Supporting Information

On the use of ionic liquids to tune crystallization

Magdalena Kowacz,* Patrick Groves, José M.S.S. Esperança, Luís Paulo N. Rebelo*

Instituto de Tecnologia Química e Biológica (<u>www.itqb.unl.pt</u>), Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal

*E-mail addresses: magda@itqb.unl.pt; luis.rebelo@itqb.unl.pt

Table 1. Diffusion coefficients of water, cations and anions of ILs at different IL concentrations as obtained by DOSY experiments. The diffusion of H₂O in the IL-free system has been determined as $D_0 = 2.47(m^2 \cdot s^{-1}) \cdot 10^{-9}$.

IL type	Diffusing species	IL concentration, C _{IL} / M							
		1	0.8825	0.5	0.25	0.125	0.025	0.0125	0.00625
	50000	Diffusion coefficient $D \cdot 10^9 / (m^2 \cdot s^{-1})$							
[EMIM][Ac]	H₂O	1.605		2.024	2.28		2.375		
	cation	0.665		0.832	0.935		0.99		
	anion	0.665		0.86	0.965		0.99		
[Ch][Ac]	H ₂ O	1.72			2.3		2.366		
	cation	0.675			0.916		1		
	anion	0.72			0.995		1.02		
[Ch][C ₁ SO ₃]	H ₂ O	1.87		2.19	2.324		2.356		
	cation	0.733		0.877	0.95		0.985		
	anion	0.858		0.998	1.105		1.14		
[EMIM][C ₂ SO ₃]	H₂O			2.058	2.25		2.356		
	cation			2.056	0.908		2.356		
	anion			0.821	0.908		0.995		
				0.021	0.300		0.335		
[EMIM][C ₃ SO ₃]	H₂O			1.905	2.18				
	cation			0.743	0.876				
	anion			0.675	0.8				
[EMIM][C ₄ SO ₃]	H ₂ O	1.48		1.99	2.15		2.37		
	cation	0.598		0.777	0.86		1.01		
	anion	0.496		0.656	0.74		0.87		
[EMIM]CI	H ₂ O	1.95		2.22	2.356		2.35		
	cation	0.81		0.924	0.955		1.01		
[Ch]Cl	H ₂ O		2.107		2.39	2.425	2.384		
	cation		0.86		0.98	1.005	1.01		
[EMIM]Br	H ₂ O	2.095		2.295	2.372		2.38		
	cation	0.84		0.935	0.985		1.01		
[EMIM][SCN]	H ₂ O	2.04		2.29	2.386		2.365		
	cation	0.83		0.928	0.98		1.03		
[EMIM][(CN) ₄ B]	H ₂ O						2.357	2.44	2.385
	cation						0.99	1.03	

Solution enthalpy: Frequency of water exchange and the influence of background ions.

The measured enthalpy of solution of BaCl₂ (distinct for different background chloride salts)^{S1} results from the energy gained on creating ion-water interactions - E_i (affected by the association of the background ions in solution) and the energy expended on breaking existing water-water bonds - E_0 (dependent on the water affinity of background ions). This energy difference ($\Delta E_i = E_i - E_0$) is the quantity that describes the relative frequency of water exchange in the ion's hydration shell with respect to its exchange in the bulk^{S2-S3}. Such dependence is explained by the reaction rate theory which relates activation energies of the transfer process E_i (E_0) to the mean residence time (τ)^{S3}:

$$\frac{\tau_i}{\tau_0} = e^{\beta(E_i - E_0)} \tag{1}$$

where $\beta = 1/k_BT$, k_B is the Boltzmann's constant, *T* is the absolute temperature and τ_i (τ_0) is the mean residence time of water in the nearest vicinity of the ion (and in the bulk).

Heat capacity: Hydration of ([EMIM][(CN)₄B] and association of [EMIM][SCN].

As can be seen in Figure S1, with increasing molar fraction of the solute ($[EMIM][(CN)_4B]$), the molar heat capacity of solution increases up to a certain point and then starts to decrease. Such behavior is typically recognized as a sign of hydrophobic hydration of the solute^{S4} that results in the initial increase in the heat capacity due to the reinforcement of the water structure. The further decrease is a consequence of solute association in solution. Note that $[EMIM][(CN)_4B]$ is weakly soluble in water and it is expected to significantly associate at higher concentrations. The effect of hydrophobic hydration is not supposed to be induced by $[EMIM]^+$, because this behavior is not observed for any other $[EMIM]^+$ based IL. A similar pattern – namely, the relatively sharp decrease in the heat capacity

starting from a particular concentration – is exhibited also by [EMIM][SCN]. Again, this fact supports our conclusion about the [EMIM][SCN] association.

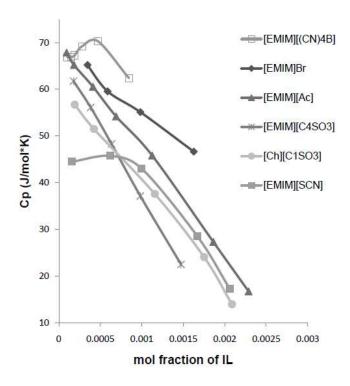


Figure S1. Molar heat capacity (C_p) isotherms (25 °C), of aqueous solutions of ILs as a function of their molar fraction.

References:

- [S1] Kowacz M.; Prieto M.; Putnis A. Geochim. Cosmochim. Acta 2010, 74, 469-481.
- [S2] Samoilov O. Y. Structure of Aqueous Electrolyte Solutions and the Hydration of Ions. Consultants Bureau, New York 1965, pp. 74–106.
- [S3] Chong S.-H.; Hirata F. J. Phys. Chem. 1997, 101, 3209–3220.
- [S4] Piekarski H.; Tkaczyk M. Termochim. Acta 2005, 428, 113-118.