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S5 – Heat Capacity Measurements  

 
S5.1 – Sample preparation 

 

 The samples as submitted were moisture sensitive liquids.  As a result, 

they had to be hermetically sealed in an aluminum pan before mounting on the 

calorimetry puck for heat capacity measurements. Hermetic aluminum pans from 

Perkin Elmer were used as they isolate the sample from the atmosphere and the 

subsequent vacuum in the cryostat and they have the added benefit of being 

inexpensive. 

The samples were stable enough to be exposed to the atmosphere for a 

few minutes.  This gave enough time to transfer them from the vial to the sample 

pan and hermetically seal the lid using the crimp.  It is well known that large 

sample sizes often have longer relaxation times and this can lead to lower heat 

capacity measurements.4  For these samples, it was found that using a mass of 

between 5 and 8 mg gave reproducible data with a good S/N ratio. 

 

S5.2 – Experimentation 

 

A commercial relaxation calorimeter from Quantum Design (Physical 

Property Measurement System) was used to measure the heat capacities of 

various ionic liquids over the specified temperature range, 298.15 to 373.15 

kelvin.  The two-tau method of heat capacity data analysis, which allows 
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separately for relaxation of the temperature within the sample and within the 

addenda, was used.5 Due to the air sensitivity and liquid nature of the samples, 

the method used for data collection involved 4 separate runs, as described by 

Marriott et al.6 for volatile samples where the sample has been hermetically 

sealed in an aluminum pan. 

First, the background data (addenda) was collected. A very thin layer of 

Apiezon® H grease (ca. 1.5 mg) was spread over the platform (to provide a good 

thermal contact between the pan and platform in the following run) and data was 

collected.  Then a second run, with the unsealed volatile pan added (and with a 

very thin layer of grease between the lid and pan lip for thermal contact), was 

collected; this gives the specific heat of the sample pan and grease.  The third 

run was another addenda run (same as the first) and finally the fourth run added 

the sample pan (from run 2) with the sample sealed in it.  With the data from runs 

2 and 4, the specific heat of the pan and grease can be subtracted from the 

specific heat of the pan, grease and sample (i.e. 4-2) giving the specific heat of 

the sample.  Figure S74 shows the temperature dependence of the measured 

ionic liquids and Table S2 summarizes the results.  IL103 II is a complete repeat 

of the procedure used to show the reproducibility of the method, which was 

~0.5%, well within the manufacturer’s specifications of 2%.  All samples were 

repeated with <0.6% variability; for clarity only the results for IL103 are shown. 
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Table S2: Specific heats of the ionic liquids measured. 

 

Sample 

 

Molecular 

Weight 

 

(g/mol) 

Average 

Temperature  

 

 

K 

Average  

Specific Heat 

Capacity  

 

(J/g*K) 

 

Density 

 

 

(g/ml)
a
 

Average  

Volumetric 

Heat 

Capacity 

(J/ml*K) 

Average 

Molar Heat 

Capacity  

 

(J/mol*K) 

IL 1   1-butyl-3-methylimidazolium chloride  174.67 300.94 1.657 1.08  1.79 289.43 
  370.86 1.756   306.67 
IL 2   1-butyl-3-methylimidazolium bistriflamide  419.36 301.81 1.377 1.43  1.97 577.39 
  372.07 1.452   608.78 
IL 3   tetradecyl(trihexyl)phosphonium chloride 519.31 301.08 1.962 0.882 1.461 1019.09 
  372.09 2.107 0.845 1.483 1094.19 
IL 4   tetradecyl(trihexyl)phosphonium decanoate 655.11 301.00 1.967 0.885 1.741 1288.46 
  372.81 2.009 0.840 1.687 1316.80 
IL 5   tetradecyl(trihexyl)phosphonium dicyanimide 549.90 301.34 2.079 0.919 1.911 1143.46 
  371.59 2.280 0.882 2.011 1253.97 
IL 6   tetradecyl(trihexyl)phosphonium bistriflamide   764.00 301.61 1.582 1.049 1.659 1208.66 
  373.04 1.748 1.006 1.758 1335.69 

 
 a Values in the table were taken from references 7 (IL 1 and 2), 8 (IL 3, 5 and 6) and 9 (IL 4). Single density measurements at 298.1 K 

were all that were available for IL1 and IL2. These literature values were assumed to be close to the density of the experimental ILs at the 
lower temperatures (~300 K) measured. For the phosphonium ILs literature values allowed a linear regression of the data to be applied giving 
the following equations for density. IL3 ρ = 1.040 – 5.267 x 10-4 x T (K); IL4 = 0.903 – 6.34 x 10-4 x T (°C); IL5 ρ = 1.077 – 5.248 x 10-4 x T (K); 
IL6 ρ = 1.230 – 6.002 x 10-4 x T (K). These equations were used to calculate the density of the ILs at the experimental temperatures. 
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Figure S70: Temperature dependence of the specific heat of ionic liquids (data and labels as in Table S2). 
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Figure S71: Temperature dependence of the molar heat capacity of ionic liquids (data and labels as in Table S2). 
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 Figure S72: Dependence of the molar heat capacity of ionic liquids on their molecular weights (see Table S2 for data). 
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S5 – Vapour Pressure Measurements 
 
 
S5.1 – Experimental  

 

Trihexyl(tetradecyl)phosphonium chloride (IL 101) was purified by addition 

of sodium bicarbonate, the resulting solution was extracted four times with 

deionized water and once with hexanes. The hexanes were removed on a rotary 

evaporator and the ionic liquid was dried under suction with liquid nitrogen. The 

ionic liquid was then sparged with argon for 17 hours. Diethylenetriamine (DETA) 

was also dried under suction with liquid nitrogen and sparged with argon before 

addition to IL 101. 

The solution to be measured was added to a three-necked round bottom 

flask connected to a vacuum line, a Vernier temperature probe and a Vernier 

pressure sensor. With light stirring the flask was evacuated and brought to 

equilibrium before increasing the temperature of the flask. Using LoggerPro 3.6.0 

the pressure was measured as a function of temperature with one reading taken 

per second, the solutions were stirred continuously throughout data collection. 

The final results were averaged to construct Figure S71.  
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Figure S73: Vapour pressure of varying concentrations of diethylenetriamine (DETA) by volume in trihexyl(tetradecyl)phosphonium 
chloride (IL 101) between 50-130ºC.
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S6 – Carbon Dioxide Capture  

 
S6.1 – CO2 Capture Experimental Procedure 

  

 5, 10, and 20% fractions of diethylenetriamine (DETA) were added to 5 mL 

of solvent [tetradecyl(trihexyl)phosphonium chloride OR polyethylene glycol 

dimethyl ether (MN = ~ 250)]. The solution was then exposed to an atmosphere of 

CO2 while swirling for 3 minutes. A gooey white precipitate was found to form in 

the solutions upon exposure to CO2. Overall, precipitate formation was observed 

to be more prevalent in the polymeric solvent solutions. After exposure to CO2 

the atmosphere in the flask was allowed to equilibrate with the atmosphere in the 

laboratory with the help of a Hagen Elite 802 Air Pump.  

 In addition, a solution containing 10% DETA, 10% H2O, and 5 mL of 

solvent [tetradecyl(trihexyl)phosphonium chloride OR polyethylene glycol 

dimethyl ether (MN = ~ 250)] was also tested using the above method. 

 Large scale reactions were also performed for 5, 10, and 20% DETA plus 

the 10% DETA/10% water mixture using 20 mL of solvent and the above 

described process. 
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S6.2 – CO2 Capture Results 

 

Table S3: CO2 capture results. 

 
Solvent: 

IL101 or PEG 
DETA H2O 

AMOUNT 
CO2 BOUND* 

SAMPLE 

g mmol g mmol g mmol g mmol 

MOLE 
RATIO 
CO2 : 
DETA 

5% DETA          
IL 101 + DETA 4.45 8.57 0.26 2.52 ----- ----- 0.07 1.59 0.63 : 1 
IL 101 + DETA 4.63 8.92 0.25 2.42 ----- ----- 0.06 1.36 0.56 : 1 
IL 101 + DETA 4.55 8.76 0.25 2.42 ----- ----- 0.08 1.82 0.75 : 1 
PEG + DETA 5.35 ----- 0.26 2.52 ----- ----- 0.18 4.09 1.62 : 1 
PEG + DETA 5.32 ----- 0.25 2.42 ----- ----- 0.15 3.41 1.41 : 1 
PEG + DETA 5.50 ----- 0.24 2.33 ----- ----- 0.16 3.64 1.56 : 1 
10% DETA          
IL 101 + DETA 4.68 9.01 0.47 4.56 ----- ----- 0.08 1.82 0.40 : 1 
IL 101 + DETA 4.65 8.95 0.47 4.56 ----- ----- 0.07 1.59 0.35 : 1 
IL 101 + DETA 4.53 8.72 0.47 4.56 ----- ----- 0.07 1.59 0.35 : 1 
PEG + DETA 5.38 ----- 0.49 4.75 ----- ----- 0.25 5.68 1.20 : 1 
PEG + DETA 5.32 ----- 0.50 4.85 ----- ----- 0.24 5.45 1.12 : 1 
PEG + DETA 5.29 ----- 0.50 4.85 ----- ----- 0.25 5.68 1.17 : 1 
20% DETA          
IL 101 + DETA 3.90 7.51 0.96 9.31 ----- ----- 0.08 1.82 0.20 : 1 
IL 101 + DETA 4.11 7.91 0.96 9.31 ----- ----- 0.09 2.05 0.22 : 1 
IL 101 + DETA 4.56 8.78 0.95 9.21 ----- ----- 0.07 1.59 0.17 : 1 
PEG + DETA 5.33 ----- 0.95 9.21 ----- ----- 0.14 3.18 0.35 : 1 
PEG + DETA 5.30 ----- 0.94 9.11 ----- ----- 0.20 4.54 0.50 : 1 
PEG + DETA 5.26 ----- 1.03 9.98 ----- ----- 0.16 3.64 0.36 : 1 
10% DETA + 10% Water          
IL 101 + DETA + H2O 4.59 8.84 0.48 4.65 0.48 26.64 0.03 0.68 0.15 : 1 
IL 101 + DETA + H2O 4.62 8.90 0.45 4.36 0.49 27.20 0.03 0.68 0.16 : 1 
IL 101 + DETA + H2O 4.58 8.82 0.45 4.36 0.51 28.31 0.02 0.45 0.10 : 1 
PEG + DETA + H2O 5.30 ----- 0.50 4.85 0.46 25.53 0.16 3.64 0.75 : 1 
PEG + DETA + H2O 5.25 ----- 0.50 4.85 0.47 26.09 0.15 3.41 0.70 : 1 
PEG + DETA + H2O 5.36 ----- 0.49 4.75 0.48 26.64 0.16 3.64 0.77 : 1 

* Exposure to CO2 lasted for 3 minutes at ambient temperature and pressure. 
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Table S4: CO2 capture results for large scale reactions. 

 
Solvent: 

IL101 or PEG 
DETA H2O 

AMOUNT 
CO2 BOUND* 

SAMPLE 

g mmol g mmol g mmol g mmol 

MOLE 
RATIO 
CO2 : 
DETA 

5% DETA          
IL 101 + DETA 18.28 35.20 1.17 11.34 ----- ----- 0.28 6.36 0.56 : 1 
PEG + DETA 21.03 ----- 1.14 11.05 ----- ----- 0.54 12.27 1.11 : 1 
10% DETA          
IL 101 + DETA 18.25 35.14 2.05 19.87 ----- ----- 0.37 8.41 0.42 : 1 
PEG + DETA 20.50 ----- 2.02 19.58 ----- ----- 0.85 19.31 0.99 : 1 
20% DETA          
IL 101 + DETA 18.27 35.18 3.94 38.19 ----- ----- 0.35 7.95 0.21 : 1 
PEG + DETA 20.60 ----- 3.87 37.51 ----- ----- 0.59 13.41 0.36 : 1 
10% DETA + 10% Water          
IL 101 + DETA + H2O 18.32 35.28 2.04 19.77 2.17 120.46 0.27 6.14 0.31 : 1 
PEG + DETA + H2O 20.40 ----- 2.03 19.68 2.16 119.90 0.72 16.36 0.83 : 1 

* Exposure to CO2 lasted for 3 minutes at ambient temperature and pressure. 
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S6.3 – DETA-CO2 Adduct Formation and Data 

 

 A mixture of 10% DETA in tetradecyl(trihexyl)phosphonium chloride was 

prepared and exposed to pure CO2 for one minute, forming a gooey white 

precipitate. The flask was then heated in the microwave, capped and left sealed 

for over a week. The DETA/ionic liquid mixture was found to precipitate white, 

plate-like crystals upon being left sealed under an atmosphere of CO2. The 

DETA-CO2 adduct once isolated was found to be extremely hygroscopic and 

temperature sensitive. Thermogravimetric studies (Figure S70) indicated that the 

adduct has an onset of decomposition temperature of 82ºC (corresponding to 5% 

mass loss at a heating rate of 5ºC/min in a nitrogen atmosphere). Furthermore, 

mass spectrometry demonstrated that the adduct releases CO2 between the 

temperatures of 75 and 145ºC (Figure S71). The crystal structure of the adduct 

was obtained and is shown in Figure S72. Mp: 132-136ºC. Analysis: found for 

C5H13N3O2: C 39.88, H 9.75, N 27.96; calc.: C 40.80, H 8.90, N 28.55. IR: 3361 

(m, N–H stretch), 3248 (m, N–H stretch), 1649 (m, C=O stretch), 1572 (m, N–H 

bend). 
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Figure S74: Decomposition curve of the DETA-CO2 adduct in a nitrogen atmosphere when 
heated at 5ºC/min. 
 

 
 

Figure S75: TGA- mass spectrometry scan of DETA-CO2 adduct showing release of carbon 
dioxide during TGA decomposition scan. 
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Figure S76: Molecular structure (left) and packing diagram (right) of the DETA-CO2 adduct.   

 

 

Figure S77: Infrared spectrum of the DETA-CO2 adduct. 
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S7 – Theoretical Calculations  

 
 
S7.1 – Experimental 

 

Calculations were performed using Gaussian 03,10 using a stepping stone 

approach in which the geometries at the levels HF/STO-3G, HF/3-21G, HF/6-

31G*, HF/6-31+G*, MP2/6-31G* and MP2/6-31+G* were sequentially 

optimized using default specifications. After each level, a frequency 

calculation was performed to verify the nature of the stationary point. Z-matrix 

coordinates constrained to the appropriate symmetry were used for efficiency, 

as any problems would manifest themselves by an imaginary mode 

orthogonal to the spanned Z-matrix space. The Hessian was also evaluated 

at the starting STO-3G geometry to aid convergence. 

 

S7.2 – Summary 
 
 

Some calculations were carried out on simple model systems to get 

accurate HF/STO-3G geometries to start more complex calculations with. We 

found: NH3, r(N-H) = 1.032 Å; CO2, r(C=O) = 1.188 Å; NH2CH3, r(N-C) = 

1.486 Å, r(N-H) = 1.033 Å, r(C-H) = 1.09 Å; NH(CH3)2, r(N-C) = 1.484 Å, r(N-

H) = 1.034 Å; HCO2H, r(C=O)=1.214 Å, r(C-O)=1.386 Å, r(O-H)=0.990 Å; 

NH4
+, r(N-H) = 1.043 Å; NH3CH3

+, r(N-C) = 1.528 Å, r(N-H) = 1.048 Å; 

NH2(CH3)2
+, r(N-C) = 1.525 Å, r(N-H) = 1.042 Å; HCO2

-, r(C-O)=1.266 Å; 
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NH2CO2
-, r(N-H) = 1.037 Å; r(N-C) = 1.561 Å, r(C-O)=1.258 Å. The amine 

hydrogens of the carbamate ion lay out of the NCO2 plane. 

A more complicated model system we examined was diethylamine. We 

examined three different Cs structures and five different C1 structures. Of the 

Cs structures, only one was a local minimum (#1), and two of the C1 

structures are derived from the unstable Cs structures. Of the six stable 

structures, the energy ranking was as follows: Cs #1 < C1 #5 < C1 #4 < C1 #6 

< C1 #3 < C1 #2. The three lowest energy forms feature at least one trans C-

C-N-C arrangement. To simplify the following conformational possibilities, we 

assume that the CCNCC fragment is arranged in an all-trans fashion. 

 
Table S5:  Energy (kJ/mol) of diethylamine relative to most stable conformer (Cs #1). 

 

 HF/6-31G* HF/6-31+G* MP2/6-31G* MP2/6-31+G* 
Cs #2 18.41 19.38 16.21 18.39 
Cs #3 16.86 16.43 14.20 13.86 
C1 #2 17.74 18.48 15.18 16.70 
C1 #3 15.41 15.04 12.54 11.85 
C1 #4 6.07 6.51 4.55 5.52 
C1 #5 5.17 4.91 3.77 3.35 
C1 #6 11.71 11.97 8.49 8.63 

 
 
The next system we investigated was the reactant itself, 

diethylenetriamine. We looked at nine different minimum-energy Cs systems. 

The energy ranking was 6 < 5,7,9 < 4 < 1,2,3 < 8. 
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Table S6:  Energy (kJ/mol) of diethylenetriamine relative to most stable conformer (Cs #6). 
 

 HF/6-31G* HF/6-31+G* MP2/6-31G* MP2/6-31+G* 

Cs #1 10.11 9.24 14.86 15.90 
Cs #2 9.84 7.87 17.96 15.72 
Cs #3 9.15 8.02 17.16 15.90 
Cs #4 12.73 11.76 12.22 12.77 
Cs #5 6.88 5.05 6.21 3.71 
Cs #7 2.00 3.48 0.16 4.34 
Cs #8 2.88 28.19 31.44  
Cs #9 2.29 2.05 2.05 1.57 

 
 

Reaction of diethylenetriamine with carbon dioxide in the gas phase can 

give one of two possible carbamic acids. For end substitution, we examined 

four possible structures varying in the placement and orientation of the 

carboxyl group. The C1 #2 structure was the most stable of the four. For 

middle substitution, neither of the two Cs structures was a minimum, and upon 

relaxing symmetry a major conformational change took place to give the C1 

structure. 

 
Table S7:  Energy (kJ/mol) of diethylenetriamine+CO2 products relative to most stable 
conformer (end-C1 #2). 

 
DETA + CO2  HF/6-31G* HF/6-31+G* MP2/6-31G* MP2/6-31+G* 

NHEtNH2EtNHCOOH C1 #1 6.51 6.55 5.29 5.20 
NHEtNH2EtNHCOOH C1 #2* -17.98 -18.64 -10.98 -18.38 
NHEtNH2EtNHCOOH C1 #3 10.26 10.39 10.80 11.09 
NHEtNH2EtNHCOOH C1 #4 5.18 5.59 5.92 6.68 
NCOOH(EtNH2)2 Cs #1 96.63 99.68 75.88 75.73 
NCOOH(EtNH2)2 Cs #2 88.74 92.05 67.67 68.72 
NCOOH(EtNH2)2 C1 #1 20.08 20.60 5.20 4.43 

*relative to DETA + CO2 
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We also tried calculations on three zwitterionic forms of the carbamic acid 

(labeled NHEtNH3
+NHCOO- (ZW1), NH2EtNH2

+EtNHCOO- (ZW2), and 

NCOO-EtNH2EtNH3
+ (ZW3). ZW1 and ZW3 were not stable at the three 

lowest levels of theory, undergoing either a proton transfer from N to O, or a 

proton transfer from N to N(COO) with elimination of CO2. ZW2 also 

underwent elimination at HF/STO-3G and proton transfer at the MP2 levels, 

but was stabilized enough at the other HF levels by hydrogen bonding to 

remain zwitterionic. The natural amino acids are also neutral in the gas-

phase, becoming zwitterionic only in the solution or solid state. 

Attempts to optimize the zwitterionic forms in solution were plagued by 

geometry convergence difficulties and by unexplained job terminations. 
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Figure S78: Structures of some model systems. 
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Figure S79: Structures of some model systems (continued). 
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Figure S80: Structures of some products. 
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Table S8: Energies of simple model systems. 

 
Species Symmetry HF/STO-3G HF/3-21G HF/6-31G* 
NH3 C3v -55.4554198 -55.8722035 -56.1843563 
CO2 D∞h -185.0683996 -186.5612575 -187.6341762 
NH2CH3 Cs -94.0328628 -94.6816559 -95.2098286 
NH(CH3)2 Cs -132.6122008 -133.4948470 -134.2388500 
HCO2H cis Cs -186.2178842 -187.7001993 -188.7623096 
NH4

+ Td -55.8688455 -56.2338557 -56.5307714 
NH3CH3

+ C3v -94.4606320 -95.0593420 -95.5734914 
NH2(CH3)2

+ C2v -133.0500244 -133.8829448 -134.6135310 
HCO2

- C2v -185.4562771 -187.1046323 -188.1826260 
NH2CO2

- C2v -239.7916370 -241.8553137 -243.2322591 
NH2CO2

- Cs -239.8053450 -241.8555686 -243.2363952 
NH(CH2CH3)2 Cs #1 -209.7767143 -211.1382267 -212.3140471 
NH(CH2CH3)2 Cs #2 -209.7708747 -211.1342638 -212.3070360 
NH(CH2CH3)2 Cs #3 -209.7703631 -211.1329784 -212.3076244 
NH(CH2CH3)2 C1 #2 -209.7711688 -211.1342657 -212.3072899 
NH(CH2CH3)2 C1 #3 -209.7706830 C1 #5 -212.3081764 
NH(CH2CH3)2 C1 #4 -209.7752334 -211.1373279 -212.3117335 
NH(CH2CH3)2 C1 #5 -209.7748884 -211.1368035 -212.3120787 
NH(CH2CH3)2 C1 #6 -209.7732739 -211.1357705 -212.3095883 

 
Species Symmetry HF/6-31+G* MP2/6-31G* MP2/6-31+G* 
NH3 C3v -56.1894994 -56.3542116 -56.3631970 
CO2 D∞h -187.6387868 -188.1077474 -188.1179592 
NH2CH3 Cs -95.2141732 -95.5065308 -95.5157013 
NH(CH3)2 Cs -134.2426411 -134.6652981 -143.6748241 
HCO2H cis Cs -188.7691846 -189.2417803 -189.2567555 
NH4

+ Td -56.5312766 -56.7002940 -56.7011658 
NH3CH3

+ C3v -95.5741592 -95.8682030 -95.8700818 
NH2(CH3)2

+ C2v -134.6142656 -135.0366835 -135.0397809 
HCO2

- C2v -188.2081943 -188.6679746 -188.7113798 
NH2CO2

- C2v -243.2605079 -243.8730120 -243.9231848 
NH2CO2

- Cs -243.2635263 -243.8792646 -243.9277683 
NH(CH2CH3)2 Cs #1 -212.3183927 -213.0027802 -213.0154753 
NH(CH2CH3)2 Cs #2 -212.3110114 -212.9966054 -213.0084698 
NH(CH2CH3)2 Cs #3 -212.3121330 -212.9973706 -213.0101959 
NH(CH2CH3)2 C1 #2 -212.3113533 -212.9969977 -213.0091133 
NH(CH2CH3)2 C1 #3 -212.3126628 -212.9980028 -213.0109630 
NH(CH2CH3)2 C1 #4 -212.3159128 -213.0010461 -213.0133737 
NH(CH2CH3)2 C1 #5 -212.3165216 -213.0013443 -213.0142008 
NH(CH2CH3)2 C1 #6 -212.3138323 -212.9995475 -213.0121873 
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Table S9: Energies of reactants and products. 

 
Species Symmetry HF/STO-3G HF/3-21G HF/6-31G* 
NH(EtNH2)2 Cs #1 -318.3944807 -320.5598431 -322.3510424 

NH(EtNH2)2 Cs #2 -318.3933275 -320.5590610 -322.3511459 

NH(EtNH2)2 Cs #3 -318.3946421 -320.5594011 -322.3514084 

NH(EtNH2)2 Cs #4 -318.3923002 -320.5593075 -322.3500419 

NH(EtNH2)2 Cs #5 -318.3940012 Cs #6 -322.3522727 

NH(EtNH2)2 Cs #6 -318.3959597 -320.5648457 -322.3548922 

NH(EtNH2)2 Cs #7 -318.3991270 -320.5633690 -322.3541313 

NH(EtNH2)2 Cs #8 -318.3874401 Cs #6 -322.3537944 

NH(EtNH2)2 Cs #9 -318.3957963 -320.5633743 -322.3540211 

NHEtNH2EtNHCOOH C1 #1 -503.4949483 -507.1557246 -509.9934364 

NHEtNH2EtNHCOOH C1 #2 -503.4965926 -507.1575571 -509.9959150 

NHEtNH2EtNHCOOH C1 #3 -503.4954064 -507.1534047 -509.9920084 

NHEtNH2EtNHCOOH C1 #4 -503.4968635 -507.1553270 -509.9939428 

NCOOH(EtNH2)2 Cs #1 -503.4819310 -507.1258108 -509.9591089 

NCOOH(EtNH2)2 Cs #2 -503.4817066 -507.1248183 -509.9621149 

NCOOH(EtNH2)2 C1 #1 -503.4820314 -507.1548382 -509.9882668 

 
Species Symmetry HF/6-31+G* MP2/6-31G* MP2/6-31+G* 
NH(EtNH2)2 Cs #1 -322.3626131 -323.3631784 -323.3903256 
NH(EtNH2)2 Cs #2 -322.3631319 -323.3619949 -323.3903958 
NH(EtNH2)2 Cs #3 -322.3630780 -323.3622998 -323.3903253 
NH(EtNH2)2 Cs #4 -322.3616504 -323.3641841 -323.3915201 
NH(EtNH2)2 Cs #5 -322.3642089 -323.3664703 -323.3949696 
NH(EtNH2)2 Cs #6 -322.3661308 -323.3688372 -323.3963824 

NH(EtNH2)2 Cs #7 -322.3648041 -323.3687763 -323.3947286 
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NH(EtNH2)2 Cs #8 -322.3553929 -323.3568623 Cs #7 

NH(EtNH2)2 Cs #9 -322.3653485 -323.3680578 -323.3957826 

NHEtNH2EtNHCOOH C1 #1 -510.0095213 -511.4787499 -511.5193597 

NHEtNH2EtNHCOOH C1 #2 -510.0120156 -511.4807655 -511.5213416 

NHEtNH2EtNHCOOH C1 #3 -510.0080599 -511.4766516 -511.5171182 

NHEtNH2EtNHCOOH C1 #4 -510.0098854 -511.4785112 -511.5187989 

NCOOH(EtNH2)2 Cs #1 -509.9740488 -511.4518659 -511.4924982 

NCOOH(EtNH2)2 Cs #2 -509.9769541 -511.4549916 -511.4951691 

NCOOH(EtNH2)2 C1 #1 -510.0041704 -511.4787867 -511.5196560 
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