Scope and Limitations of the Photooxidations of 2(α-hydroxyalkyl) furans: Synthesis of 2-Hydroxy-exo-brevicomin

Dimitris Noutsias, Antonia Kouridaki and Georgios Vassilikogiannakis*

Department of Chemistry, University of Crete, Vasilika Vouton, 71003 Iraklion, Crete, Greece
vasil@chemistry.uoc.gr

Table of contents

Part A: Experimental procedures S2 - S9
Part B: Copies of ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra. S10 - S27

Part A: Experimental procedures

The photooxidation precursors, furanols 1a-n shown in Scheme 3, were easily prepared using well-established known synthetic protocols. In particular, primary alcohols $\mathbf{1 a}, \mathbf{1 e}$ and $\mathbf{1 j}$ were prepared by NaBH_{4} reduction of the corresponding commercially available furfurals. Secondary alcohols $\mathbf{1 b}$, 1f and $\mathbf{1 k}$ were easily synthesized by n - BuLi addition to the same furfurals, while PhMgBr addition to 5methylfurfural was used in the preparation of 1i. Furanols $\mathbf{1 c}$ and $\mathbf{1 d}$ were prepared by addition of furyllithium, prepared by deprotonation of furan with n-BuLi, to 3-methyl-2-butenal and acetone, respectively. Similarly, addition of methylfuryllithium to acetone and 3-methyl-2-butenal affords furanols $\mathbf{1 g}$ and $\mathbf{1 h}$, respectively. Finally, substrates $\mathbf{1 1}, \mathbf{1 m}$ and $\mathbf{1 n}$ were prepared by aldol condensation of the enolate of acetophenone, or ethyl acetate (LDA was used as base), to 5-methylfurfural or furfural.

$2 \mathrm{a}, 2 \mathrm{e}, 2 \mathrm{f}, 2 \mathrm{~g}, 2 \mathrm{j}, 2 \mathrm{l}, 2 \mathrm{~m}$
A solution of furanols $\mathbf{1 a - n}(0.5 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ containing rose bengal as photosensitizer $\left(10^{-4} \mathrm{M}\right)$ was placed in a test tube and cooled with an ice bath $\left(\sim 5^{\circ} \mathrm{C}\right)$. Oxygen was bubbled through the solution immediately before and during its irradiation with a xenon Variac Eimac Cermax 300 W visible light lamp. Complete consumption of the starting material was observed by TLC after 4 mins irradiation.

The reaction mixture was transferred to a round bottom flask and concentrated in vacuo. The residues was dissolved in CHCl_{3}, concentrated once again in vacuo and left for 2 h under high vacuum to ensure complete removal of MeOH . The relative ratios of the MeOH trapping product, hydroperoxides 5 (Scheme 2), and fragmentation products 4 were measured at this stage by ${ }^{1} \mathrm{H}$ NMR. The crude mixture of hydroperoxides $\mathbf{5}$ and fragmentation product $\mathbf{4}$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ and an excess of $\mathrm{Me}_{2} \mathrm{~S}(100 \mu \mathrm{~L})$ was then added. The solution was stirred for 15 h at room temperature, after which time the DMS/DMSO ratio as well as the amount of MeOH
produced remained unchanged (based on ${ }^{1} \mathrm{H}$ NMR monitoring when CDCl_{3} instead of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was used as solvent). The relative ratios of the desired pyranones 2 and fragmentation products 4-hydroxybutenolides 4 were measured at this stage by ${ }^{1} \mathrm{H}$ NMR, and, as expected, were very close to the 5:4 ratio measured above.

The reaction solution was concentrated in vacuo and purified by flash column chromatography (silica gel, petroleum ether:EtOAc $=5: 1 \rightarrow 1: 1$) to afford pure 6-hydroxy- $3(2 H)$-pyranones 2 (45% for $\mathbf{2 a}, 85 \%$ for $\mathbf{2 e}, 71 \%$ for $\mathbf{2 f}, 48 \%$ for $\mathbf{2 g}, 63 \%$ for $\mathbf{2 j}, \mathbf{7 9 \%}$ for $\mathbf{2 l}$ and $\mathbf{7 7 \%}$ for $\mathbf{2 m}$).

2a: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.97\left(\mathrm{dd}, J_{1}=10.4 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.17$ (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=$ $16.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=194.6,145.8,127.9,88.2,66.6 \mathrm{ppm}$.

2e: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.85(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=10.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.55(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=195.1,149.3,126.2,92.6,66.5,27.7 \mathrm{ppm}$.

$2 f$ (minor)
2f: Mixture of two diastereoisomers in 8:1 ratio. Based on the NOE studies shown above the trans-diastereoisomer is the major one. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for the major diastereoisomer: $\delta=6.80(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.50$ $\left(\mathrm{dd}, J_{1}=7.8 \mathrm{~Hz}, J_{2}=3.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.62(\mathrm{~s},-\mathrm{OH}), 1.91(\mathrm{~m}, 1 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}$, $3 \mathrm{H}), 1.35(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for the major diastereoisomer: $\delta=196.9,147.7,126.6,92.7,74.3,29.3,29.0,27.1,22.5$, 14.0 ppm ; HRMS (TOFMS EI+): calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{3}$: 184.1099 [M] ${ }^{+}$; found: 184.1097.

2g: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.81(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.66(\mathrm{~s},-\mathrm{OH}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 3), 1.36(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, CDCl_{3}): $\delta=199.3,147.5,124.3,92.6,78.8,30.5,28.0,25.9 \mathrm{ppm}$; HRMS (TOFMS $\mathrm{ES}+$): calcd for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{Na}: 179.0684[\mathrm{M}+\mathrm{Na}]^{+}$; found: 179.0670.
$\mathbf{2 j} \mathbf{j}$ This compound appears as a 1.1:1 mixture of the closed (hemiketal) and the open (1,4-enedione) form in $\mathrm{CDCl}_{3} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, open form): $\delta=7.93$ (d, J $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.39$ (brs, 2H), ppm; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, closed form): $\delta=7.51$ (d, $J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.43(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=$ $16.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, both open and closed forms): $\delta=200.2,194.2,192.9,148.7,141.6,138.4,135.4,134.1,131.4$, $129.3,128.9$ (2C), 128.7 (2C), 128.6 (2C), 126.0, 125.6 (2C), 94.0, $68.3,66.8 \mathrm{ppm} ;$ HRMS (TOFMS EI+): calcd for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{2}$: $172.0524\left[\mathrm{M} \mathrm{-} \mathrm{H}_{2} \mathrm{O}\right]^{+}$; found: 172.0530.

21 (major)
21: Mixture of two diastereoisomers in 8:1 ratio. Based on the NOE studies shown above the cis-diastereoisomer is the major one. ${ }^{1} \mathrm{H}$-NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for the major diastereoisomer: $\delta=7.95(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.25\left(\mathrm{dd}, J_{I}=7.5\right.$ $\left.\mathrm{Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.68\left(\mathrm{dd}, J_{1}=17.5 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.37\left(\mathrm{dd}, J_{l}=17.5 \mathrm{~Hz}\right.$, $\left.J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.60(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ for the major diastereoisomer: $\delta=196.8,196.2,148.2,136.5,133.4,128.6$ (2C), 128.2 (2C), 126.0, 93.1, 70.7, 39.1, 28.6; HRMS (TOFMS ES+): calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Na}: 269.0790$ [M + $\mathrm{Na}]^{+}$; found: 269.0783.

2m: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.83(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.98\left(\mathrm{dd}, J_{l}=7.6 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.00\left(\mathrm{dd}, J_{l}=\right.$ $\left.16.8 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.69\left(\mathrm{dd}, J_{1}=16.8 \mathrm{~Hz}, J_{2}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.62(\mathrm{~s}, 3 \mathrm{H}), 1.26$ (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=195.1,170.9,148.0,126.0$, 93.0, 71.2, 60.9, 35.2, 28.7, 14.1 ppm ; HRMS (TOFMS ES+): calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{5} \mathrm{Na}$: $237.0739[\mathrm{M}+\mathrm{Na}]^{+}$; found: 237.0742.

To a mixture of the phosphonium salt (the precursors of ylides 10a or 10c, 5.0 mmol) in anhydrous THF (20 mL) at $0{ }^{\circ} \mathrm{C}$, was added a solution of $n-\mathrm{BuLi}(3.12 \mathrm{~mL}, 1.6 \mathrm{~m}$ in hexane, 5 mmol). The reaction mixture was warmed to room temperature and stirred for 1 h after which time all the phosphonium salt had been consumed. The red colored solution was re-cooled to $0^{\circ} \mathrm{C}$ and a solution of 5-methylfurfural $(\mathbf{9}, 0.55 \mathrm{~g}, 5$ mmol) in anhydrous THF (5 mL) was added. The reaction was warmed to room temperature, stirred for 3 h , concentrated to half its previous volume and then diluted with petroleum ether (50 mL). The $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ that was precipitated was removed by filtration and the remaining solution was concentrated in vacuo and purified by column chromatography (silica gel, petroleum ether: $\mathrm{EtOAc}=1: 0 \rightarrow 50: 1$) to afford a mixture of olefins (cis:trans $=1.3: 1,0.51 \mathrm{~g}, 75 \%$ for $\mathrm{R}=-\mathrm{Et}$, while cis:trans $=1.5: 1$, $0.75 \mathrm{~g}, 81 \%$ for $\mathrm{R}=-\mathrm{Ph})$.

For $\mathbf{R}=-\mathbf{E t}:{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.25-5.97(\mathrm{~m}, 4 \mathrm{H}$ for trans plus 3 H for cis), 5.53 (td, $J_{l}=11.8, J_{2}=7.3,1 \mathrm{H}$ for cis), 2.53 (df, $J_{l}=7.3, J_{2}=1.7,2 \mathrm{H}$ for cis), 2.37 ($\mathrm{s}, 3 \mathrm{H}$ for cis), 2.35 ($\mathrm{s}, 3 \mathrm{H}$ for trans), 2.27 ($\mathrm{m}, 2 \mathrm{H}$ for trans), 1.17 (t, $J=7.5$, 3 H for cis), 1.15 ($\mathrm{t}, J=7.5,3 \mathrm{H}$ for trans); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for cis isomer: $\delta=151.7,150.9,131.4,116.9,109.7,107.1,22.6,14.0,13.6 \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) for trans isomer: $\delta=151.8,151.0,129.9,117.7,107.0,106.9,25.7$, $13.5,13.5 \mathrm{ppm}$.

For $\mathbf{R}=\mathbf{- P h}:{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.44(\mathrm{~m}, 2 \mathrm{H}$ for cis plus 2 H for trans), $7.33\left(\mathrm{~m}, 2 \mathrm{H}\right.$ for cis plus 2 H for trans), $7.25\left(\mathrm{tt}, J_{1}=7.1 \mathrm{~Hz}, J_{2}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$ for cis plus 1 H for trans), 6.97 (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}$ for trans), 6.84 (d, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}$ for trans), 6.39 (d, $J=12.7 \mathrm{~Hz}, 1 \mathrm{H}$ for cis), 6.30 (d, $J=12.7 \mathrm{~Hz}, 1 \mathrm{H}$ for cis), 6.24 ($\mathrm{d}, J=$ $3.1 \mathrm{~Hz}, 1 \mathrm{H}$ for trans), 6.16 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$ for cis), 6.02 (dd, $J_{l}=3.1 \mathrm{~Hz}, J_{2}=0.9$ $\mathrm{Hz}, 1 \mathrm{H}$ for trans), 5.91 (brd, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$ for cis), 2.36 ($\mathrm{s}, 3 \mathrm{H}$ for trans), 2.26 ($\mathrm{s}, 3 \mathrm{H}$ for cis); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for cis isomer: $\delta=151.6,150.5,137.3,128.7$ (2C), 128.0 (2C), 127.1, 126.1, 118.2, 111.0, 107.4, $13.6 \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) for trans isomer: $\delta=152.3,151.7,137.6,128.6$ (2C), 127.2, 126.4 (2C), 125.4, 116.7, 109.9, 107.8, 13.8 ppm .

To a solution of 5-methylfurfural $(9,0.55 \mathrm{~g}, 5.0 \mathrm{mmol})$ at room temperature in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added the stabilized ylide $\mathbf{1 0 b}(1.84 \mathrm{~g}, 5.5 \mathrm{mmol})$. The reaction mixture was stirred, at the same temperature, for 14 hours, concentrated to half its previous volume and then diluted with petroleum ether (30 mL). The $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{O}$ that was precipitated was removed by filtration and the remaining solution was concentrated in vacuo and purified by column chromatography (silica gel, petroleum ether:EtOAc $=40: 1 \rightarrow 30: 1)$ to afford the desired trans ester $(0.74 \mathrm{~g}, 89$ $\%)$.

For $\mathbf{R}=\mathbf{- C O}_{\mathbf{2}} \mathbf{M e}:{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.35(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.49$ (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.06\left(\mathrm{dd}, J_{l}=3.2 \mathrm{~Hz}, J_{2}=0.9 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 3.76 (s, 3H), $2.33(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=167.8,155.5,149.5$, $131.3,116.5,113.5,108.8,51.5,13.9 \mathrm{ppm}$

To a solution of each one of the three previously prepared olefins (2.0 mmol) in t $\mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}(12 \mathrm{~mL}: 12 \mathrm{~mL})$, at $0{ }^{\circ} \mathrm{C}$, were added $190 \mathrm{mg}(2.0 \mathrm{mmol})$ of methanosulfonyl amide and 2.0 g AD-mix- β (in three portions, one every 6 h). The reaction mixture was stirred for 24 h at the same temperature until complete consumption of the starting material was observed by TLC. EtOAc (15 mL) was then added followed by $\mathrm{Na}_{2} \mathrm{SO}_{3}(4.0 \mathrm{~g})$ and the stirring was continued for 1 h until compete separation of the two phases was seen. The phases were separated and the aqueous phase was re-extracted with EtOAc (15 mL). The combined organic phases were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Flash column chromatography (silica gel, petroleum ether:EtOAc $=10: 1 \rightarrow 2: 1$) afforded pure 1,2-diols 11a (exclusively threo, $231 \mathrm{mg}, 68 \%$), 11b (exclusively threo, $312 \mathrm{mg}, 78 \%$) and 11c (threo:erythro $=4: 1,283 \mathrm{mg}, 65 \%$).

11a: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.14(\mathrm{~d}, J=3 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{brs},-\mathrm{OH}), 3.19(\mathrm{brs},-\mathrm{OH}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~m}$, 2 H), $0.91(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=152.2,151.7,108.3$, 106.0, 74.7, 70.8, 25.7, 13.4, 9.8 ppm; HRMS (TOFMS ES+): calcd for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}$: $193.0841[\mathrm{M}+\mathrm{Na}]^{+}$; found: 193.0838.

11b: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.24(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.90\left(\mathrm{dd}, J_{l}=3.1 \mathrm{~Hz}\right.$, $\left.J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.94(\mathrm{brs}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{brs},-$ OH), 3.23 (brs, -OH), $2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.8,152.0$, 150.9, 108.3, 106.2, 72.7, 68.9, 52.8, 13.4 ppm; HRMS (TOFMS ES+): calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{5} \mathrm{Na}: 223.0582[\mathrm{M}+\mathrm{Na}]^{+}$; found: 223.0580.

11c: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for threo diastereoisomer: $\delta=7.23(\mathrm{~m}, 5 \mathrm{H}), 5.93$ (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.79\left(\mathrm{dd}, J_{l}=3.1, J_{2}=0.8,1 \mathrm{H}\right), 4.90(\mathrm{~d}, J=7.4,1 \mathrm{H}), 4.55(\mathrm{~d}, J=$ $7.4,1 \mathrm{H}$), 3.58 (brs, $2-\mathrm{OH}$), 2.23 (d, $J=0.8,3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for threo diastereoisomer: $\delta=151.7,150.7,140.0,128.0$ (2C), 127.7, 126.5 (2C), 109.1, 106.0, 75.8, 72.4, 13.4 ppm; HRMS (TOFMS ES+): calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}: 241.0841$ $[\mathrm{M}+\mathrm{Na}]^{+}$; found: 241.0836.

A solution of furan-diols 11a-c (0.5 mmol) in $\mathrm{MeOH}(10 \mathrm{~mL})$ containing rose bengal as photosensitizer $\left(10^{-4} \mathrm{M}\right)$ was placed in a test tube and cooled with an ice bath (~ 5 ${ }^{\circ} \mathrm{C}$). Oxygen was bubbled through the solution immediately before and during its irradiation with a xenon Variac Eimac Cermax 300 W visible light lamp. Complete consumption of the starting material was observed by TLC after 4 mins irradiation.

The reaction mixture was transferred to a round bottom flask and concentrated in vacuo. The residue was dissolved in CHCl_{3}, concentrated once again in vacuo and was left for 2 h under high vacuum to ensure complete removal of MeOH . The relative ratios of the MeOH trapping product hydroperoxides 5 (Scheme 2) and fragmentation products 4 e were measured at this stage by ${ }^{1} \mathrm{H}$ NMR. The crude mixture of hydroperoxides 5 and fragmentation product $\mathbf{4 e}$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4 \mathrm{~mL})$, an excess of $\mathrm{Me}_{2} \mathrm{~S}(100 \mu \mathrm{~L})$ was then added and the solution was stirred for 15 h at room temperature. Catalytic amount (5 mg) of p - TsOH was then added and the solution was stirred for 3 more hours at room temperature and concentrated in vacuo. The relative ratios of the desired 6,8-dioxabicyclo[3.2.1]oct-3-en-2-ones 13a-c and fragmentation products 4 -hydroxybutenolides $\mathbf{4 e}$ were also measured at this stage by ${ }^{1} \mathrm{H}$ NMR, and, as expected, were very close to the 5:4e ratio measured above. The
reaction was purified by flash column chromatography (silica gel, petroleum ether: $\mathrm{EtOAc}=15: 1 \rightarrow 5: 1$) to afford pure 6,8-dioxabicyclo[3.2.1]oct-3-en-2-ones 13a ($44 \mathrm{mg}, 53 \%$), 13b ($74 \mathrm{mg}, 75 \%$) and $\mathbf{~ 1 3 c}$ ($10: 1$ mixture of two diastereoisomers, 65 $\mathrm{mg}, 60 \%$).

13a: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.95(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.00\left(\mathrm{dd}, J_{l}=9.7 \mathrm{~Hz}\right.$, $\left.J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.33(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75\left(\mathrm{dt}, J_{l}=6.3 \mathrm{~Hz}, J_{2}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.70$ $(\mathrm{m}, 2 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 195.1, 150.8, 125.7, 103.6, 84.1, 77.1, 27.2, 21.9, 9.6 ppm.

13b: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.07(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.06\left(\mathrm{dd}, J_{l}=9.7 \mathrm{~Hz}\right.$, $\left.J_{2}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.89(\mathrm{t}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 1.81$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=192.5,169.3,151.3,126.1,105.5,84.0$, 73.5, 53.0, 21.6 ppm ; HRMS (TOFMS EI+): calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{5}: 198.0528[\mathrm{M}]^{+}$; found: 198.0535.

13c: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for major diastereoisomer: $\delta=7.36(\mathrm{~m}, 5 \mathrm{H}), 7.08$ $(\mathrm{d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.10\left(\mathrm{dd}, J_{I}=9.8 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.82(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.52(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for major diastereoisomer: $\delta=194.3,151.0,138.8,128.7$ (2C), 128.5, 126.2 (2C), 125.7, 104.6, 87.4, 77.5, 21.7 ppm; HRMS (TOFMS ES+): calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{Na}: 239.0684[\mathrm{M}+$ Na^{+}; found: 239.0679.

To a solution of 6,8-dioxabicyclo[3.2.1]oct-3-en-2-one 13a ($30 \mathrm{mg}, 0.18 \mathrm{mmol}$) in $\mathrm{MeOH}(3 \mathrm{~mL})$, at $0{ }^{\circ} \mathrm{C}$, was added $\mathrm{NaBH}_{4}(20 \mathrm{mg}, 0.53 \mathrm{mmol})$ and the reaction was stirred at the same temperature for 20 min . Water (3 mL) was added and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$. The combined organic phases were dried with MgSO_{4} and concentrated in vacuo to afford the corresponding pure allylic alcohol ($29 \mathrm{mg}, 95 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.78\left(\mathrm{dd}, J_{1}=9.6 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.65\left(\mathrm{td}, J_{1}\right.$ $\left.=9.6 \mathrm{~Hz}, J_{2}=1.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.71(\mathrm{~m}, 1 \mathrm{H}), 4.17\left(\mathrm{dt}, J_{1}=6.3 \mathrm{~Hz}, J_{2}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.08$
$(\mathrm{m}, 1 \mathrm{H}), 1.70-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s},-\mathrm{OH}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=131.9,128.0,102.6,80.2,75.7,67.1,27.4,23.3,9.4$ ppm.

A solution of the above prepared allylic alcohol ($29 \mathrm{mg}, 0.17 \mathrm{mmol}$) in dry EtOAc (3 $\mathrm{mL})$ had H_{2} bubbled through it for 20 min . $\mathrm{Pd} / \mathrm{C}(30 \mathrm{mg}, 10 \mathrm{wt} \%)$ was then added and two balloons of H_{2} were attached. The reaction mixture was stirred for 30 min at room temperature and then passed through a pad of celite. The celite was carefully washed with EtOAc (5 mL) and the combined filtrates were concentrated in vacuo. The reaction was purified by flash column chromatography (silica gel, petroleum ether: $\mathrm{EtOAc}=10: 1 \rightarrow 4: 1$) to afford 2-hydroxy-exo-brevicomin ($\mathbf{1 4}, 25 \mathrm{mg}, 85 \%$).
$[\mathrm{a}]^{20}{ }_{\mathrm{D}}=+38.6\left(\mathrm{c}=2.5, \mathrm{CHCl}_{3}\right)$, lit. ${ }^{20 \mathrm{~d}}[\mathrm{a}]^{20}{ }_{\mathrm{D}}=+33.3\left(\mathrm{c}=1.94, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(300$ $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=4.15(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~m}, 1 \mathrm{H}), 1.65$ - $1.43(\mathrm{~m}, 6 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $106.9,80.5,77.3,66.3,35.0,28.3,26.7,23.9,9.7 \mathrm{ppm}$.

Part B: Copies of ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR specta

(2a, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(2a, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(2e, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(2e, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
(Crude reaction, before chromatographic purification)

(2f, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(2f, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(2g, $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(2g, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(2j, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(2j, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, both open and closed forms)

(21,75 MHz, $\mathrm{CDCl}_{3}, 8: 1$ mixture of diastereoisomers)

($2 \mathrm{~m}, 300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 10: 1$ mixture of diastereoisomers)

$\begin{aligned} & \stackrel{\sim}{\circ} \\ & \stackrel{+}{\circ} \\ & \stackrel{\sim}{\circ} \end{aligned}$	$\begin{gathered} \underset{N}{N} \\ \stackrel{1}{\circ} \\ \underset{\sim}{2} \end{gathered}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \dot{~} \\ & \underset{\sim}{\circ} \end{aligned}$	$\stackrel{m}{\infty}$		or $\stackrel{0}{\infty}$ $\stackrel{0}{\circ}$ 0		$\stackrel{\stackrel{\circ}{\sim}}{\stackrel{\infty}{\infty}}$

($2 \mathrm{~m}, 75 \mathrm{MHz}, \mathrm{CDCl}_{3}, 10: 1$ mixture of diastereoisomers)

$\begin{array}{lllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \mathrm{ppm}\end{array}$

($\mathbf{1 1 a}, 300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\underset{S 9 T}{\dagger \hbar L \cdot T S T}=$

(11a, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(11b, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left(11 \mathrm{c}, 300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, threo diastereoisomer is the major one)

(11c, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, threo diastereoisomer is the major one)

(13a, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

($\mathbf{1 3 b}, 75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(13c, $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$,
accompanied with 10% of a minor
diastereoisomer from the erythro 1,2-diol)

(13c, $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$,
accompanied with 10% of a minor diastereoisomer from the erythro 1,2-diol)

$\left(\mathbf{1 4}, 75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

