCAGACCAUAU GGGGUCGCUCG
MPx2	GGUCCACCAGAGUAGAGCAUCAGCCUACUCCGGACAAGCAGCAGAGGAUAU GGCCUCGCUGCGAGUAGAGCGAGGAGCAUCAGCCCUCGCGUGUGACGAGCA GACCAUAUGGGGUCGCUCG
MPx4	GGUUCUGCCAUGAGGAAUGACCAUCAGGCAUUCCGAUCCGAGGAGCAGACG AUAUGGCGUCGCUCCGGCUGCAGAAGUGACGAUCACGCACUUCGGAGUGAC CAGCAGAGCAUAUGGGCUCGCUGGGCCACCAGAGUAGAGCAUCAGCCUACU CCGGACAAGCAGCAGAGGAUAUGGCCUCGCUGCGAGUAGAGCGAGGAGCAU CAGCCCUCGCGUGUGACGAGCAGACCAUAUGGGGUCGCUCG
MPx1S	GGUGAGUAGAGCGAGGAGCAUCAGCCCUCGCGUGUGACGAGCAGACCAUAU GGGGUCGCUCGUCACACAAACUACUCUUU
MPx2S	GGUCCACCAGAGUAGAGCAUCAGCCUACUCCGGACAAGCAGCAGAGGAUAU GGCCUCGCUGCGAGUAGAGCGAGGAGCAUCAGCCCUCGCGUGUGACGAGCA GACCAUAUGGGGUCGCUCGUCACACAAACUACUCAAAUGUCCGAAAGGUGG A
MPx4S-α	GGUUCUGCCAUGAGGAAUGACCAUCAGGCAUUCCGAUCCGAGGAGCAGACG AUAUGGCGUCGCUCCGGCUGCAGAAGUGACGAUCACGCACUUCGGAGUGAC CAGCAGAGCAUAUGGGCUCGCUGGGCCACCAGAGUAGAGCAUCAGCCUACU CCGGACAAGCAGCAGAGGAUAUGGCCUCGCUGCGAGUAGAGCGAGGAGCAU CAGCCCUCGCGUGUGACGAGCAGACCAUAUGGGGUCGCUCGUCACACAAAC UACUCAAAUGUCCGAAAGGUGGCAAACACUCCAAAGCAGCCAAACGGAUCA AACAUGGCAGCGGUGCUU
MPx4S-β	GGUUCUGCCAUGAGGAAUGACCAUCAGGCAUUCCGAUCCGAGAAGUGACGA UCACGCACUUCGGCUGCAGGAGCAGACGAUAUGGCGUCGCUCCGGAGUGAC CAGCAGAGCAUAUGGGCUCGCUGGGCCACCAGAGUAGAGCAUCAGCCUACU CCGGACAAGCGAGGAGCAUCAGCCCUCGCGAGUAGAGCAGCAGAGGAUAUG GCCUCGCUGCGUGUGACGAGCAGACCAUAUGGGGUCGCUCGUCACACAAAC UACUCAAAUGUCCGAAAGGUGGCAAACACUCCAAAGCAGCCAAACGGAUCA AACAUGGCAGCGGUGCUU
MPx4S-γ	GGUUCUGCCAUGAGGAAUGACCAUCAGGCAUUCCGAUCCGAGAAGUGACGA UCACGCACUUCGGCUGCAGAGUAGAGCAUCAGCCUACUCGGAGUGAGCGAG GAGCAUCAGCCCUCGCGCCACCAGGAGCAGACGAUAUGGCGUCGCUCCCGG ACAACCAGCAGAGCAUAUGGGCUCGCUGGGAGUAGAGCAGCAGAGGAUAUG GCCUCGCUGCGUGUGACGAGCAGACCAUAUGGGGUCGCUCGUCACACAAAC UACUCAAAUGUCCGAAAGGUGGCAAACACUCCAAAGCAGCCAAACGGAUCA AACAUGGCAGCGGUGCUUU
MCx4S	GGUUCUGCCAUGAGGAAUGACCAUCAGGCAUUCCGAUCCGACUGAAUGCCU GCGAGCAUCGGCUGCAGAAGUGACGAUCACGCACUUCGGAGUGACUGAAUG CCUGCGAGCAUCGCCACCAGAGUAGAGCAUCAGCCUACUCCGGACAACUGA AUGCCUGCGAGCAUCGAGUAGAGCGAGGAGCAUCAGCCCUCGCGUGUGACU GAAUGCCUGCGAGCAUCUCACACAAACUACUCAAAUGUCCGAAAGGUGGCA AACACUCCAAAGCAGCCAAACGGAUCAAACAUGGCAGCGGUGCUUU

TADIC ST. SEQUENCES OF HIZZEI KINA	Table S1.	Sequences	of trigger	RNAs
------------------------------------	-----------	-----------	------------	------

	GGUUCUGCCAUGAGGGCCCUGAAGAAGGGCCCGAUCCGAGGAGCAGACGAU
	AUGGCGUCGCUCCGGCUGCACGGCCCUGAAGAAGGGCCGGGAGUGACCAGC
	AGAGCAUAUGGGCUCGCUGGGCCACCACCGCCCUGAAGAAGGGCGGCGGAC
DD 40	AAGCAGCAGAGGAUAUGGCCUCGCUGCGAGUAGAGGGCCCUGAAGAAGGGC
BPX45	CCGUGUGACGAGCAGACCAUAUGGGGUCGCUCGUCACACAAACUACUCAAA
	UGUCCGAAAGGUGGCAAACACUCCAAAGCAGCCAAACGGAUCAAACAUGGC
	AGCGGUGCUUU

		Sequence $(5' \rightarrow 3')$	
GFP	FW primer RV primer Taqman probe	CGAGGACAGCGTGATCTTC CCACGGTGGCGTTGCT CCGACAAGATCATCC	
RFP	FW primer RV primer Taqman probe	TCAAGGAGGCCGACAAAGAG GTACTTGGCCACAGCCATCTC CCTACGTCGAGCAGCA	

Table S2. Oligonucleotide sequences for real-time PCR

Figure S1. Schematic illustrations of transgene expression based on the RNA Aptamer-Mediated Gene Activation (RAMGA) system. (A) The RAMGA/MA-PT system consists of tetR-PCP and MCP-P65-HSF1, which can recognize and respond to RNA containing MS2-PP7 aptamers. (B) The RAMGA/PA-MT system consists of MCP-tetR and PCP-P65-HSF1, which can recognize and respond to RNA containing MS2-PP7 aptamers. (C) The RAMGA/MA-CT system consists of MCP-P65-HSF1 and COM-tetR, which can recognize and respond to RNA containing MS2-com aptamers. (D) The RAMGA/PA- λ T system consists of PCP-P65-HSF1 and λ N-tetR, which can recognize and respond to RNA containing PP7-BoxB aptamers. (E) The RAMGA/PA- λ G system consists of PCP-P65-HSF1 and λ N-Gal4, which can recognize and respond to RNA containing PP7-BoxB aptamers. (F) The RAMGA/MA-Pd system consists of MCP-P65-HSF1 and PCP-dCas9, which can recognize and respond to RNA containing MS2-PP7 aptamers.

Figure S2. Schematic diagrams of plasmid structures. (a–g) Fusion protein expression vectors. (h–q) Trigger RNA expression vectors with a U6 promoter. (r–u) mRNA expression vectors with promoters $EF1\alpha$, SV40, and minimal promoter. (v) All-in-one vector for expressing MCP-P65-HSF1, PCP-dCas9, and gRNA.

Figure S3. Predicted secondary structures of trigger RNAs along with their free energy calculations. The predictions were performed using NUPACK software.

Figure S4. Phase-contrast and fluorescence images of CHO cells transfected with the RAMGA/MA-PT system, either with or without the presence of MS2-PP7 trigger RNA variants, which include MPx1S, MPx2S, MPx4S- α , MPx4S- β , and MPx4S- γ . GFP, Green Fluorescent Protein. Scale bars = 500 µm.

Figure S5. Relative GFP mRNA levels in CHO cells transfected with the RAMGA/MA-PT system in the presence or absence of MS2-PP7 trigger RNA variants containing MPx4S- α , MPx4S- β , and MPx4S- γ . Data represent the mean ± SD.

Figure S6. Phase-contrast and fluorescence images of CHO cells for post-transfection using RAMGA/MA-PT system with or without MPx4S- α as a trigger, in the absence (–) or presence (+) of doxycycline. Scale bars = 500 µm.

Figure S7. Phase-contrast and fluorescence images of CHO cells for post-transfection using various RAMGA systems. (A) Response of the RAMGA/PA-MT system to MPx4S- α . (B) Response of the RAMGA/MA-CT system to MCx4S. (C) Response of the RAMGA/PA- λ T system to BPx4S. (D) Response of the RAMGA/PA- λ G system to BPx4S. (E) Response of the RAMGA/MA-PT system to RFP mRNA containing MPx4S- α . (F) Response of the RAMGA/MA-PT system to RFP mRNA containing MPx4S- α . Scale bars = 500 µm.