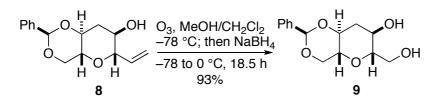
Supporting Information for

A Convergent Synthesis of the C1—C16 Segment of Goniodomin A via Palladium-Catalyzed Organostannane—Thioester Coupling

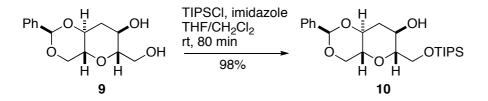
Haruhiko Fuwa,* Motohiro Nakajima, Jinglu Shi, Yoshiyuki Takeda, Tomoyuki Saito, and Makoto Sasaki*

Laboratory of Biostructural Chemistry, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

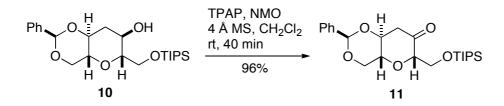
*Email: hfuwa@bios.tohoku.ac.jp; masasaki@bios.tohoku.ac.jp


Contents

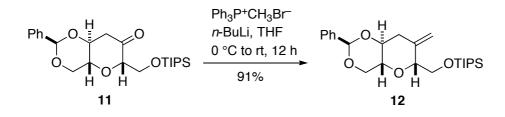
General methods	S2
Experimental procedures and spectroscopic data for all new compounds	S4
Stereochemical assignment of allylic alcohol 29	S36
Stereochemical assignment of fused acetal 33	
Stereochemical assignment of spiroacetal 34	.S38
Stereochemical assignment of spiroacetal 2	
Copies of ¹ H and ¹³ C NMR spectra for all new compounds	S40


General methods. All reactions sensitive to moisture and/or air were carried out under an atmosphere of argon in dry, freshly distilled solvents under anhydrous conditions using oven-dried glassware unless otherwise noted. Anhydrous dichloromethane (CH_2Cl_2) was purchased from Kanto Chemical Co. Inc. and used directly without further drying. Anhydrous tetrahydrofuran, diethyl ether, and toluene were purchased from Wako Pure Chemical Industries, Ltd. and further purified by a Glass Contour solvent purification system under an atmosphere of argon immediately prior to use. Diisopropylethylamine, triethylamine, 2,6-lutidine, acetonitrile (CH_3CN) , benzene, and methanol were distilled from calcium hydride under an atmosphere of argon. Hexamethyphosphoramide (HMPA) and

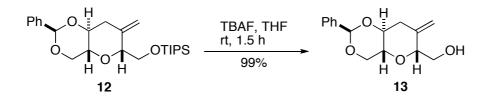
1,3-dimethyl-3,4,5,6-tetrahydro-2(1*H*)-pyrimidinone (DMPU) were distilled from calcium hydride under reduced pressure. *N*,*N*-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) were distilled from magnesium sulfate under reduced pressure. All other chemicals were purchased at highest commercial grade and used directly. Analytical thin-layer chromatography (TLC) was performed using E. Merck silica gel 60 F₂₅₄ plates (0.25-mm thickness). Flash column chromatography was carried out using Kanto Chemical silica gel 60N (40-100 mesh, spherical, neutral) or Fuji Silysia silica gel BW-300 (200-400 mesh). Optical rotations were recorded on a JASCO P-1020 digital polarimeter. IR spectra were recorded on a JASCO FT/IR-4100 spectrometer. ¹H and ¹³C NMR spectra were recorded on a JEOL JNM-ECA-600 spectrometer or a Varian Unity INOVA 600 spectrometer, and chemical shift values are reported in ppm (δ) downfield from tetramethylsilane with reference to internal solvent [¹H NMR, CHCl₃ (7.24), C₆HD₅ (7.15); ¹³C NMR, CDCl₃ (77.0), C₆D₆ (128.0)] unless otherwise noted. Coupling constants (*J*) are reported in Hertz (Hz). The following abbreviations


were used to designate the multiplicities: s = singlet; d = doublet; t = triplet; m = multiplet; br = broad. EI and FAB mass spectra were recorded on a JEOL JMS-700 spectrometer and ESI mass spectra were measured on a Bruker microTOF focus spectrometer.

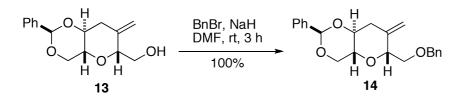
Diol 9. Ozone was bubbled through a solution of olefin 8 (2.53 g, 9.65 mmol) in MeOH/CH₂Cl₂ (1:1, v/v, 100 mL) at -78 °C until a pale blue color was persisted. Oxygen was bubbled through the solution to remove excess ozone. NaBH₄ (1.75 g, 46.3 mmol) was then added to the solution at -78 °C. The resultant solution was allowed to warm to 0 °C and stirred at that temperature for 18.5 h. The reaction mixture was quenched with H₂O. The mixture was diluted with EtOAc, washed with H₂O and brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure to give diol 9 (2.38 g, 93%) as colorless crystals. An analytically pure sample was obtained by recrystallization from EtOAc: mp 183—184 °C; $[\alpha]_D^{23}$ –30.4 (c 2.69, MeOH); IR (KBr) 3301, 2868, 1447, 1126, 1107, 1169, 1030, 1010, 982, 971, 745, 695, 647 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.48—7.46 (m, 2H), 7.37—7.33 (m, 3H), 5.51 (s, 1H), 4.30 (dd, J = 10.0, 5.0 Hz, 1H), 3.88 (ddd, J = 11.5, 6.5, 4.5 Hz, 1H), 3.84 - 3.77 (m, 2H),3.67 (dd, J = 10.0, 10.0 Hz, 1H), 3.53 (ddd, J = 11.0, 9.5, 5.0 Hz, 1H), 3.40 (ddd, J =10.0, 9.5, 5.0 Hz, 1H), 3.34 (ddd, J = 9.0, 5.0, 4.5 Hz, 1H), 2.49 (ddd, J = 11.0, 5.0, 4.0 Hz, 1H), 2.12 (d, J = 11.5 Hz, 1H), 1.93 (dd, J = 6.5, 5.5 Hz, 1H), 1.72 (ddd, J = 12.0, 11.0, 11.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 137.2, 129.1, 128.4 (× 2), 126.1 (× 2), 101.7, 81.5, 76.4, 73.0, 69.2, 66.8, 63.0, 37.9; HRMS (FAB) calcd for C₁₄H₁₉O₅ [(M + H)⁺] 267.1227, found 267.1236.



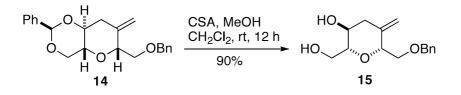
Alcohol 10. To a solution of diol 9 (500 mg, 1.87 mmol) in CH₂Cl₂/THF (3:2, v/v, 12.5 mL) at 0 °C were added imidazole (762 mg, 11.2 mmol) and TIPSCI (1.90 mL, 8.98 mmol), and the resultant solution was stirred at room temperature for 80 min. The reaction mixture was quenched with saturated aqueous NH₄Cl solution. The mixture was diluted with EtOAc, washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 10 to 60% EtOAc/hexanes) gave alcohol 10 (775 mg, 98%) as colorless crystals: mp 71—72 °C; [a]_D²³ +11.0 (*c* 2.09, CHCl₃); IR (KBr) 3417, 2941, 2865, 1461, 1383, 1366, 1100, 1015, 882, 760, 696 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.50—7.48 (m, 2H), 7.34—7.31 (m, 3H), 5.51 (s, 1H), 4.27 (dd, J = 10.5, 5.0 Hz, 1H), 4.05 (dd, J = 9.5, 4.5 Hz, 1H), 3.86 (d, J = 1.5 Hz, 1H), 3.83 (m, 1H), 3.79 (dd, J = 9.5, 8.0 Hz, 1H), 3.63 (dd, J = 10.5, 10.5 Hz, 1H), 3.52 (ddd, J = 11.5, 9.0, 4.5 Hz, 1H), 3.43-3.35 (m, 2H), 2.48 (ddd, J = 11.5, 4.5, 4.5 Hz, 1H), 1.72 (ddd, J = 11.5, 11.5, 11.5 Hz, 1H), 1.19–1.03 (m, 21H); ¹³C NMR (125 MHz, CDCl₃) δ 137.3, 129.0, 128.2 (× 2), 126.1 (× 2), 101.6, 78.9, 76.3, 72.7, 70.4, 69.1, 66.6, 36.8, 17.8 (× 6), 11.6 (× 3); HRMS (ESI) calcd for $C_{23}H_{38}O_5SiNa$ [(M + Na)⁺] 445.2381, found 445.2389.

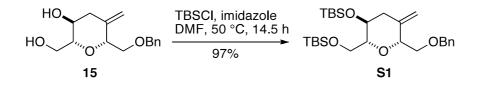

Ketone 11. To a solution of alcohol **10** (780 mg, 1.84 mmol) in CH_2Cl_2 (10 mL) were added 4 Å molecular sieves (700 mg), NMO (475 mg, 4.05 mmol), and TPAP (13.0 mg, 0.037 mmol), and the resultant solution was stirred at room temperature for 40 min. The reaction mixture was directly subjected to flash column chromatography (silica gel,

10% EtOAc/hexanes) to afford ketone **11** (743 mg, 96%) as colorless crystals: mp 73—74 °C; $[\alpha]_D^{23}$ –3.7 (*c* 0.52, benzene); IR (KBr) 3302, 2940, 2864, 1724, 1642, 1462, 1383, 1125, 1013 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.50—7.48 (m, 2H), 7.39—7.33 (m, 3H), 5.57 (s, 1H), 4.44 (dd, *J* = 10.5, 5.0 Hz, 1H), 4.07—4.02 (m, 3H), 3.97 (ddd, *J* = 11.0, 9.5, 6.0 Hz, 1H), 3.78 (dd, *J* = 10.5, 10.0 Hz, 1H), 3.66 (ddd, *J* = 10.0, 9.5, 5.0 Hz, 1H), 3.02 (dd, *J* = 17.0, 6.0 Hz, 1H), 2.59 (dd, *J* = 17.0, 11.0 Hz, 1H), 1.13—1.01 (m, 21H); ¹³C NMR (125 MHz, CDCl₃) δ 204.8, 137.0, 129.1, 128.3 (× 2), 126.1 (× 2), 101.2, 84.6, 75.4, 70.7, 69.2, 63.3, 44.6, 17.8 (× 6), 11.6 (× 3); HRMS (FAB) calcd for C₂₃H₃₇O₅Si [(M + H)⁺] 421.2405, found 421.2416.

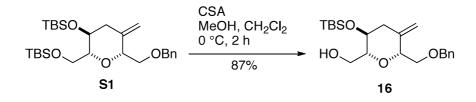


Olefin 12. To a suspension of Ph₃P⁺CH₃Br⁻ (539.9 mg, 1.511 mmol) in THF (15 mL) at 0 °C was added *n*-BuLi (2.64 M solution in hexane, 0.525 mL, 1.39 mmol), and the resulting ylide suspension was stirred at 0 °C for 30 min. To this solution was added a solution of ketone **11** (124.1 mg, 0.2950 mmol) in THF (2.5 mL + 1.0 mL × 2), and the resultant mixture was stirred at room temperature for 12 h. The reaction mixture was quenched with saturated aqueous NH₄Cl solution. The mixture was diluted with EtOAc, washed with brine, dried over Na₂SO₄, and concentrated. Purification of the residue by flash column chromatography (silica gel, 0 to 1% EtOAc/hexanes) gave olefin **12** (112.2 mg, 91%) as colorless crystals: mp 70—71 °C; $[\alpha]_D^{23}$ –39.2 (*c* 0.54, benzene); IR (KBr) 3269, 2942, 2867, 1643, 1631, 1451, 1383, 1107, 1002, 882, 748, 694 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.48—7.47 (m, 2H), 7.37—7.31 (m, 3H), 5.53 (s, 1H),

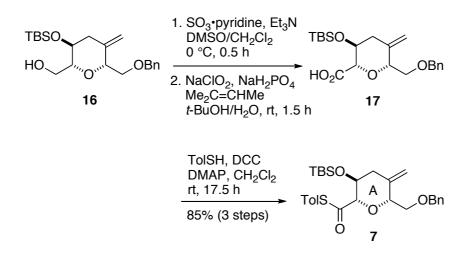

5.09 (s, 1H), 5.00 (s, 1H), 4.29 (dd, J = 10.5, 4.5 Hz, 1H), 4.00 (dd, J = 9.5, 5.5 Hz, 1H), 3.94—3.88 (m, 2H), 3.67 (dd, J = 10.5, 10.0 Hz, 1H), 3.58—3.49 (m, 2H), 2.74 (dd, J = 12.0, 4.5 Hz, 1H), 2.45 (dd, J = 12.0, 11.5 Hz, 1H), 1.14—1.00 (m, 21H); ¹³C NMR (125 MHz, CDCl₃) δ 141.6, 137.5, 129.0, 128.3 (× 2), 126.1 (× 2), 111.6, 101.6, 79.1, 79.1, 73.3, 69.4, 63.7, 39.2, 18.0 (× 6), 12.0 (× 3); HRMS (FAB) calcd for C₂₄H₃₉O₄Si [(M + H)⁺] 419.2612, found 419.2615.


Alcohol 13. To a solution of olefin 12 (594 mg, 1.42 mmol) in THF (15 mL) was added TBAF (1.0 M solution in THF, 2.50 mL, 2.50 mmol), and the resultant solution was stirred at room temperature for 1.5 h. The reaction mixture was diluted with EtOAc, washed with saturated aqueous NH₄Cl solution and brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 50 to 90% EtOAc/hexanes) gave alcohol 13 (372 mg, 99%) as colorless crystals: mp 125—126 °C; $[\alpha]_D^{23}$ –53.8 (*c* 0.29, CHCl₃); IR (KBr) 3396, 2915, 2872, 1643, 1383, 1330, 1105, 904, 752, 697 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.49—7.47 (m, 2H), 7.38—7.32 (m, 3H), 5.54 (s, 1H), 4.99 (s, 1H), 4.85 (s, 1H), 4.33 (dd, *J* = 10.5, 4.5 Hz, 1H), 3.99 (m, 1H), 3.93 (m, 1H), 3.81 (dd, *J* = 12.0, 7.0 Hz, 1H), 3.71 (dd, *J* = 10.5, 9.5 Hz, 1H), 3.61—3.53 (m, 2H), 2.75 (dd, *J* = 12.5, 4.5 Hz, 1H), 2.46 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 140.6, 137.3, 129.0, 128.3 (× 2), 126.1 (× 2), 111.4, 101.5, 78.6, 78.4, 73.2, 69.2, 62.4, 38.8; HRMS (EI) calcd for C₁₅H₁₈O₄ (M⁺) 262.1200, found 262.1205.

Benzyl ether 14. To a solution of alcohol 13 (1.10 g, 4.19 mmol) in DMF (50 mL) at 0 °C was added NaH (60% in mineral oil, 0.420 g, 8.75 mmol), and the resultant solution was stirred at 0 °C for 30 min. To this solution was added benzyl bromide (0.750 mL, 6.31 mmol), and the resultant mixture was allowed to warm to room temperature and stirred for 3 h. The reaction mixture was quenched with saturated aqueous NH₄Cl solution. The mixture was extracted with Et₂O, and the organic layer was washed with H₂O and brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 0 to 20% EtOAc/hexanes) gave benzyl ether 14 (1.49 g, 100%) as colorless crystals: mp 108—109 °C: [α]_D²⁵ -25.9 (*c* 1.00, CHCl₃); IR (KBr) 3088, 3065, 3031, 2953, 2928, 2884, 2856, 1655, 1471, 1462, 1253, 1099, 836, 777, 697 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) & 7.48-7.37 (m, 2H), 7.37-7.27 (m, 8H), 5.53 (br s, 1H), 4.98 (s, 1H), 4.90 (s, 1H), 4.63 (d, J = 12.0 Hz, 1H), 4.57 (d, J = 12.0 Hz, 1H), 4.35 (dd, J = 10.3, 4.8 Hz, 1H), 4.10 (dd, J = 4.5, 6.2 Hz, 1H), 3.80 (dd, J = 4.5, 10.3 Hz, 1H), 3.72 (dd, J = 10.3, 10.3 Hz, 1H), 3.67 (dd, J = 10.3, 6.2 Hz, 1H), 3.61–3.52 (m 2H), 2.74 (dd, J = 12.4, 4.5 Hz, 1H), 2.44 (br dd, J = 12.4, 12.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 141.2, 137.9, 137.5, 129.0, 128.4 (× 2), 128.3 (× 2), 127.9 (× 2), 127.8, 126.1 (× 2), 111.6, 101.5, 78.8, 77.4, 73.6, 73.5, 69.7, 69.3, 39.1; HRMS (ESI) calcd for C₂₂H₂₄O₄Na [(M + Na)⁺] 375.1567, found 375.1572.



Diol 15. To a solution of benzyl ether 14 (54.9 mg, 0.156 mmol) in MeOH/CH₂Cl₂ (1:1, v/v, 2 mL) was added CSA (12.0 mg, 0.0520 mmol), and the resultant solution was stirred at room temperature for 12 h. The reaction mixture was guenched with saturated aqueous NaHCO₃ solution. The mixture was diluted with EtOAc, and the organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 0 to 20% EtOAc/hexanes) gave diol 15 (37.0 mg, 90%) as colorless crystals: mp 118—119 °C; [α]_D²⁵ +15.7 (*c* 1.00, CHCl₃); IR (KBr) 3295, 3088, 3065, 3031, 2953, 2928, 2884, 2856, 1655, 1471, 1462, 1253, 1099, 836, 777, 697 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) & 7.35–7.31 (m, 4H), 7.28 (m, 1H), 4.90 (br s, 1H), 4.80 (br s, 1H), 4.59 (d, J = 12.4 Hz, 1H), 4.55 (d, J = 12.4 Hz, 1H), 4.02 (br dd, J = 4.4, 6.5 Hz, 1H), 3.84(br dd, J = 11.7, 4.8 Hz, 1H), 3.76 (br dd, J = 11.7, 4.8 Hz, 1H), 3.74 (dd, J = 10.3, 4.4 Hz, 1H), 3.64 (dd, J = 10.3, 6.5 Hz, 1H), 3.64 (m 1H), 3.32 (ddd, J = 8.9, 4.8, 4.8 Hz, 1H), 2.69 (dd, J = 13.1, 5.2 Hz, 1H), 2.57 (br s, 1H), 2.50 (m, 1H), 2.21 (br dd, J = 13.1, 11.0 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃) δ 141.6, 137.8, 128.4 (× 2), 127.9 (× 2), 127.8, 110.1, 81.4, 76.7, 73.5, 70.2, 68.4, 63.2, 41.8; HRMS (ESI) calcd for $C_{15}H_{20}O_4Na [(M + Na)^+] 287.1254$, found 287.1260.

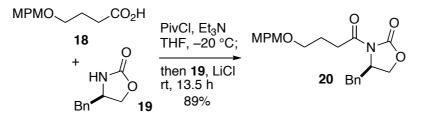

Bis-TBS ether S1. To a solution of diol 15 (100.3 mg, 0.379 mmol) in DMF (4 mL)

were added imidazole (105.5 mg, 1.55 mmol) and TBSCl (195.1 mg, 1.29 mmol), and the resultant solution was stirred at 50 °C for 14.5 h. The reaction mixture was quenched with saturated aqueous NH₄Cl solution. The mixture was extracted with EtOAc, and the organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 0 to 2.5% EtOAc/hexanes) gave bis-TBS ether S1 (182.0 mg, 97%) as a colorless oil: $[\alpha]_D^{23}$ +17.2 (c 1.29, CHCl₃); IR (film) 3088, 3065, 3031, 2953, 2928, 2884, 2856, 1655, 1471, 1462, 1253, 1099, 836, 777, 697 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.34—7.24 (m, 4H), 7.26 (m, 1H), 4.82 (br s, 1H), 4.79 (br s, 1H), 4.61 (d, J = 12.0 Hz, 1H), 4.56 (d, J = 12.0 Hz, 1H), 3.98 (dd, J = 5.5, 5.5 Hz, 1H), 3.84 (dd, J = 11.3, 2.0 Hz, 1H), 3.75 (dd, J = 10.3, 5.5 Hz, 1H), 3.71 (dd, J = 11.3, 4.9 Hz)1H), 3.63 (dd, J = 10.3, 5.5 Hz, 1H), 3.62 (m 1H), 3.25 (ddd, J = 8.6, 4.9, 2.0 Hz, 1H), 2.56 (dd, J = 12.1, 5.2 Hz, 1H), 2.19 (dd, J = 12.1, 10.3 Hz, 1H), 0.86 (s, 18H), 0.05 (s, 3H), 0.043 (s, 3H), 0.038 (s, 3H), 0.029 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 142.9, 138.2, 128.3 (× 2), 127.8 (× 2), 127.5, 108.9, 83.0, 76.5, 73.6, 70.5, 68.0, 63.1, 42.8, 26.0 (× 3), 25.8 (× 3), 18.5, 17.9, -4.3, -4.9, -5.0, -5.2; HRMS (ESI) calcd for $C_{27}H_{48}O_4Si_2Na [(M + Na)^+] 515.2983$, found 515.2989.

Alcohol 16. To a solution of bis-TBS ether S1 (1.30 g, 2.64 mmol) in MeOH/CH₂Cl₂ (1:1, v/v, 26 mL) was added CSA (66.1 mg, 0.285 mmol), and the resultant solution was stirred at 0 °C for 2 h. The reaction mixture was quenched with saturated aqueous NaHCO₃ solution. The mixture was diluted with EtOAc, and the organic layer was

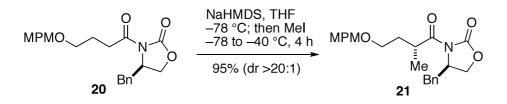
washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 0 to 15% EtOAc/hexanes) gave alcohol **16** (0.870 g, 87%) as a colorless oil: $[\alpha]_D^{24}$ +10.8 (*c* 1.00, CHCl₃); IR (film) 3459, 3087, 3063, 3031, 2952, 2928, 2856, 1655, 1253, 1095, 837, 776 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.33 (m, 4H), 7.30—7.26 (m, 1H), 4.86 (br s, 1H), 4.80 (br s, 1H), 4.59 (d, *J* = 12.4 Hz, 1H), 4.56 (d, *J* = 12.4 Hz, 1H), 4.01 (br dd, *J* = 4.4, 5.8 Hz, 1H), 3.83 (br dd, *J* = 11.3, 3.1 Hz, 1H), 3.75 (dd, *J* = 10.0, 4.4 Hz, 1H), 3.64 (dd, *J* = 10.0, 5.8 Hz, 1H), 3.61 (br dd, *J* = 11.3, 5.8 Hz, 1H), 3.57 (ddd, *J* = 11.0, 8.9, 5.2 Hz, 1H), 3.34 (ddd, *J* = 8.9, 5.3, 3.1 Hz, 1H), 2.59 (dd, *J* = 13.0, 5.2 Hz, 1H), 2.22 (dd, *J* = 13.0, 11.0 Hz, 1H), 2.14 (br s, 1H), 0.86 (s, 9H), 0.06 (s, 3H), 0.05 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 142.0, 137.9, 128.4 (× 2), 127.84 (× 2), 127.77, 109.7, 82.1, 76.5, 73.5, 70.1, 68.7, 62.7, 43.0, 25.7 (× 3), 17.9, -4.2, -5.0; HRMS (ESI) calcd for C₂₁H₃₄O₄SiNa [(M + Na)⁺] 401.2119, found 401.2124.

Thioester 7. To a solution of alcohol **16** (34.3 mg, 0.0906 mmol) in CH₂Cl₂/DMSO (1:1, v/v, 0.9 mL) was added Et₃N (0.0650 ml, 0.466 mmol). To this mixture cooled to 0 °C was added SO₃·pyridine (57.7 mg, 0.363 mmol), and the resultant solution was stirred at 0 °C for 0.5 h. The reaction mixture was extracted with Et₂O, and the organic layer

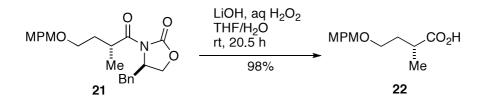

was washed successively with 1 M aqueous HCl solution, saturated aqueous NaHCO₃ solution, and brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude aldehyde was used immediately in the next reaction without purification.

To a solution of the above crude aldehyde, 2-methyl-2-butene (0.0950 mL, 0.897 mmol), and NaH₂PO₄ (12.0 mg, 0.100 mmol) in *t*-BuOH/H₂O (5:1, v/v, 0.9 mL) at 0 °C was added NaClO₂ (24.6 mg, 0.272 mmol), and the resultant mixture was stirred at room temperature for 1.5 h. The reaction mixture was poured into CHCl₃/H₂O. The aqueous layer was acidified (pH 3) with 1 M aqueous HCl solution, and the organic layer was separated. The aqueous layer was extracted with CHCl₃. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude carboxylic acid **17** was used immediately in the next reaction without purification.

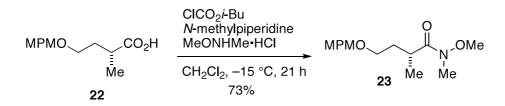
To a solution of the above crude carboxylic acid **17** in CH₂Cl₂ (0.9 mL) at 0 °C were added *p*-toluenethiol (12.4 mg, 0.0998 mmol), DMAP (1.2 mg, 0.0098 mmol), and DCC (20.6 mg, 0.0998 mmol), and the resultant solution was allowed to warm to room temperature and stirred for 17.5 h. The reaction mixture was diluted with Et₂O. Insoluble materials were filtered off, and the filtrate was washed with H₂O and brine. The organic layer was dried over MgSO₄, filtered, and concentrated under reduce pressure. Purification of the residue by flash column chromatography (silica gel, 0 to 2% EtOAc/hexanes) gave thioester **7** (38.5 mg, 85% for the three steps) as a colorless oil: $[\alpha]_D^{25}$ –35.2 (*c* 0.84, CHCl₃); IR (film) 3734, 3063, 3028, 2951, 2927, 2884, 2856, 1707, 1253, 1109, 837, 808, 779 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.39—7.38 (m, 2H), 7.35—7.32 (m, 2H), 7.28—7.26 (m, 3H), 7.20—7.19 (m, 2H), 4.93 (br s, 1H), 4.91


S12

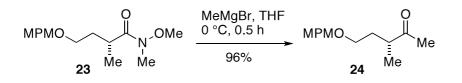
(br s, 1H), 4.68 (d, J = 12.4 Hz, 1H), 4.64 (d, J = 12.4 Hz, 1H), 4.18 (br dd, J = 6.2, 4.5 Hz, 1H), 4.01 (d, J = 7.6 Hz, 1H), 3.98 (ddd, J = 8.2, 7.6, 4.5 Hz, 1H), 3.82 (dd, J = 10.3, 4.5 Hz, 1H), 3.74 (dd, J = 10.3, 6.2 Hz, 1H), 2.66 (dd, J = 13.4, 4.5 Hz, 1H), 2.35 (s, 3H), 2.29 (dd, J = 13.4, 8.2 Hz, 1H), 0.84 (s, 9H), 0.03 (s, 3H), 0.00 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 196.1, 140.8, 139.5, 138.1, 134.6 (× 2), 130.0 (× 2), 128.4 (× 2), 127.8 (× 2), 127.7, 123.7, 110.8, 86.9, 77.2, 73.6, 70.4, 70.1, 41.6, 25.7 (× 3), 21.3, 17.9, -4.6, -4.9; HRMS (ESI) calcd for C₂₈H₃₈O₄SSiNa [(M + Na)⁺] 521.2152, found 521.2158.


Oxazolidinone 20. To a solution of carboxylic acid **18**¹ (1.03 g, 4.59 mmol) and Et₃N (1.95 ml, 14.0 mmol) in THF (30 mL) cooled to -20 °C was added PivCl (0.675 ml, 5.54 mmol), and the resultant mixture was stirred at -20 °C for 2.5 h. To this mixture were added LiCl (292.0)mg, 6.888 mmol) and solution of а (R)-4-benzyl-2-oxazolidinone (19) (813.4 mg, 4.590 mmol) in THF (16 mL), and the resultant mixture was stirred at room temperature for 13.5 h. The reaction mixture was diluted with EtOAc, and the organic layer was washed with H₂O and brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 30% EtOAc/hexanes) to give oxazolidinone **20** (1.57 g, 89%) as a pale yellow oil: $[\alpha]_D^{24}$ -37.8 (c 1.00, CHCl₃); IR (film) 3061, 3028, 3001, 2931, 2859, 1780, 1699, 1513, 1388, 1248, 1211, 1097, 1032, 703 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.32-7.29 (m, 2H), 7.26-7.23 (m, 3H), 7.17-7.16 (m,

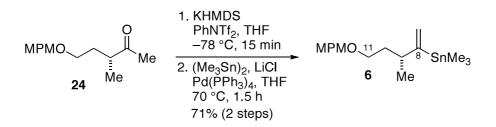
2H), 6.85—6.83 (m, 2H), 4.57 (ddd, J = 13.4, 6.5, 3.5 Hz, 1H), 4.41 (s, 2H), 4.10—4.08 (m, 2H), 3.76 (s, 3H), 3.54—3.51 (m, 2H), 3.23 (dd, J = 13.4, 3.4 Hz, 1H), 3.04—3.02 (m, 2H), 2.65 (dd, J = 13.4, 9.6 Hz, 1H), 2.02—1.97 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 173.1, 159.1, 153.4, 135.4, 130.5, 129.4 (× 2), 129.3 (× 2), 128.9 (× 2), 127.3, 113.7 (× 2), 72.5, 68.9, 66.1, 55.22, 55.15, 37.8, 32.5, 24.5; HRMS (ESI) calcd for C₂₂H₂₅O₅NNa [(M + Na)⁺] 406.1625, found 406.1622.


Methylated product 21. To a solution of oxazolidinone 20 (821.2 mg, 2.142 mmol) in THF (22 mL) at -78 °C was added NaHMDS (1.0 M solution in THF, 3.00 mL, 3.00 mmol), and the resultant solution was stirred at -78 °C for 1 h. To this mixture was added MeI (0.725 mL, 4.77 mmol), and the resultant solution was stirred at -78 °C for 3 h and then at -40 °C for 1 h. The reaction was quenched with saturated aqueous NH₄Cl solution and extracted with Et₂O. The organic layer was washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 20 to 30% EtOAc/hexanes) to give methylated product 21 (805.6 mg, 95%, dr >20:1 by 600 MHz ¹H NMR analysis) as a yellow oil: $[\alpha]_D^{24}$ -57.7 (*c* 1.00, CHCl₃); IR (film) 3028, 2930, 2857, 1777, 1696, 1513, 1385, 1247, 1207, 1091, 1032, 702 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.32—7.28 (m, 2H), 7.25—7.20 (m, 3H), 7.15—7.13 (m, 2H), 6.82—6.79 (m, 2H), 4.38 (m, 1H), 4.33 (s, 2H), 3.97 (dd, *J* = 9.6, 3.1 Hz, 1H), 3.90 (m, 1H), 3.75 (m, 1H), 3.72 (s, 3H), 3.50 (m, 2H), 3.18 (dd, *J* = 13.4, 3.1 Hz, 1H), 2.68 (dd, *J* = 13.4, 9.6 Hz, 1H), 2.12 (dddd, *J* = 14.0, 8.2, 8.2, 5.5 Hz, 1H), 1.71 (dddd, *J* = 14.0, 5.5, 5.5, 4.8 Hz, 1H) 1.21 (d, *J* = 6.8

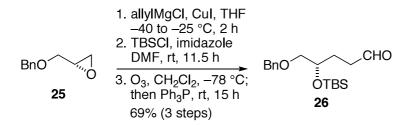
Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 177.1, 159.1, 153.2, 135.4, 130.6, 129.4 (× 2), 129.2 (× 2), 128.8 (× 2), 127.2, 113.6 (× 2), 72.4, 68.1, 65.8, 55.24, 55.22, 38.0, 35.1, 33.6, 18.0; HRMS (ESI) calcd for C₂₃H₂₇O₅NNa [(M + Na)⁺] 420.1781, found 420.1779.



Carboxylic acid 22. To a solution of methylated product 21 (785.1 mg, 1.98 mmol) in THF/H₂O (4:1, v/v, 30 mL) at 0 °C were added 30% aqueous H₂O₂ solution (0.951 mL, 8.39 mmol) and a solution of LiOH \cdot H₂O (140.5 mg, 3.348 mmol) in H₂O (4.2 mL), and the resultant solution was allowed to warm to room temperature and stirred for 20.5 h. The reaction mixture was cooled to 0 °C, quenched with saturated aqueous Na₂SO₃ solution, and stirred at 0 °C for 10 min. The reaction mixture was diluted with EtOAc and acidified with 0.1 M aqueous HCl solution (pH 3). The whole mixture was extracted with EtOAc, and the organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 15 to 30% EtOAc/hexanes) to give carboxylic acid **22** (462.5 mg, 98%) as a colorless oil: $[\alpha]_D^{25}$ -16.9 (c 1.00, CHCl₃); IR (film) 2935, 2859, 1811, 1742, 1612, 1513, 1458, 1362, 1302, 1248, 1173, 1096, 1033, 819 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.23–7.20 (m, 2H), 6.86–6.83 (m, 2H), 4.40 (d, J = 12.9Hz, 1H), 4.37 (d, J = 12.9 Hz, 1H), 3.77 (s, 3H), 3.47 (t, J = 6.2 Hz, 2H), 2.70 (ddg, J =6.8, 6.8, 6.8 Hz, 1H), 2.02 (dddd, J = 13.7, 6.8, 6.2, 6.2 Hz, 1H), 1.69 (dddd, J = 13.7, 6.8, 6.2, 6.2 Hz, 1H), 1.18 (d, J = 6.8 Hz, 3H) (one proton missing presumably due to H/D exchange); ¹³C NMR (150 MHz, CDCl₃) δ 172.1, 159.2, 130.3, 129.3 (× 2), 113.8


(× 2), 72.7, 67.0, 55.3, 37.5, 32.8, 16.3; HRMS (ESI) calcd for $C_{13}H_{18}O_4Na$ [(M + Na)⁺] 261.1097, found 261.1097.

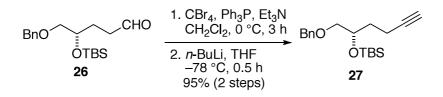
Weinreb amide 23. To a solution of carboxylic acid 22 (459.0 mg, 1.926 mmol) in CH₂Cl₂ (15 mL) at -15 °C were added N-methylpiperidine (0.725 mL, 5.94 mmol) and isobutyl chloroformate (0.385 mL, 2.93 mmol), and the resultant mixture was stirred at -15 °C for 80 min. To the mixture was added MeNHOMe · HCl (339.2 mg, 3.48 mmol), and the resultant mixture was stirred at -15 °C for 21 h. The reaction mixture was quenched with saturated aqueous NaHCO₃ solution. The mixture was extracted with EtOAc, and the organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 20 to 50% EtOAc/hexanes) to give Weinreb amide 23 (397.4 mg, 73%) as a colorless oil: $[\alpha]_D^{25}$ -19.4 (c 1.00, CHCl₃); IR (film) 2964, 2936, 2861, 1659, 1613, 1514, 1463, 1248, 1174, 1093, 1034, 994, 820 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.22–7.20 (m, 2H), 6.85–6.82 (m, 2H), 4.39 (d, J = 11.7 Hz, 1H), 4.36 (d, J = 11.7 Hz, 1H), 3.77 (s, 3H), 3.63 (s, 3H), 3.46 (ddd, J = 9.6, 5.8, 5.8 Hz, 1H), 3.39 (ddd, J = 9.6, 7.6, 5.2 Hz, 1H), 3.14 (s, 3H), 3.10 (m, 1H), 1.99 (dddd, J = 13.7, 8.6, 5.8, 5.2 Hz, 1H), 1.63 (dddd, J = 13.7, 7.6, 5.9, 5.8 Hz, 1H), 1.09 (d, J = 6.9 Hz, 3H); ¹³C NMR (150 MHz, C_6D_6) δ 159.6, 131.3, 129.3 (× 2), 128.2, 114.0 (× 2), 72.6, 68.2, 60.9, 54.7, 34.1, 32.4, 32.2, 17.9; HRMS (ESI) calcd for $C_{15}H_{23}O_4NNa \left[(M + Na)^+ \right]$ 304.1519, found 304.1523.


Methyl ketone 24. To a solution of Weinreb amide **23** (35.4 mg, 0.126 mmol) in THF (1.3 mL) at 0 °C was added MeMgBr (3.0 M solution in Et₂O, 0.130 mL, 0.390 mmol), and the resultant solution was stirred at 0 °C for 30 min. The reaction was quenched with saturated aqueous NH₄Cl solution. The mixture was extracted with Et₂O, and the organic layer was washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 10% EtOAc/hexanes) to give methyl ketone **24** (28.5 mg, 96%) as a colorless oil: $[\alpha]_D^{25}$ -8.0 (*c* 1.00, CHCl₃); IR (film) 2964, 2934, 2859, 1711, 1613, 1514, 1457, 1361, 1302, 1248, 1173, 1095, 1034, 820 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.22—7.20 (m, 2H), 6.86—6.84 (m, 2H), 4.37 (s, 2H), 3.78 (s, 3H), 3.42 (m, 2H), 2.69 (ddq, *J* = 6.8, 6.8, 6.8 Hz, 1H), 2.11 (s, 3H), 1.98 (dddd, *J* = 14.1, 7.2, 6.8, 5.8 Hz, 1H), 1.58 (dddd, *J* = 14.1, 6.8, 6.2, 6.2 Hz, 1H), 1.06 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 212.5, 159.1, 130.4, 129.3 (× 2), 113.7 (× 2), 72.6, 67.6, 55.3, 44.0, 32.7, 28.3, 16.3; HRMS (ESI) calcd for C₁₄H₂₀O₃Na [(M + Na)⁺] 259.1305, found 259.1304.

Vinylstannane 6. To a solution of methyl ketone **24** (688 mg, 2.91 mmol) and PhNTf₂ (1.37 g, 3.49 mmol) in THF (29 mL) at -78 °C was added KHMDS (7.00 mL, 0.5 M

solution in toluene, 3.50 mmol), and the resultant solution was stirred at -78 °C for 15 min. The reaction mixture was quenched with saturated aqueous NH₄Cl solution. The mixture was extracted with EtOAc, and the organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 2 to 20% EtOAc/hexanes) to give an enol triflate, which was used immediately in the next reaction.

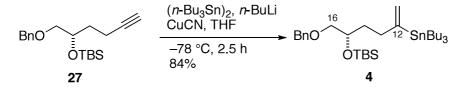
To a suspension of LiCl (1.23 g, 29.1 mmol) and Pd(PPh₃)₄ (336 mg, 0.291 mmol) in THF (15 mL) were added a solution of the above enol triflate in THF (14.2 mL) and hexamethylditin (1.20 mL, 5.82 mmol), and the resultant solution was stirred at 70 °C for 1.5 h. The reaction mixture was cooled to room temperature and diluted with Et₂O. Insoluble materials were filtered off, and the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 0 to 50 % benzene/hexanes, then 20% EtOAc/hexanes) to give vinylstannane **6** (847 mg, 71% for the two steps) as a colorless oil: $[\alpha]_D^{25}$ –12.1 (*c* 1.00, C₆H₆); IR (film) 3033, 2954, 2931, 2856, 1613, 1513, 1456, 1362, 1302, 1248, 1173, 1097, 1038, 917, 820, 768, 710, 526, 511 cm⁻¹; ¹H NMR (600 MHz, C₆D₆) δ 7.25—7.23 (m, 2H), 6.81—6.80 (m, 2H), 5.72 (dd, *J* = 1.3, 1.3 Hz, 1H), 5.19 (d, *J* = 1.3 Hz, 1H), 4.34 (s, 2H), 3.38 (m, 2H), 3.29 (s, 3H), 2.63 (m, 1H), 1.69 (m, 2H), 1.02 (d, *J* = 6.8 Hz, 3H), 0.16 (s, 9H); ¹³C NMR (150 MHz, C₆D₆) δ 161.3, 159.7, 131.4, 129.3 (× 2), 124.0, 114.0 (× 2), 72.8, 68.5, 54.7, 42.7, 37.5, 22.1, -8.3 (× 3); HRMS (ESI) calcd for C₁₇H₂₈O₂SnNa [(M + Na)⁺] 407.1003, found 407.1009.

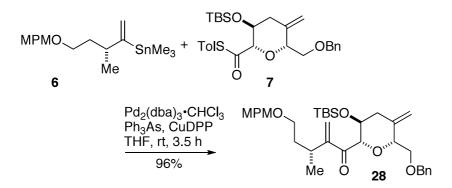


Aldehyde 26. To a suspension of copper(I) iodide (250 mg, 1.31 mmol) in THF (30 mL) at -40 °C was added allylmagnesium chloride (2.0 M solution in THF, 9.8 mL, 19.6 mmol), and the resultant mixture was stirred at -40 °C for 30 min. To the mixture was added a solution of benzyl (*S*)-glycidyl ether (25) (2.00 mL, 13.1 mmol) in THF (35 mL), and the resultant mixture was stirred at -40 °C for 15 min and then at -25 °C for 1.75 h. The reaction mixture was quenched with saturated aqueous NH₄Cl solution. The mixture was extracted with EtOAc, and the organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 20% EtOAc/hexanes) to give an olefin (2.69 g) as a colorless oil.

To a solution of the above olefin (2.69 g) in DMF (65 mL) were added imidazole (1.78 g 26.2 mmol) and TBSCl (2.95 g, 19.6 mmol), and the resultant solution was stirred at room temperature for 11.5 h. The reaction mixture was quenched with saturated aqueous NH₄Cl solution. The mixture was extracted with Et₂O, and the organic layer was washed with H₂O and brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 0 to 15% EtOAc/hexanes) to give a TBS ether (4.19 g) as a colorless oil.

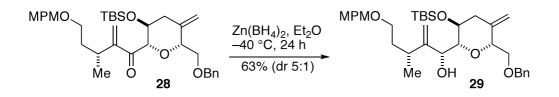
Ozone was bubbled through a solution of the above TBS ether (4.19 g) in CH_2Cl_2 (65 mL) at -78 °C until a pale blue color was persisted. Oxygen was bubbled


through the solution to remove excess ozone. To the solution was then added triphenylphosphine (13.78 g, 52.5 mmol), and the reaction mixture was gradually allowed to warm to room temperature and stirred for 15 h. The mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 0 to 15% EtOAc/hexanes) to give aldehyde **26** (2.91 g, 69% for the three steps) as a colorless oil: $[\alpha]_D^{20}$ –16.1 (*c* 1.01, CHCl₃); IR (film) 2953, 2928, 2893, 2856, 2717, 1726, 1472, 1362, 1254, 1099, 1041, 836, 776, 698 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 9.75 (dd, *J* = 1.7, 1.7 Hz, 1H), 7.34—7.30 (m, 4H), 7.27 (m, 1H), 4.51 (d, *J* = 12.0 Hz, 1H), 4.48 (d, *J* = 12.0 Hz, 1H), 3.88 (m, 1H), 3.40 (dd, *J* = 9.6, 5.5 Hz, 1H), 3.33 (dd, *J* = 9.6, 6.2 Hz, 1H), 2.49—2.46 (m, 2H), 1.94 (dddd, *J* = 14.5, 8.3, 7.2, 4.5 Hz, 1H), 1.78 (dddd, *J* = 14.5, 6.9, 6.9 Hz, 1H), 0.86 (s, 9H), 0.033 (s, 3H), 0.028 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 202.5, 138.1, 128.3 (× 2), 127.59 (× 2), 127.57, 73.9, 73.3, 70.1, 39.4, 26.9, 25.8 (× 3), 18.0, -4.5, -4.9; HRMS (ESI) calcd for C₁₈H₃₀O₃SiNa [(M + Na)⁺] 345.1856, found 345.1858.

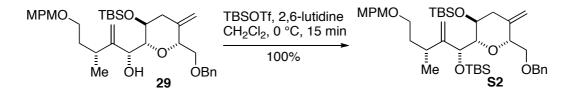

Alkyne 27. To a solution of CBr₄ (1.29 g, 3.89 mmol) in CH₂Cl₂ (10 mL) at 0 °C was added Ph₃P (2.02 g, 7.70 mmol), and the resultant solution was stirred at 0 °C for 30 min. To the solution were added Et₃N (1.45 mL, 10.4 mmol) and a solution of aldehyde 26 (0.540 g, 1.67 mmol) in CH₂Cl₂ (7 mL), and the resultant solution was stirred at 0 °C for 3 h. The reaction mixture was quenched with saturated aqueous NH₄Cl solution. The mixture was extracted with EtOAc, and the organic layer was washed with saturated aqueous NaHCO₃ solution and brine, dried over Na₂SO₄, filtered, and concentrated

under reduced pressure. The residue was purified by flash column chromatography (silica gel, 0 to 5% EtOAc/hexanes) to give a dibromoolefin (0.77 g), which was contaminated with some impurities and used for the next reaction without further purification.

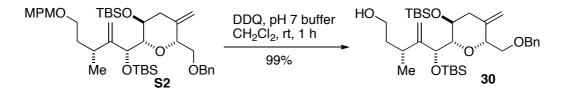
To a solution of the above dibromoolefin (0.77 g) in THF (16 mL) at -78 °C was added *n*-BuLi (2.69 M solution in hexanes, 1.50 mL, 4.04 mmol), and the resultant solution was stirred at -78 °C for 30 min. The reaction mixture was quenched with saturated aqueous NH₄Cl solution. The mixture was extracted with EtOAc, and the organic layer was washed with H₂O and brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 0 to 5% EtOAc/hexanes) to give alkyne 27 (0.51 g, 95% for the two steps) as a yellow oil: $[\alpha]_D^{20}$ -20.1 (c 1.37, CHCl₃); IR (film) 3310, 2954, 2928, 2894, 2856, 1471, 1362, 1254, 1127, 1093, 1029, 999, 836, 777, 735, 697, 633 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.34—7.31 (m, 4H), 7.26 (m, 1H), 4.52 (d, *J* = 12.4 Hz, 1H), 4.50 (d, J = 12.4 Hz, 1H), 3.95 (dddd, J = 8.2, 5.5, 5.5, 4.1 Hz, 1H), 3.41 (dd, J = 9.6, 5.5 Hz, 1H), 3.35 (dd, J = 9.6, 5.5 Hz, 1H), 2.27–2.23 (m, 2H), 1.92 (dd, J = 2.8, 2.8 Hz, 1H), 1.79 (dddd, J = 13.7, 7.6, 7.6, 4.1 Hz, 1H), 1.66 (dddd, J = 13.7, 8.2, 7.3, 6.2) Hz, 1H), 0.89 (s, 9H) 0.07 (s, 3H), 0.04 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 138.3, 128.3 (× 2), 127.6 (× 2), 127.5, 84.4, 74.4, 73.3, 69.9, 68.4, 33.4, 25.9 (× 3), 18.1, 14.4, -4.4, -4.9; HRMS (ESI) calcd for C₁₉H₃₀O₂SiNa [(M + Na)⁺] 341.1907, found 341.1912.



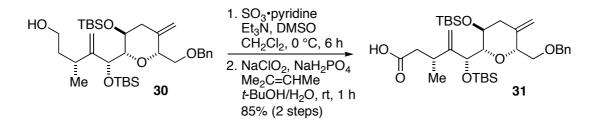
Vinylstannane 4. To a solution of bis(tri-n-butyltin) (3.00 mL, 6.00 mmol) in THF (7.0 mL) at -40 °C was added *n*-BuLi (2.69 M solution in hexanes, 2.20 mL, 5.92 mmol), and the resultant solution was stirred at -40 °C for 1 h. To the solution was added copper(I) cyanide (265.7 mg, 2.97 mmol), and the reaction mixture was cooled to -78 °C. To the resultant suspension was added a solution of alkyne 27 (308.2 mg 0.9676 mmol) in THF (2.0 mL + 1.0 mL rinse), and the resultant mixture was stirred at -78 °C for 2.5 h. The reaction mixture was quenched with H₂O. The mixture was extracted with Et₂O, and the organic layer was washed with saturated aqueous KF solution and brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 0 to 5% benzene/hexanes) to give vinylstannane 4 (494.5 mg, 84%) as a colorless oil: $\left[\alpha\right]_{D}^{24}$ -1.7 (c 1.00, CH₂Cl₂); IR (film) 2955, 2927, 2854, 1457, 1253, 1115, 1003, 911, 835, 775, 696 cm⁻¹; ¹H NMR (600 MHz, C₆D₆) δ 7.28—7.27 (m, 2H), 7.20—7.17 (m, 2H), 7.09 (m, 1H), 5.89 (br s, 1H), 5.31 (br s, 1H) 4.35 (br d, J = 12.4 Hz, 1H), 4.32 (br d, J = 12.4 Hz, 1H), 3.92 (m, 1H), 3.40 (m, 1H), 3.34 (m, 1H), 2.61 (m, 1H), 2.44 (m, 1H), 1.85–1.71 (m, 2H), 1.68—1.55 (m, 6H), 1.42—1.35 (m, 6H), 1.05—1.01 (m, 15H), 0.95—0.92 (m, 9H), 0.14—0.12 (m, 6H); ¹³C NMR (150 MHz, C₆D₆) δ 155.2, 139.0, 128.5 (× 2), 127.8 (× 2), 127.7, 125.2, 75.2, 73.4, 71.8, 37.5, 35.4, 29.6 (× 3), 27.8 (× 3), 26.2 (× 3), 18.4, 13.9 (× 3), 9.9 (× 3), -4.0, -4.5; HRMS (ESI) calcd for $C_{31}H_{58}O_2SiSnNa [(M + Na)^+]$ 633.3120, found 633.3113.


Enone 28. To a solution of thioester 7 (26.0 mg, 0.0521 mmol), copper(I) diphenylphosphinate (29.3 mg, 0.104 mmol), and Pd₂(dba)₃•CHCl₃ (2.70 mg, 0.00261 mmol) in THF (0.25 mL) were added a solution of Ph₃As (6.40 mg, 0.0209 mmol) in THF (0.1 mL + 0.05 mL rinse) and a solution of vinylstannane 6 (21.7 mg, 0.0566) mmol) in THF (0.1 mL + 0.05 mL rinse). The resultant solution was stirred at room temperature for 3.5 h. The reaction mixture was diluted with Et₂O. Insoluble materials were filtered off, and the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 0 to 10 % EtOAc/hexanes) to give enone **28** (29.8 mg, 96%) as a colorless oil: $[\alpha]_D^{30} + 8.7$ (*c* 1.00, CHCl₃); IR (film) 2954, 2928, 2855, 1645, 1613, 1514, 1249, 1098, 837, 778 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) § 7.31–7.26 (m, 3H), 7.26–7.21 (m, 4H), 6.85–6.82 (m, 2H), 6.23 (s, 1H), 5.85 (s, 1H), 4.90 (d, J = 0.7 Hz, 1H), 4.84 (d, J = 0.7 Hz, 1H), 4.56 (d, J = 12.0 Hz, 1H), 4.50 (d, J = 12.0 Hz, 1H), 4.37 (d, J = 11.7 Hz, 1H), 4.36 (d, J = 8.6 Hz, 1H), 4.33 (d, J = 11.7 Hz, 1H), 4.06 (br dd, J = 6.2, 5.2 Hz, 1H), 4.02 (ddd, J = 9.6, 8.6, 5.2 Hz, 1H)1H), 3.77 (dd, J = 10.3, 5.2 Hz, 1H), 3.77 (s, 3H), 3.62 (dd, J = 10.3, 6.2 Hz, 1H), 3.41(ddd, *J* = 13.7, 7.2, 6.9 Hz, 1H), 3.40 (ddd, *J* = 13.7, 7.2, 6.8 Hz, 1H), 2.92 (ddq, *J* = 6.8, 6.8, 6.8 Hz, 1H), 2.66 (dd, J = 13.1, 5.2 Hz, 1H), 2.27 (m, 1H), 1.79 (dddd, J = 13.7, 6.9, 6.8, 6.8 Hz, 1H), 1.61 (dddd, J = 13.7, 7.2, 7.2, 6.8 Hz, 1H), 1.04 (d, J = 6.8 Hz, 3H),

0.79 (s, 9H), 0.04 (s, 3H), -0.07 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 196.9, 159.0, 153.1, 141.3, 138.0, 130.7, 129.3 (× 2), 128.34, 128.31, 127.7 (× 2), 127.6, 125.4, 113.7 (× 2), 110.2, 80.6, 77.5, 73.5, 72.4, 70.2, 69.1, 68.3, 55.2, 42.5, 36.0, 30.3, 25.7 (× 3), 20.1, 17.8, -4.5, -5.0; HRMS (ESI) calcd for C₃₅H₅₀O₆SiNa [(M + Na)⁺] 617.3269, found 617.3290.

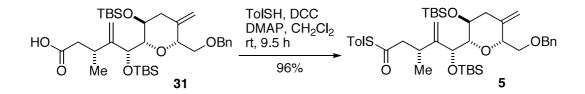

Allylic alcohol 29. To a solution of enone 28 (12.1 mg, 0.0203 mmol) in Et₂O (0.4 mL) at -40 °C was added Zn(BH₄)₂ (0.132 M solution in Et₂O, 0.775 mL, 0.102 mmol), and the resultant solution was stirred at -40 °C for 12 h. To this mixture was added Zn(BH₄)₂ (0.132 M solution in Et₂O, 0.775 mL, 0.102 mmol), and the resultant solution was stirred at -40 °C for 12 h. The reaction mixture was guenched with saturated aqueous NH₄Cl solution. The mixture was extracted with Et₂O, and the organic layer was washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by column chromatography (silica gel, 0 to 20% EtOAc/hexanes) gave allylic alcohol **29** (7.6 mg, 63%, dr = 5 : 1 by 600 MHz ¹H NMR analysis) as a colorless oil: $[\alpha]_D^{30} - 2.19$ (c 1.00, CHCl₃); IR (film) 3441, 2953, 2927, 2856, 1513, 1249, 1094, 836 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.32—7.29 (m, 4H), 7.27-7.21 (m, 3H), 6.85-6.82 (m, 2H), 5.12 (s, 1H), 4.99 (s, 1H), 4.85 (s, 1H), 4.83 (s, 1H), 4.54 (d, J = 12.4 Hz, 1H), 4.51 (d, J = 12.4 Hz, 1H), 4.42 (d, J = 11.6 Hz, 1H), 4.35 (d, J = 11.6 Hz, 1H), 4.24 (d, J = 5.9 Hz, 1H), 3.98 (dd, J = 5.8, 4.8 Hz, 1H), 3.78-3.74 (m, 4H), 3.68 (dd, J = 10.0, 4.8 Hz, 1H), 3.58 (dd, J = 10.1, 5.8 Hz, 1H), 3.49-3.46 (m, 2H), 3.38 (dd, J = 7.9, 5.9 Hz, 1H), 2.59 (dd, J = 13.4, 4.8 Hz, 1H), 2.47

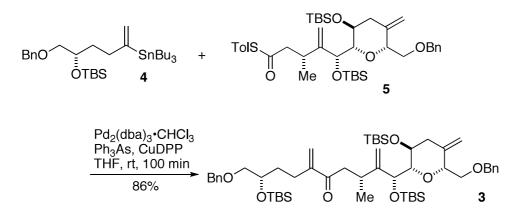
(ddq, J = 6.9, 6.9, 6.9 Hz, 1H), 2.25 (dd, J = 13.4, 8.9 Hz, 1H), 1.80 (dddd, J = 13.7, 7.6, 7.6, 6.9 Hz, 1H), 1.66 (dddd, J = 13.7, 6.9, 6.9, 6.9 Hz, 1H), 1.02 (d, J = 6.9 Hz, 3H), 0.88 (s, 9H), 0.10 (s, 3H), 0.09 (s, 3H) (one proton missing presumably due to H/D exchange); ¹³C NMR (150 MHz, CDCl₃) δ 159.1, 154.1, 142.1, 138.2, 130.6, 129.3 (× 2), 128.3 (× 2), 127.6 (× 2), 127.5, 113.7 (× 2), 112.0, 109.7, 83.4, 76.90, 76.89, 73.4, 72.3, 71.6, 70.5, 68.6, 55.2, 42.2, 37.3, 31.6, 25.8 (× 3), 21.7, 17.9, -3.5, -4.6; HRMS (ESI) calcd for C₃₅H₅₂O₆SiNa [(M + Na)⁺] 619.3425, found 619.3410.


Bis-TBS ether S2. To a solution of allylic alcohol **29** (45.9 mg, 0.0769 mmol) in CH₂Cl₂ (0.8 mL) at 0 °C were added 2,6-lutidine (0.0500 mL, 0.429 mmol) and TBSOTF (0.0500 mL, 0.218 mmol), and the resultant solution was stirred at 0 °C for 15 min. The reaction mixture was quenched with saturated aqueous NH₄Cl solution. The mixture was extracted with EtOAc, and the organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 0 to 5% Et₂O/hexanes) gave bis-TBS ether **S2** (54.8 mg, 100%) as a colorless oil: $[\alpha]_D^{30}$ –7.7 (*c* 0.69, CHCl₃); IR (film) 2954, 2927, 2885, 2855, 1514, 1471, 1457, 1361, 1249, 1093, 835, 775 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.35—7.30 (m, 4H), 7.27—7.22 (m, 3H), 6.86—6.83 (m, 2H), 5.14 (s, 1H), 4.93 (s, 1H), 4.77 (s, 2H), 4.63 (d, *J* = 12.4 Hz, 1H), 4.56 (d, *J* = 12.4 Hz, 1H), 4.41 (d, *J* = 11.3 Hz, 1H), 4.35 (d, *J* = 11.3 Hz, 1H), 4.34 (s, 1H), 4.18 (m, 1H), 4.01 (dd, *J* = 9.3, 4.4 Hz, 1H), 3.77 (s, 3H), 3.69 (dd, *J* = 10.6, 3.8 Hz, 1H), 3.57 (dd, *J* = 10.6, 7.2 Hz, 1H), 3.43 (m, 3H), 2.53 (dd, *J* = 13.4, 2.4 Hz, 1H), 2.27 (m, 1H), 2.17

(dd, J = 13.4, 5.5 Hz, 1H), 1.87 (dddd, J = 13.4, 6.8, 6.8, 5.8 Hz, 1H), 1.59 (dddd, J = 13.4, 8.9, 7.6, 5.8 Hz, 1H), 1.01 (d, J = 6.8 Hz, 3H), 0.88 (s, 9H), 0.83 (s, 9H), 0.05 (s, 3H), 0.03 (s, 3H), 0.01 (s, 3H), -0.02 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 158.0, 154.6, 143.5, 138.5, 130.9, 129.1 (× 2), 128.3 (× 2), 127.6 (× 2), 127.5, 113.7, 109.9, 108.6, 84.3, 76.5, 75.9, 73.5, 72.42, 72.37, 68.9, 66.7, 55.2, 39.7, 36.4, 32.0, 29.7, 25.9 (× 3), 25.9 (× 3), 21.5, 18.3, 17.9, -3.6, -4.4, -4.7, -4.8; HRMS (ESI) calcd for C₄₁H₆₆O₆Si₂Na [(M + Na)⁺] 733.4290, found 733.4283.

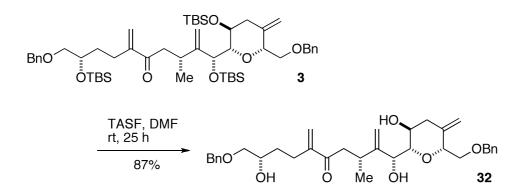
Alcohol 30. To a solution of bis-TBS ether S2 (50.1 mg, 0.0705 mmol) in CH₂Cl₂/pH 7 buffer (10:1, v/v, 0.77 mL) at 0 °C was added DDQ (17.7 mg, 0.0780 mmol), and the resultant solution was allowed to warm to room temperature and stirred for 1 h. The reaction mixture was cooled to 0 °C and quenched with saturated aqueous NaHCO₃ solution. The mixture was extracted with EtOAc, and the organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 0 to 10% EtOAc/hexanes) gave alcohol **30** (41.1 mg, 99%) as a colorless oil: $[\alpha]_D^{30}$ –15.3 (*c* 1.00, CHCl₃); IR (film) 3446, 3066, 3031, 2955, 2928, 2885, 2856, 1653, 1472, 1462, 1362, 1254, 1088, 836, 775, 697 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.35—7.31 (m, 4H), 7.27—7.24 (m, 1H), 5.14 (s, 1H), 4.95 (s, 1H), 4.79 (s, 1H), 4.78 (s, 1H), 4.62 (d, *J* = 12.4 Hz, 1H), 4.56 (d, *J* = 12.4 Hz, 1H), 4.41 (s, 1H), 4.09 (br dd, *J* = 8.9, 4.5 Hz, 1H), 3.85 (ddd, *J* = 6.9, 6.2, 3.4 Hz, 1H), 3.71 (dd, *J* = 10.7, 4.5 Hz, 1H), 3.63 (ddd, *J* = 10.7, 7.2, 5.9 Hz, 1H), 3.59 (dd, *J* = 10.7, 8.9 Hz, 1H), 3.54 (ddd, *J* = 10.7, 5.8, 5.8 Hz, 1H), 3.42 (dd, *J* =


6.2, 2.0 Hz, 1H), 2.55 (dd, J = 13.4, 3.4 Hz, 1H), 2.47 (ddq, J = 6.9, 6.9, 6.9 Hz, 1H), 2.18 (dd, J = 13.4, 6.9 Hz, 1H), 1.68 (dddd, J = 13.7, 6.9, 5.9, 5.8 Hz, 1H), 1.61 (dddd, J = 13.7, 7.2, 6.9, 5.8 Hz, 1H), 1.00 (d, J = 6.9 Hz, 3H), 0.90 (s, 9H), 0.85 (s, 9H), 0.08 (s, 3H), 0.053 (s, 3H), 0.051 (s, 3H), 0.01 (s, 3H) (one proton missing presumably due to H/D exchange); ¹³C NMR (150 MHz, CDCl₃) δ 154.0, 142.9, 138.3, 128.3 (× 2), 127.7 (× 2), 127.5, 111.2, 109.0, 85.1, 76.7, 76.3, 73.5, 71.7, 67.8, 60.8, 40.7, 40.0, 30.7, 26.0 (× 3), 25.8 (× 3), 22.2, 18.4, 17.9, -3.5, -4.4, -4.5, -4.7; HRMS (ESI) calcd for C₃₃H₅₈O₅Si₂Na [(M + Na)⁺] 613.3715, found 613.3738.

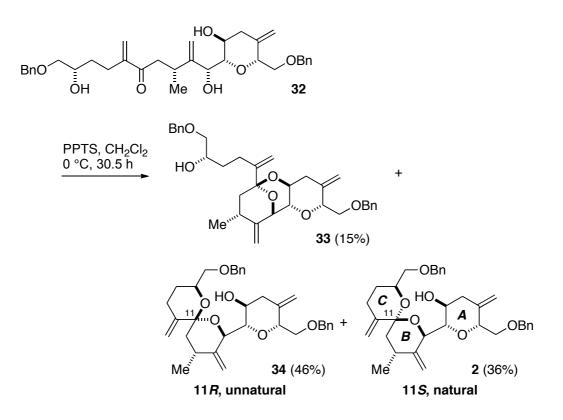

Carboxylic acid 31. To a solution of alcohol **30** (29.9 mg, 0.0506 mmol) in CH₂Cl₂/DMSO (1/1, v/v, 0.6 mL) was added Et₃N (0.0400 mL, 0.287 mmol). To the reaction mixture cooled to 0 °C was added SO₃ · pyridine (32.4 mg, 0.204 mmol), and the resultant solution was stirred at 0 °C for 2 h. To the reaction mixture were added Et₃N (0.0700 mL, 0.502 mmol) and SO₃ · pyridine (56.5 mg, 0.355 mmol) in two portions within 1 h, and the resultant solution was stirred at 0 °C for 3 h. The reaction mixture was diluted with Et₂O, washed successively with 1 M aqueous HCl solution, saturated aqueous NaHCO₃ solution, and brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 0 to 10% EtOAc/hexanes) gave aldehyde (26.9 mg, 90%) as a colorless oil, which was used immediately in the next reaction.

To a solution of the above aldehyde (26.9 mg, 0.0457 mmol), 2-methyl-2-butene

(0.0485 mL, 0.458 mmol), and NaH₂PO₄ (6.10 mg, 0.0508 mmol) in *t*-BuOH/H₂O (5:1, v/v, 0.48 mL) at 0 °C was added NaClO₂ (79% purity, 12.4 mg, 0.137 mmol), and the resultant solution was stirred at room temperature for 1 h. The reaction mixture was poured into CHCl₃/H₂O. The aqueous layer was acidified (pH 3) with 1 M aqueous HCl solution, and the organic layer was separated. The aqueous layer was extracted with CHCl₃. The combined organic layer was washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. Purification of the residue by flash column chromatography (silica gel, 0 to 20% EtOAc/hexanes) gave carboxylic acid **31** (26.0 mg, 94%) as a colorless oil: $[\alpha]_D^{26}$ –11.3 (c 1.50, CHCl₃); IR (film) 3503, 3087, 3033, 2955, 2929, 2895, 2857, 1710, 1652, 1471, 1463, 1254, 1094, 836, 775 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.34—7.30 (m, 4H), 7.27—7.24 (m, 1H), 5.14 (s, 1H), 4.95 (s, 1H), 4.78 (s, 1H), 4.76 (s, 1H), 4.64 (d, J = 12.0 Hz, 1H), 4.55 (d, J = 12.0 Hz, 1H), 4.42 (s, 1H), 4.14 (dd, J = 6.8, 3.8 Hz, 1H), 3.85 (ddd, J = 6.5, 5.8, 3.4 Hz, 1H), 3.72 (dd, J =10.6, 3.8 Hz, 1H), 3.58 (dd, J = 10.6, 6.8 Hz, 1H), 3.42 (dd, J = 5.8, 2.0 Hz, 1H), 2.85 (m, 1H), 2.64 (dd, J = 15.1, 3.4 Hz, 1H), 2.53 (dd, J = 13.4, 3.4 Hz, 1H), 2.25 (dd, J = 13.4, 3.4 Hz, 1H), 3.4 15.1, 11.0 Hz, 1H), 2.18 (dd, J = 13.4, 6.5 Hz, 1H), 1.09 (d, J = 6.8 Hz, 3H), 0.88 (s, 9H), 0.83 (s, 9H), 0.06 (s, 3H), 0.03 (s, 3H), 0.02 (s, 3H), -0.01 (s, 3H) (one proton missing presumably due to H/D exchange); 13 C NMR (150 MHz, CDCl₃) δ 177.5, 153.0, 142.9, 138.3, 128.3 (× 2), 127.7 (× 2), 127.5, 111.4, 109.0, 84.9, 75.9, 73.6, 73.4, 72.0, 67.3, 41.9, 40.4, 31.4, 25.9 (× 3), 25.8 (× 3), 20.6, 18.3, 17.9, -3.5, -4.4, -4.7, -4.8; HRMS (ESI) calcd for $C_{33}H_{56}O_6Si_2Na [(M + Na)^+] 627.3508$, found 627.3517.



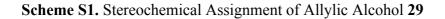
Thioester 5. To a solution of carboxylic acid **31** (22.0 mg, 0.0364 mmol) in CH₂Cl₂ (1 mL) at 0 °C were added p-toluenethiol (5.00 mg, 0.0403 mmol), DMAP (0.460 mg, 0.00377 mmol), and DCC (8.30 mg, 0.0402 mmol), and the resultant solution was stirred at room temperature for 9.5 h. The reaction mixture was diluted with Et₂O. Insoluble materials were filtered off, and the filtrate was washed with H₂O and brine. The organic layer was dried over MgSO₄, filtered and concentrated under reduce pressure. Purification of the residue by flash column chromatography (silica gel, 0 to 2.5% EtOAc/hexanes) gave thioester 5 (24.9 mg, 96%) as a colorless oil: $\left[\alpha\right]_{D}^{25}$ -8.5 (c 1.12, CHCl₃); IR (film) 3077, 3030, 2955, 2928, 2896, 2856, 2033, 1709, 1471, 1462, 1255, 1094, 836, 806, 775 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.35–7.29 (m, 4H), 7.25-7.22 (m, 3H), 7.19-7.18 (m, 2H) 5.15 (s, 1H), 4.95 (s, 1H), 4.79 (s, 2H), 4.66 (d, J = 12.0 Hz, 1H), 4.55 (d, J = 12.0 Hz, 1H), 4.41 (s, 1H), 4.15 (dd, J = 6.9, 4.1 Hz, 1H), 3.88 (m, 1H), 3.72 (dd, J = 10.7, 4.1 Hz, 1H), 3.60 (dd, J = 10.7, 6.9 Hz, 1H), 3.42 (dd, J = 10.7, 6.9 Hz, 1Hz), 3.42 (dd, J = 10.7, 6.9 Hz), 3.42 (dd, J = 10.J = 5.9, 1.7 Hz, 1H), 2.95–2.90 (m, 2H), 2.56 (dd, J = 15.4, 11.6 Hz, 1H), 2.54 (dd, J = 15. 13.7, 4.4 Hz, 1H), 2.35 (s, 3H), 2.19 (dd, J = 13.7, 6.5 Hz, 1H), 1.10 (d, J = 6.8 Hz, 3H), 0.90 (s, 9H), 0.86 (s, 9H), 0.07 (s, 3H), 0.05 (s, 3H), 0.04 (s, 3H), 0.01 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 196.8, 153.3, 143.1, 139.4, 138.5, 134.4 (× 2), 129.9 (× 2), 128.3 (× 2), 127.7 (× 2), 127.4, 124.5, 111.1, 108.9, 84.9, 76.8, 75.7, 73.6, 72.1, 67.2, 51.0, 40.3, 32.1, 25.93 (× 3), 25.86 (× 3), 21.3, 20.3, 18.3, 17.9, -3.5, -4.4, -4.7, -4.8; HRMS (ESI) calcd for $C_{40}H_{62}O_5Si_2SNa [(M + Na)^+] 733.3749$, found 733.3755.

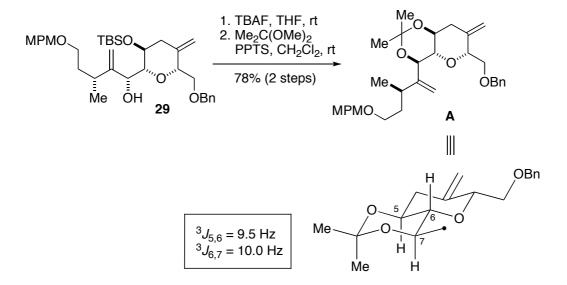

Enone 3. To a solution of thioester 5 (24.3 mg, 0.0342 mmol), copper(I) diphenylphosphinate (19.3 mg, 0.0688 mmol), and Pd₂(dba)₃•CHCl₃(1.80 mg, 0.00174 mmol) in THF (0.2 mL) were added a solution of Ph₃As (4.20 mg, 0.0137 mmol) in THF (0.05 mL + 0.05 mL rinse) and a solution of vinylstannane 4 (23.0 mg, 0.0377mmol) in THF (0.05 mL + 0.05 mL rinse), and the resultant solution was stirred at room temperature for 100 min. The reaction mixture was diluted with Et₂O. Insoluble materials were filtered off, and the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 0 to 2.5 % EtOAc/hexanes) to give enone **3** (26.6 mg, 86%) as a colorless oil: $\left[\alpha\right]_{D}^{25}$ -3.8 (c 1.08, CHCl₃); IR (film) 3088, 3065, 3031, 2954, 2928, 2894, 2856, 1682, 1471, 1462, 1362, 1254, 1094, 835, 775, 734, 697 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.35–7.30 (m, 8H), 7.26-7.23 (m, 2H), 5.97 (s, 1H), 5.66 (s, 1H), 5.16 (s, 1H), 4.95 (s, 1H), 4.78 (s, 2H), 4.63 (d, J = 12.0 Hz, 1H), 4.55 (d, J = 12.0 Hz, 1H), 4.50 (s, 2H), 4.39 (s, 1H), 4.16 (dd, J = 6.9, 4.1 Hz, 1H), 3.94 (m, 1H), 3.83 (m, 1H), 3.68 (dd, J = 10.7, 4.1 Hz, 1H), 3.57 (dd, J = 10.7, 6.9 Hz, 1H), 3.38 (m, 3H), 2.86 (dd, J = 15.8, 2.5 Hz, 1H), 2.83 Hz(m, 1H), 2.63 (dd, J = 15.8, 11.0 Hz, 1H), 2.52 (dd, J = 13.4, 2.8 Hz, 1H), 2.34 (ddd, J = 13.4, 2.8 Hz, 1H), 2.8 15.5, 11.7, 4.8 Hz, 1H), 2.23 (ddd, J = 15.5, 11.3, 5.2 Hz, 1H), 2.16 (dd, J = 13.4, 6.2 Hz, 1H), 1.63 (m, 1H), 1.50 (dddd, J = 13.1, 11.7, 7.2, 5.2 Hz, 1H), 0.97 (d, J = 6.5 Hz,

3H), 0.87 (s, 18H), 0.80 (s, 9H), 0.04 (s, 6H), 0.03 (s, 6H), 0.01 (s, 3H), -0.03 (s, 3H); ¹³C NMR (150 MHz, C₆D₆) δ 199.8, 155.0, 149.9, 143.7, 139.4, 139.1, 128.52 (× 2), 128.47 (× 2), 127.81 (× 2), 127.76 (× 2), 127.7, 127.5, 123.0, 110.7, 109.1, 85.4, 77.3, 76.4, 75.1, 73.6, 73.4, 72.5, 71.9, 67.8, 45.4, 40.8, 34.3, 31.6, 27.5, 26.2 (× 6), 26.1 (× 3), 21.2, 18.6, 18.4, 18.1, -3.4, -4.0, -4.2, -4.4, -4.6 (× 2); HRMS (ESI) calcd for C₅₂H₈₆O₇Si₃Na [(M + Na)⁺] 929.5574, found 929.5605.

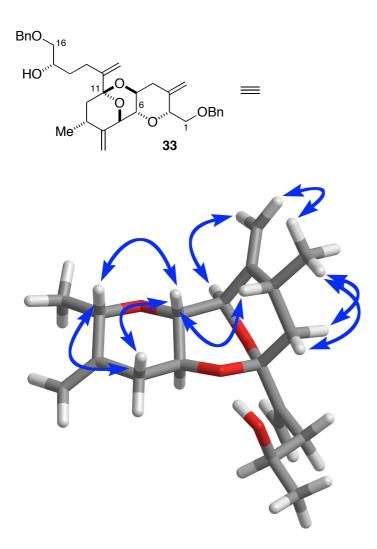
Ketotriol 32. To a solution of enone **3** (10.2 mg, 0.0112 mmol) in DMF (1.2 mL) at 0 °C was added TASF (117 mg, 0.425 mmol) in four portions, and the resultant solution was stirred at room temperature for 25 h. The reaction mixture was diluted with Et₂O and quenched with saturated aqueous NaHCO₃ solution. The whole mixture was extracted with Et₂O, washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. Purification by flash column chromatography (silica gel, 20 to 100% EtOAc/hexanes) gave ketotriol **32** (5.6 mg, 87%) as a colorless oil: $[\alpha]_D^{25}$ +7.3 (*c* 0.20, CH₂Cl₂); IR (film) 3405, 3087, 3064, 3030, 2924, 2863, 1665, 1454, 1094, 907, 738, 698 cm⁻¹; ¹H NMR (600 MHz, C₆D₆) δ 7.29—7.28 (m, 2H), 7.21—7.15 (m, 6H), 7.12—7.08 (m, 2H), 5.52 (s, 1H), 5.42 (br s, 1H), 5.35 (s, 1H), 5.10 (s, 1H), 4.77 (m, 3H), 4.70 (d, *J* = 1.0 Hz, 1H), 4.39 (d, *J* = 12.4 Hz, 1H), 4.37 (d, *J* = 8.3 Hz, 1H), 4.34 (d, *J* = 12.4 Hz, 1H), 4.24 (s, 2H), 4.06 (ddd, *J* = 8.3, 7.2, 3.8 Hz, 1H), 3.99 (dd, *J* = 6.8,

4.1 Hz, 1H), 3.69 (dd, J = 10.6, 4.1 Hz, 1H), 3.65 (m, 1H), 3.57 (dd, J = 10.6, 6.8 Hz, 1H), 3.46 (dd, J = 8.3, 8.3 Hz, 1H), 3.17 (dd, J = 9.3, 3.8 Hz, 1H), 3.13 (dd, J = 9.3, 7.2 Hz, 1H), 2.86 (dd, J = 13.4, 5.5 Hz, 1H), 2.80—2.70 (m, 2H), 2.48—2.41 (m, 2H), 2.35 (s, 1H), 2.33—2.26 (m, 2H), 1.49—1.40 (m, 2H), 1.00 (d, J = 6.5 Hz, 3H); ¹³C NMR (150 MHz, C₆D₆) δ 202.8, 153.7, 148.8, 143.1, 139.3, 138.7, 128.6 (× 2), 128.4 (× 2), 128.3, 127.9 (× 2), 127.50 (× 2), 127.48, 125.1, 112.8, 109.0, 81.1, 80.4, 77.4, 74.8, 73.32, 73.30, 72.3, 70.9, 69.8, 45.6, 41.9, 32.5, 28.3, 27.3, 22.9; HRMS (ESI) calcd for C₃₄H₄₄O₇Na [(M + Na)⁺] 587.2979, found 587.2985.

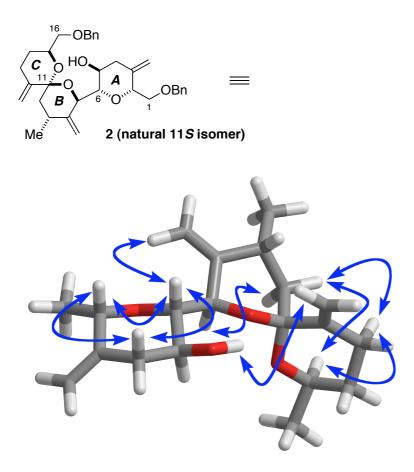

Fused acetal 33 and spiroacetals 34 and 2. To a solution of triol 32 (2.0 mg, 0.0035 mmol) in CH_2Cl_2 (2.0 mL) at 0 °C was added a solution of PPTS (1.3 mg, 0.0053 mmol) in CH_2Cl_2 (0.2 mL), and the resultant solution was stirred at 0 °C for 30.5 h. The reaction mixture was quenched with saturated aqueous NaHCO₃ solution. The mixture was extracted with EtOAc, and the organic layer was washed with brine, dried over

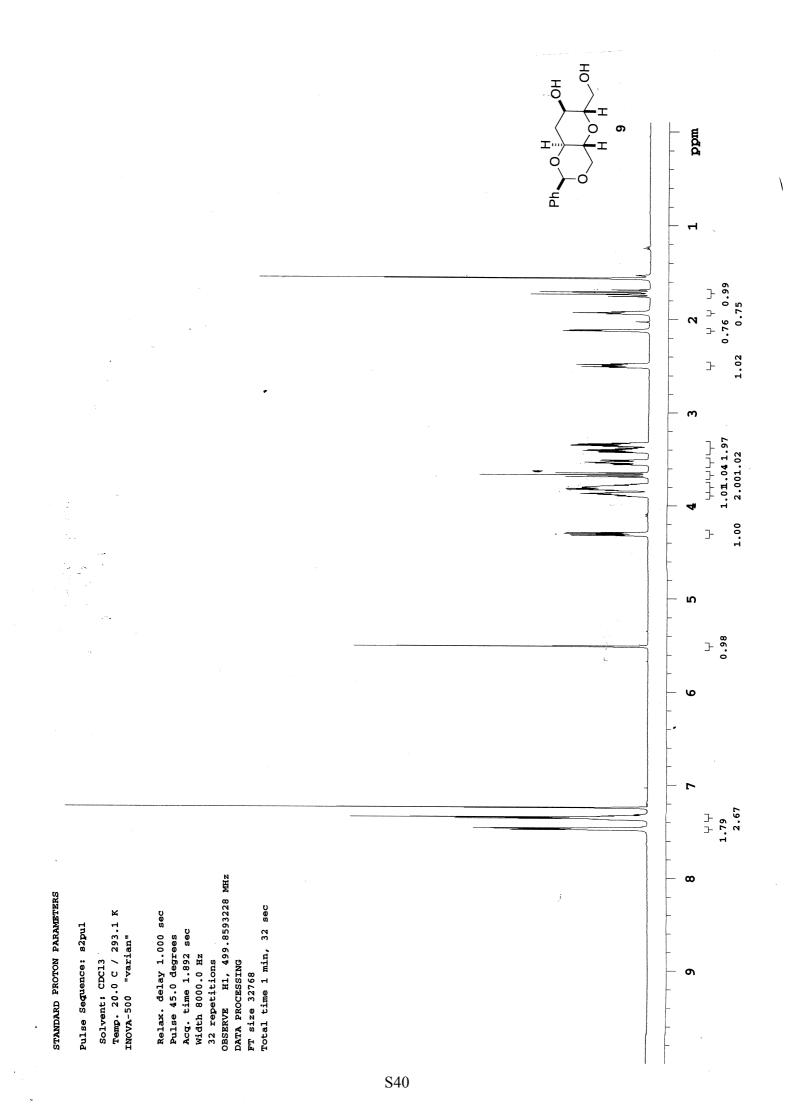

Na₂SO₄, filtered, and concentrated under reduced pressure. Purification by flash column chromatography (silica gel, $Et_2O/CHCl_3/hexanes = 1:1:3$) gave a mixture of spiroacetals 2 and 34, along with fused acetal 33. Further purification of the mixture of spiroacetals 2 and 34 by reverse-phase HPLC [COSMOSIL 5C₁₈-AR-II column, \emptyset 10 × 250 mm, isocratic elution with 80% MeCN/H₂O, flow rate 3.0 mL/min, UV 220 nm] gave spiroacetal 2 (0.7 mg, 36%, $t_{\rm R}$ = 16 min, colorless oil) and spiroacetal 34 (0.9 mg, 46%, $t_{\rm R} = 20$ min, colorless oil). Further purification of fused acetal 33 by reverse-phase HPLC [COSMOSIL 5C₁₈-AR-II column, \emptyset 10 × 250 mm, isocratic elution with 80% MeCN/H₂O, flow rate 3.0 mL/min, UV 220 nm] gave analytically pure fused acetal 33 $(0.3 \text{ mg}, 15\%, t_{\text{R}} = 16 \text{ min})$ as a colorless oil. Data for **2**: $[\alpha]_{\text{D}}^{24} - 26.1$ (*c* 0.18, C₆H₆); ¹H NMR (600 MHz, C₆D₆) δ 7.31-7.30 (m, 3H), 7.22-7.17 (m, 5H), 7.12-7.08 (m, 2H), 5.63 (s, 1H), 5.17 (s, 1H), 5.04—5.02 (m, 2H), 4.72 (d, J = 1.0 Hz, 1H), 4.67 (d, J = 1.0Hz, 1H), 4.61 (s, 2H), 4.36 (d, J = 12.4 Hz, 1H), 4.36 (s, 1H), 4.32 (d, J = 12.4 Hz, 1H), 4.17 (ddd, J = 8.6, 8.2, 5.5 Hz, 1H), 4.07 (d, J = 1.4 Hz, 1H), 4.03 (br dd, J = 6.9, 4.4 Hz, 1H), 3.72 (dd, J = 8.2, 8.2 Hz, 1H), 3.66 (m, 1H), 3.65 (dd, J = 10.3, 4.4 Hz, 1H), 3.59 (dd, J = 10.3, 6.9 Hz, 1H), 3.43 (dd, J = 9.6, 5.5 Hz, 1H), 3.25 (dd, J = 9.6, 5.5 Hz, 1H), 2.82 (dd, J = 13.4, 5.5 Hz, 1H), 2.42–2.34 (m, 2H), 2.06 (ddd, J = 14.8, 5.1, 4.8 Hz 1H), 1.95 (m, 1H), 1.74 (dd, J = 13.4, 4.8 Hz 1H) 1.57 (dd, J = 13.4, 9.6 Hz, 1H), 1.45 (dddd, J = 13.1, 5.1, 2.7, 2.4 Hz, 1H), 1.35 (dddd, J = 13.1, 12.7, 11.3, 4.8 Hz, 1H), 1.06 (d, J = 6.8 Hz, 3H); ¹³C NMR (150 MHz, C₆D₆) δ 150.3, 146.3, 143.0, 139.2, 128.6 (×2), 128.5 (×2), 128.4, 127.9, 127.7 (×2), 127.64 (×2), 127.56 108.7, 108.6, 107.8, 99.4, 82.2, 77.2, 74.3, 73.4, 73.34, 73.32, 72.6, 71.5, 71.0, 41.3, 39.2, 31.8, 30.2, 29.4, 19.0; HRMS (ESI) calcd for $C_{34}H_{42}O_6Na \left[(M + Na)^+\right] 569.2874$, found 569.2877. Data for **33**: $[\alpha]_D^{24}$ –3.9 (*c* 0.09, C₆H₆); ¹H NMR (600 MHz, C₆D₆) δ 7.28–7.25 (m,

2H), 7.21—7.06 (m, 8H) 5.67 (s, 1H), 4.97 (d, J = 1.7 Hz, 1H), 4.93 (d, J = 1.4 Hz, 1H), 4.86 (s, 1H), 4.77 (s, 1H), 4.69 (dd, J = 2.0, 1.0 Hz, 1H), 4.60 (d, J = 2.4 Hz, 1H), 4.35 (d, J = 12.0 Hz, 1H), 4.32 (d, J = 12.0 Hz, 1H), 4.24 (s, 2H), 3.95 (dd, J = 5.2, 5.2 Hz, 1H), 3.86 (ddd, J = 12.4, 9.3, 4.5 Hz, 1H), 3.78 (m, 1H), 3.76 (dd, J = 10.0, 5.2 Hz, 1H), 3.68 (dd, J = 10.0, 5.2 Hz, 1H), 3.37 (dd, J = 9.3, 2.8 Hz, 1H), 3.21 (dd, J = 9.2, 3.8 Hz, 1H), 3.16 (dd, J = 9.2, 7.6 Hz, 1H), 2.80 (m, 1H), 2.71 (dd, J = 12.4, 4.5 Hz, 1H), 2.51 (ddd, J = 15.5, 10.3, 5.2 Hz, 1H), 2.34—2.27 (m, 2H), 2.14 (d, J = 3.1 Hz, 1H) 1.85 (dd, J = 13.0, 5.1 Hz, 1H), 1.69 (dddd, J = 13.4, 10.0, 8.3, 5.2 Hz, 1H), 1.64 (dddd, J = 13.4, 10.3, 6.2, 4.1 Hz, 1H), 1.37 (dd, J = 13.0, 12.0 Hz, 1H), 0.898 (d, J = 6.5 Hz, 3H); ¹³C NMR (150 MHz, C₆D₆) δ 149.5, 149.0, 142.4, 138.91, 138.86, 128.6 (×2), 128.5 (×2), 128.4, 127.9, 127.7 (×2), 127.6 (×2), 111.8, 110.6, 108.4, 101.0, 83.6, 80.2, 78.3, 75.0, 73.5, 73.2, 70.7, 70.0, 67.8, 43.4, 39.7, 32.7, 28.0, 26.7, 17.2; HRMS (ESI) calcd for C₃₄H₄₂O₆Na [(M + Na)⁺] 569.2874, found 569.2879.


Data for **34**: $[\alpha]_D^{24}$ –13.6 (*c* 0.31, C₆H₆); ¹H NMR (600 MHz, C₆D₆) δ 7.32—7.31 (m, 2H), 7.27—7.26 (m, 2H), 7.20—7.15 (m, 4H), 7.11—7.05 (m, 2H), 5.18 (s, 1H), 4.95 (s, 1H), 4.87 (s, 1H), 4.79 (s, 1H), 4.76 (s, 1H), 4.70 (s, 1H), 4.45 (dddd, *J* = 11.3, 6.5, 3.8, 3.8 Hz, 1H), 4.44 (d, *J* = 12.4 Hz, 1H), 4.37 (d, *J* = 12.4 Hz, 1H), 4.34 (d, *J* = 12.4 Hz, 1H), 4.31 (d, *J* = 7.9 Hz, 1H), 4.30 (d, *J* = 12.4 Hz, 1H), 4.09 (dd, *J* = 6.2, 4.4 Hz, 1H), 4.06 (ddd, *J* = 8.6, 6.8, 4.5 Hz, 1H), 4.00 (dd, *J* = 7.9, 6.8 Hz, 1H), 3.82 (br s, 1H), 3.71 (dd, *J* = 10.6, 4.4 Hz, 1H), 3.60 (dd, *J* = 10.6, 6.2 Hz, 1H), 3.37 (dd, *J* = 10.0, 6.5 Hz, 1H), 3.25 (dd, *J* = 10.0, 3.8 Hz, 1H), 2.99 (m, 1H), 2.75 (dd, *J* = 13.4, 4.5 Hz, 1H), 1.98 (dd, *J* = 13.1, 4.8 Hz, 1H), 1.68 (dd, *J* = 13.1, 13.1 Hz, 1H), 1.42 (dddd, *J* = 13.0, 5.5, 4.8, 3.8 Hz, 1H), 1.35 (dddd, *J* = 13.0, 12.4, 11.3, 4.8 Hz, 1H), 0.95 (d, *J* = 6.5 Hz, 3H); ¹³C

NMR (150 MHz, C₆D₆) δ 149.2, 146.2, 143.7, 139.5, 138.7, 128.6 (× 2), 128.5 (× 2), 127.9 (× 2), 127.7 (× 2), 127.6, 127.5, 109.8, 108.9, 108.6, 99.5, 80.5, 80.1, 77.2, 73.6, 73.4, 73.4, 71.8, 71.3, 70.0, 41.9, 40.2, 29.6, 29.3, 28.2, 18.2; HRMS (ESI) calcd for C₃₄H₄₂O₆Na [(M + Na)⁺] 569.2874, found 569.2879.


Alcohol **29** was transformed into acetonide **A** via desilylation and acetalization. ¹H NMR analysis on **A** based on ${}^{3}J_{H,H}$ values established the stereochemistry of the C7 stereogenic center as shown.


Figure S1. Stereochemical assignment of fused acetal **33**. The double-ended blue arrows denote important NOEs. The benzyloxy groups are omitted for clarity in the 3D model. The structure of the 3D model was generated by MMFF94s conformational searches followed by geometry optimization (HF6-31G*//PM3 level of theory).

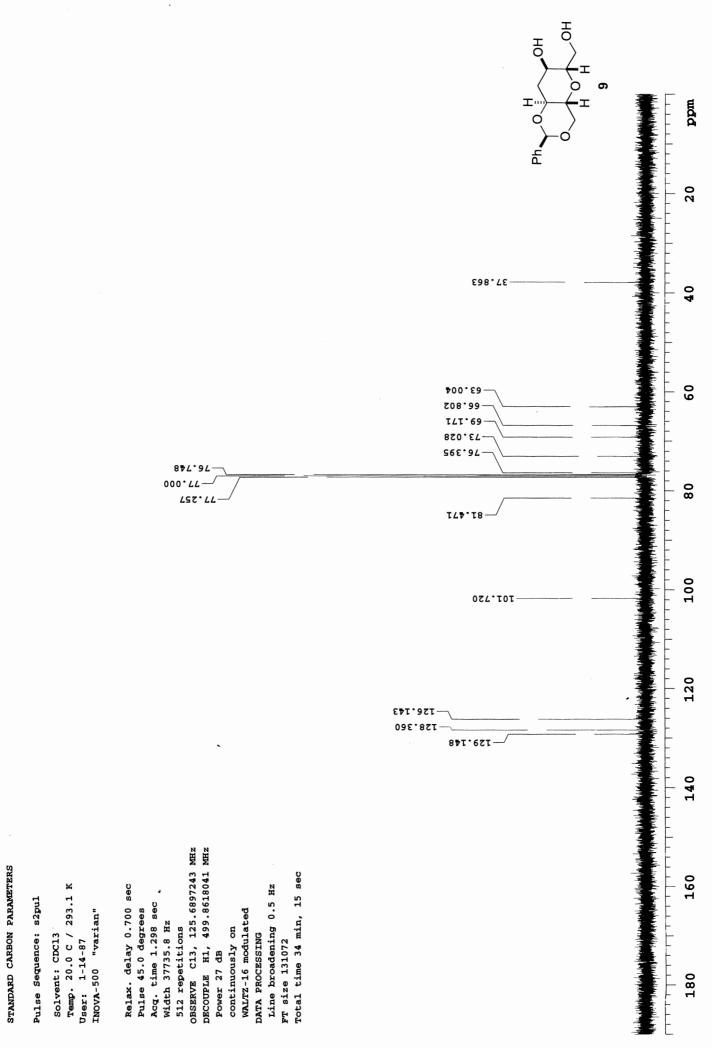
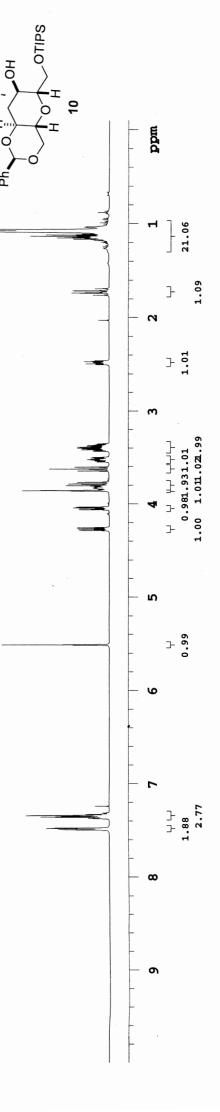
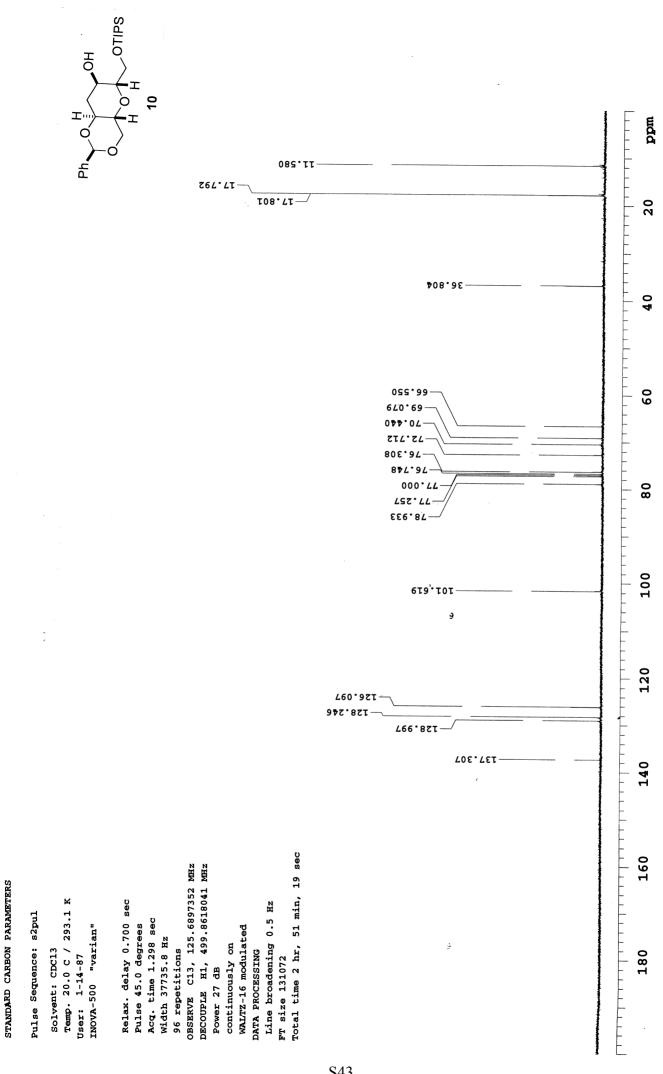


Figure S2. Stereochemical assignment of unnatural spiroacetal **34**. The double-ended blue arrows denote important NOEs. The benzyloxy groups are omitted for clarity in the 3D model. The structure of the 3D model was generated by MMFF94s conformational searches followed by geometry optimization (HF6-31G*//PM3 level of theory).

Figure S3. Stereochemical assignment of natural spiroacetal **2**. The double-ended blue arrows denote important NOEs. The benzyloxy groups are omitted for clarity in the 3D model. The structure of the 3D model was generated by MMFF94s conformational searches followed by geometry optimization (HF6-31G*//PM3 level of theory).

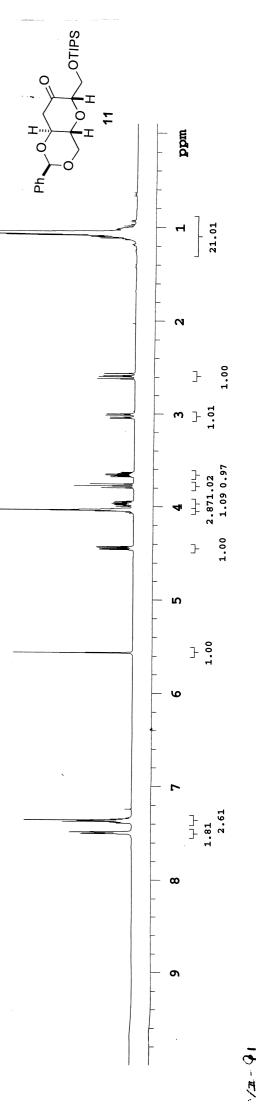


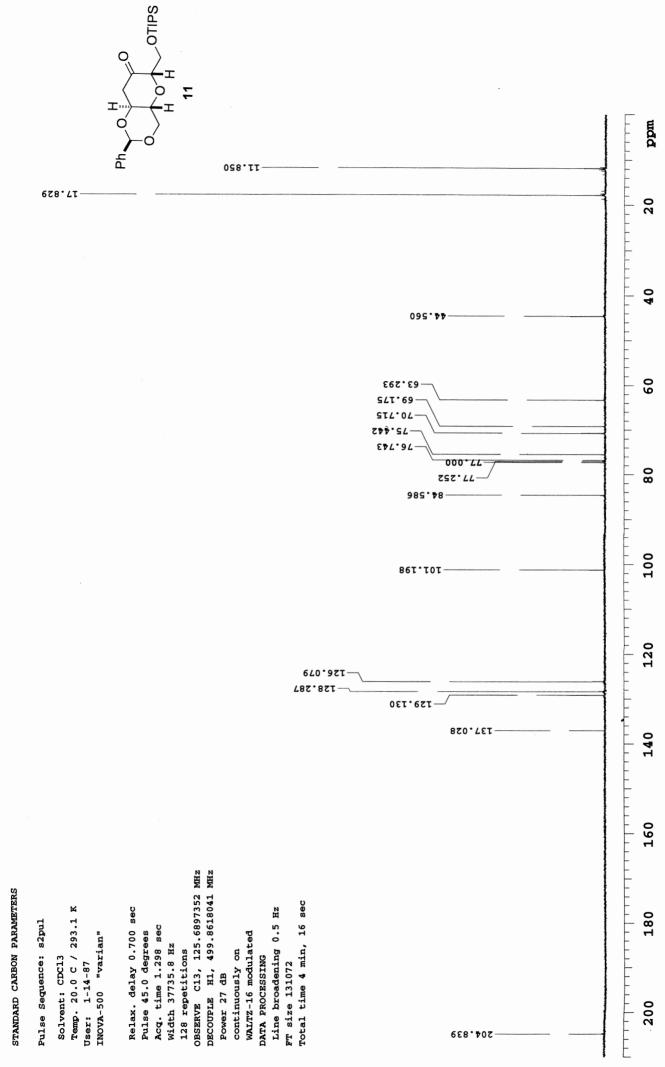
÷,


32 repetitions OBSERVE H1, 499.8593224 MHz Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.892 sec Width 8000.0 Hz Total time 1 min, 32 sec DATA PROCESSING FT size 32768

1/1-9-

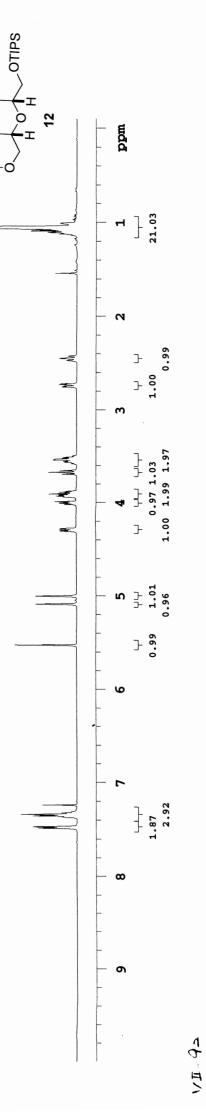
Ŀ


Ч



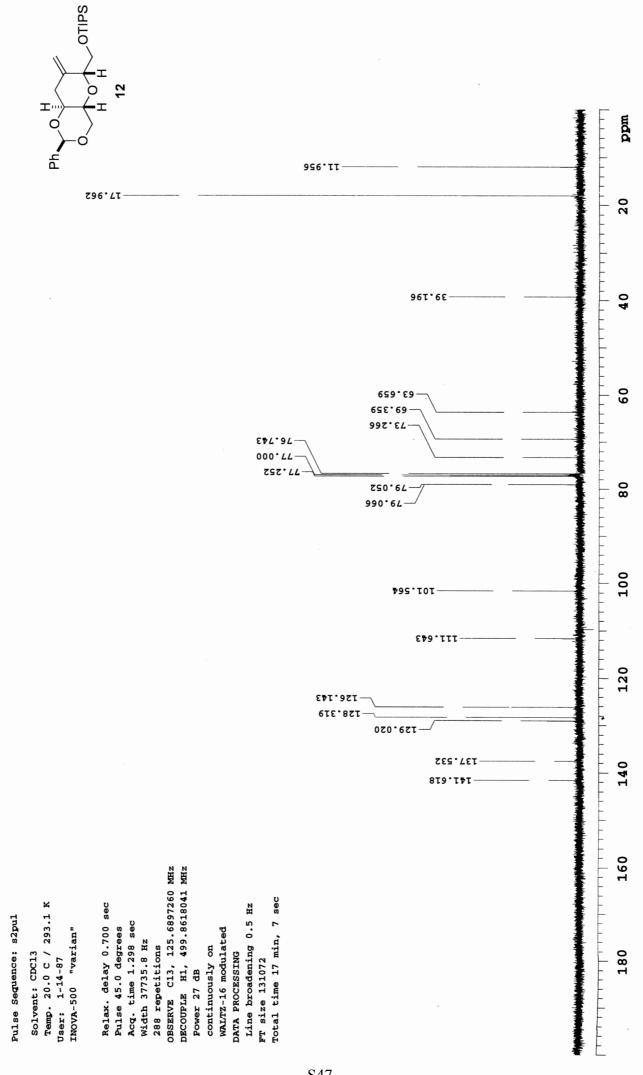
Pulse Sequence: s2pul

Solvent: CDCl3 Temp. 20.0 C / 293.1 K INOVA-500 "varian" Relax. delay 1.000 sec Fulse 45.0 degrees Acq. time 1.892 sec Width 8000.0 Hz 32 repetitions OBSERVE H1, 499.8593223 MHz DATA PROCESSING FT size 32768 Total time 1 min, 32 sec


· .

Ţ,

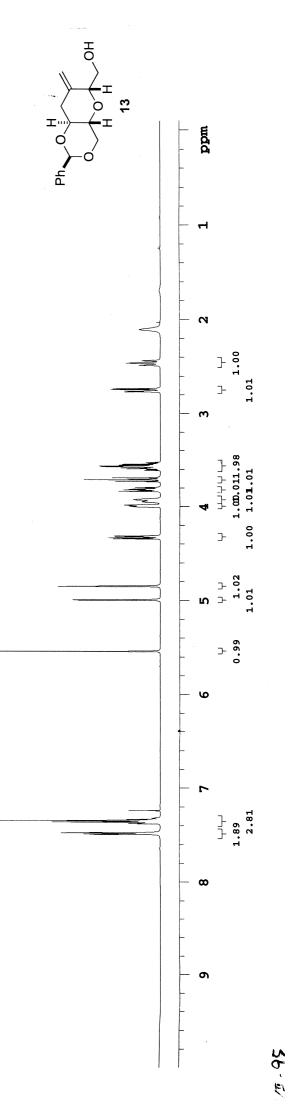
Pulse Sequence: s2pul


Solvent: CDC13 Temp. 20.0 C / 293.1 K INOVA-500 "varian" Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.892 sec Width 8000.0 Hz 32 repetitions OBSERVE H1, 499.8593228 MHz DATA PROCESSING FT size 32768 Total time 1 min, 32 sec

ייד כ

P.

S46

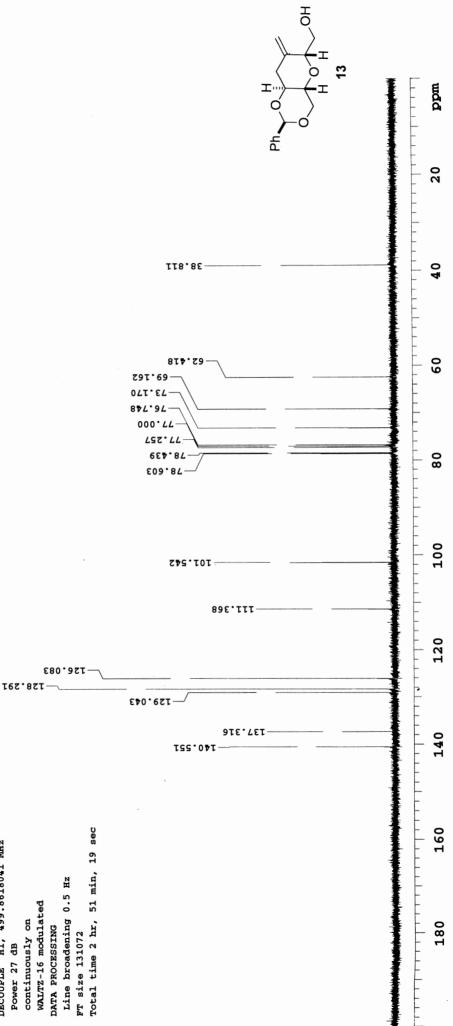

STANDARD CARBON PARAMETERS

•.

STANDARD PROTON PARAMETERS

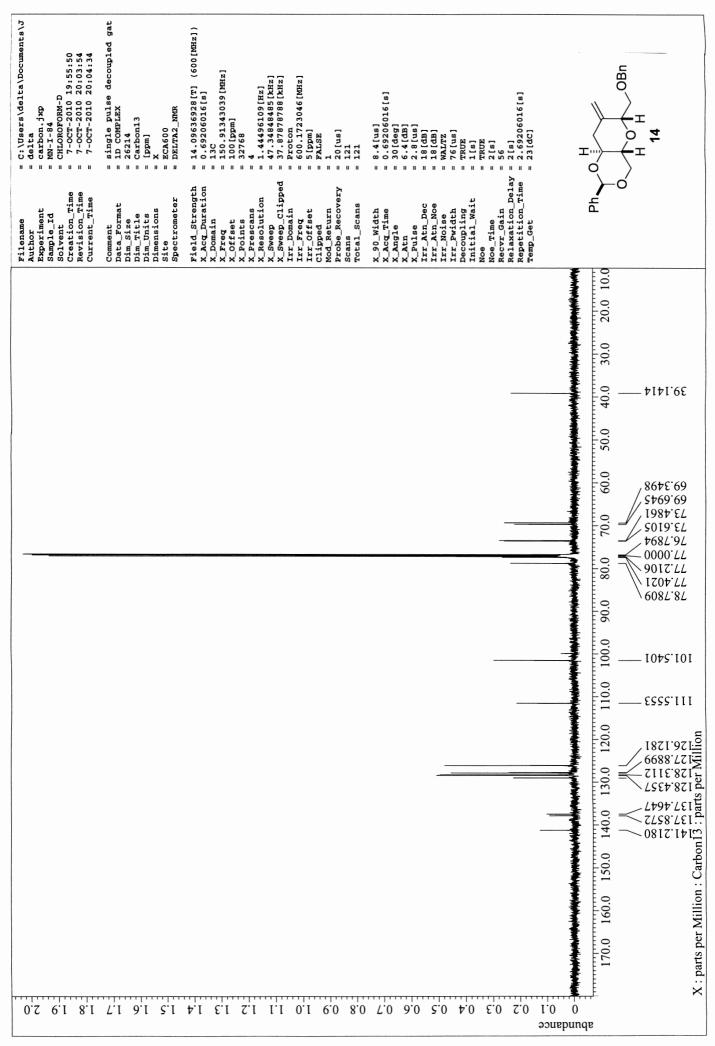
<u>د.</u> ۲۰۰ Pulse Sequence: s2pul

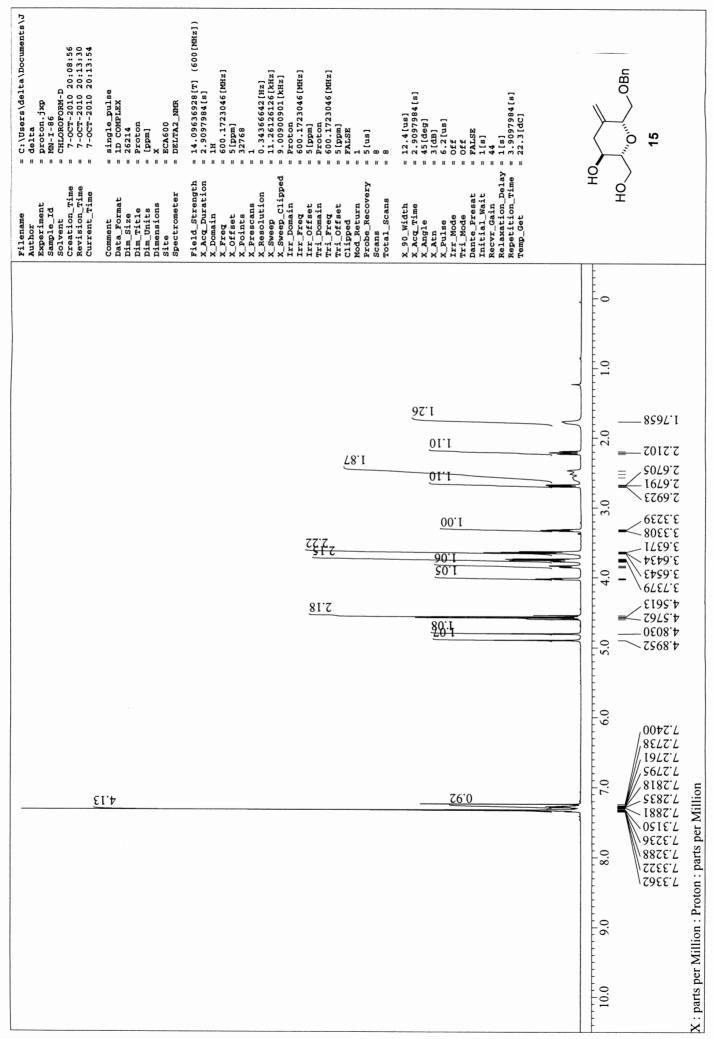
Solvent: CDC13 Temp. 20.0 C / 293.1 K INOVA-500 "varian" Relax. delay 1.000 sec Pulse 45.0 degrees Acq. time 1.892 sec Width 8000.0 Hz 32 repetitions OBSERVE H1, 499.8593228 MHz DATA PROCESSING FT size 32768 Total time 1 min, 32 sec



•••

Pulse Sequence: s2pul

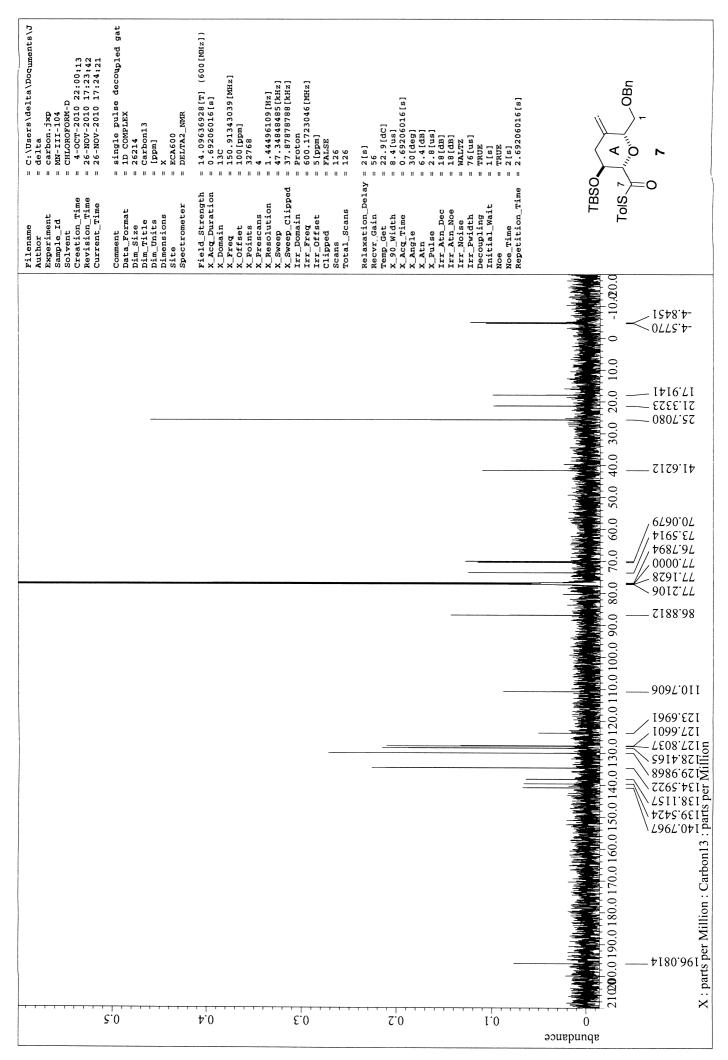

Temp. 20.0 C / 293.1 K User: 1-14-87 INOVA-500 "varian" Solvent: CDC13

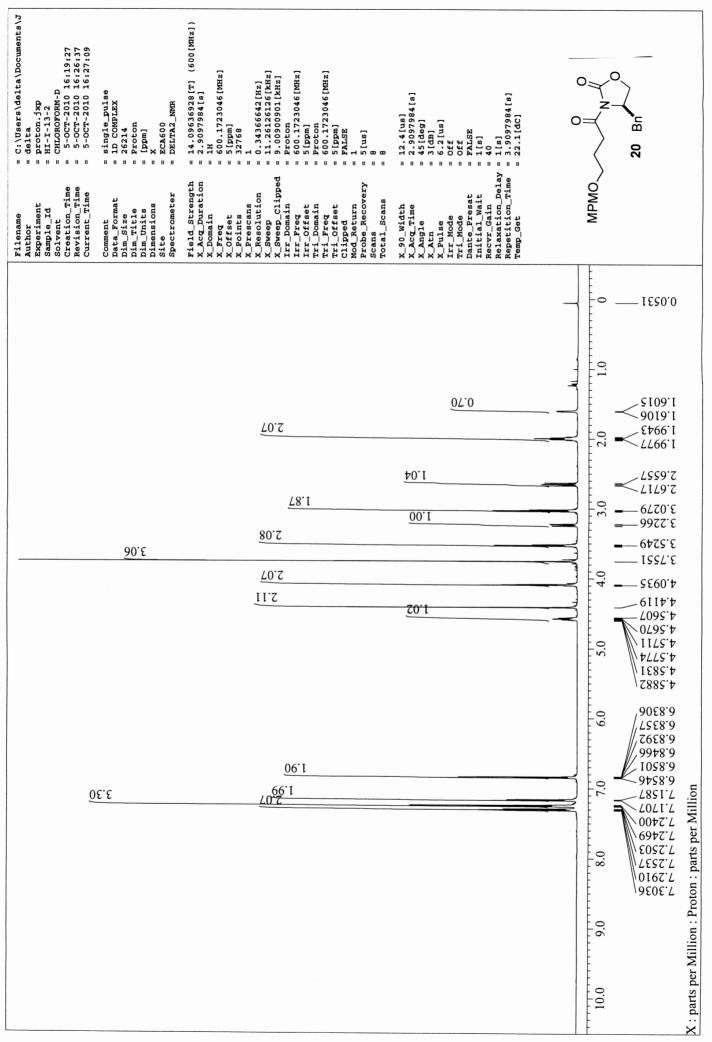

Total time 2 hr, 51 min, 19 sec 96 repetitions OBSERVE C13, 125.6897329 MHz DECOUPLE H1, 499.8618041 MHz Power 27 dB Relax. delay 0.700 sec Line broadening 0.5 Hz Pulse 45.0 degrees Acq. time 1.298 sec WALTZ-16 modulated Width 37735.8 Hz continuously on DATA PROCESSING FT size 131072

180

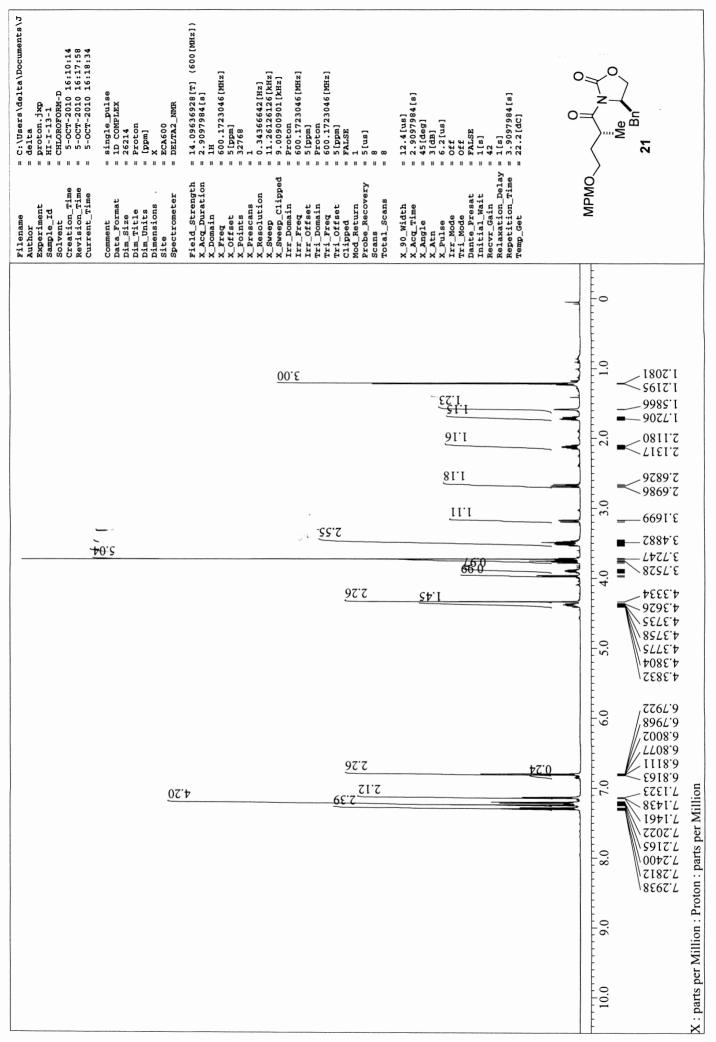
<pre>Filename = C:\Users\delta\Documents\J Author = delta Author = delta Experiment = proton.jxp Sample_Id = NN-1-84 Solvent = NN-1-84 Solvent = T-0CT-2010 19:52:55 Revision_Time = 7-0CT-2010 19:57:15 Current_Time = 7-0CT-2010 19:57:36 Comment = single_pulse</pre>	tine t tine t tion h h = = = = = = = = = = = = = = = = = =	t t 161 dina 4 161 dina 4		
		0.99 1.00 0.99 0		5055'I 5055'I 5055'C 50595'
<u> </u>		 26'1	10.0 9.0 8.0 7.0	00+7.7 282.7 7297.7 727.7 777.7 7

<pre>Filename = C:\U5ers\delta\Documents\J Author = delta = delta Experiment = delta = delta Sample_Id = MN-1-86 Solvent = MN-1-86 Solvent = 7-0CT-2010 20:11:50 Revision_Time = 7-0CT-2010 20:11:50 Current_Time = 7-0CT-2010 20:16:00 Current_Time = 7-0CT-2010 20:16:48 Comment = 1D COMPLEX Data_Format = 1D COMPLEX Data_For</pre>	ст. де ст. и ст. и с	<pre>X_90_Width = 8.4[us] X_Acc_Time = 0.69206016[s] X_Angle = 0.69206016[s] X_Atr = 6.4(db] X_Atr = 6.4(db] X_Dulse = 2.8[us] ITT_Atr_Dec = 18[db] ITT_Atr_Dec = 18[db] ITT_Mote = 18[db] ITT_Width = 76[us] Decoupling = TRUE Initial_Wait = 1[s] Noe = TRUE Noe = TRUE Noe = 2[s] RecvT_Gain = 56 Relaxation_Delay = 2[s] Repetition_Time = 22.9[dC] Temp_Get = 22.9[dC]</pre>	HO OBn
			X : parts per Million : Carbon 13 : parts per Million

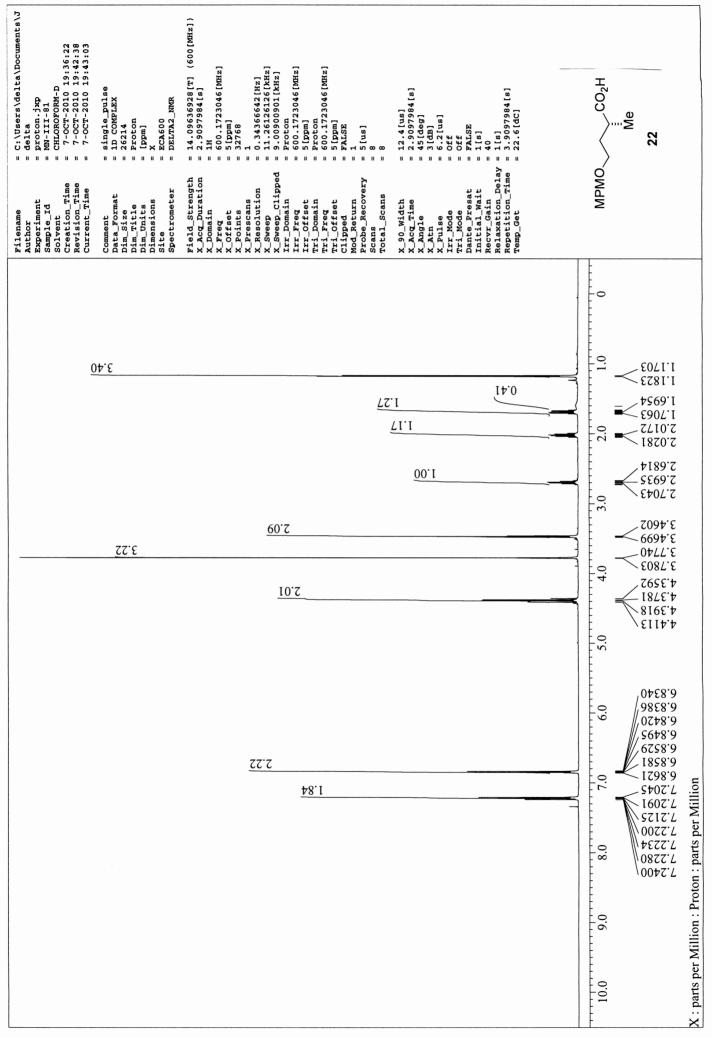

<pre>Filename = C:\USers\delta\Documents\J Author = delta = delta Experiment = proton.jxp Sample_Id = NN-I-100 Solvent = 27-SEP-2010 14:54:54 Revision_Time = 27-SEP-2010 15:03:50 Current_Time = 27-SEP-2010 15:03:57</pre>	Comment = single_pulse Data_Format = 1D CONFLEX Dim_Size = 26214 Dim_Title = Proton Dim_Units = [ppm] Dim_Units = X Spectrometer = DELTA2_NMR	<pre>Field_Strength = 14.09536928[T] (600[MHz])) X_Acq_Duration = 2.9097984[s] X_Freq = 600.1723046[MHz] X_Fresteat = 5[ppm] X_Presteat = 5[ppm] X_Presteat = 32768 X_Resolution = 34366642[Hz] X_Sweep = 11.26126[KHz] X_Sweep = 11.26126[KHz] X_Sweep = 11.26126[KHz] Trr_Domain = 20090901[KHz] Trr_Domain = 20090901[KHz] Trr_Offset = 5[ppm] Tri_Freq = 5[ppm] Tri_Freq = 600.1723046[MHz] Tri_Offset = 5[ppm] Tri_Offset = 5[us] Scans = 8 Total_Scans = 8</pre>	<pre>X_90_Width = 12.4[us] X_Acc_Time = 2.9097984[s] X_Angle = 45[deg] X_Att = 45[deg] X_this = 3[dB] X_this = 6.2[us] Irr_Mode = 6.2[us] Irr_Mode = 0.ff Tri.Mode = 0.ff Tri.Mode = 0.ff Tri.Mode = 0.ff Tri.Mode = 1[s] Tri.Mode = 1[s] Tri.Mode = 22.6[dC] Temp_Get = 22.6[dC]</pre>	TBSO OBn
	0.81	ζ6.11	90.1 <u>56.1</u> <u>56.1</u> <u>50.5</u> <u>70.1</u> <u>50.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u> <u>70.1</u>	$\begin{array}{c} 0.0285\\ 0.0377\\ 0.0314\\$
			<u>EL.E T2.1</u>	X : parts per Million : Proton : parts per Million

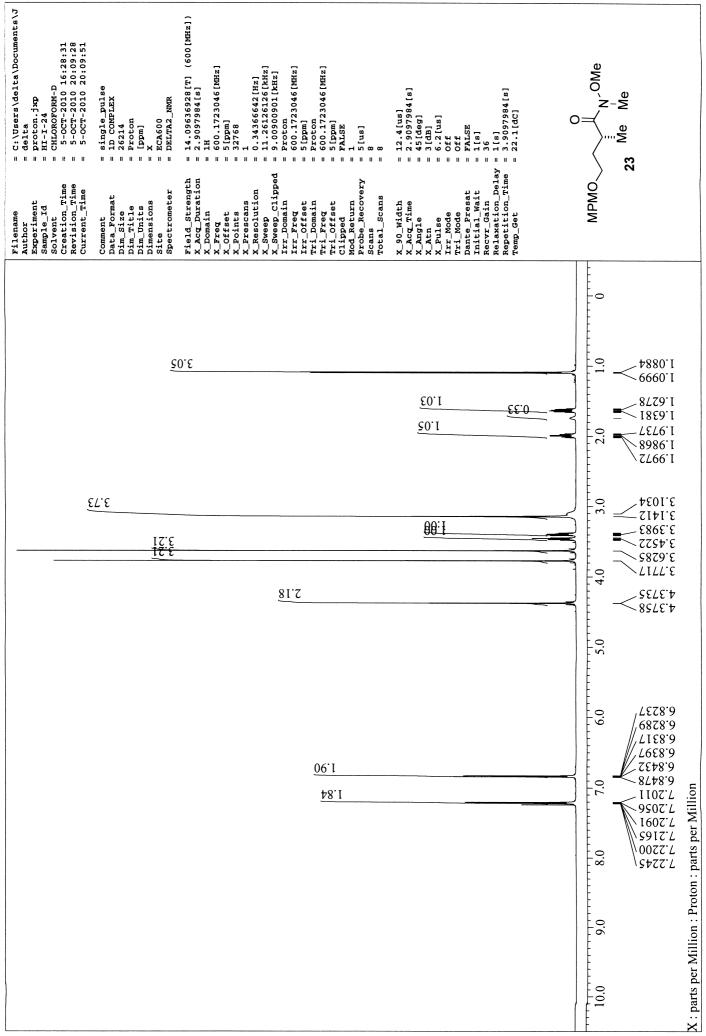

C:/USe delta carbon carbon carbon carbon carbon 27-SEP 27-SEP 27-SEP single 102 com 102 com 102 com 102 com 102 com 102 com 21 c	Spectrometer= DELTA2_NMRField_Strength= 14.09636928[T] (600[MHz])X_Acc_Duration= 0.69206016[s]X_Peeg= 150.91343039[MHz]X_Peeg= 150.91343039[MHz]X_Prescans= 144496109[Hz]X_Prescans= 4X_Prescans= 4X_Prescans= 4X_Prescans= 4X_Prescans= 4X_Prescans= 4X_Prescans= 4X_Prescans= 4X_Prescans= 4X_Prescans= 4X_Sweep= 101[ppedPProbe_Recovery= 101Cipped= 7.348498[KHz]ITT_Diffect= 5[ppm]ITT_Pomal= 1Cipped= 7.132046[MHz]ITT_Pomal= 1Cipped= 5[ppm]Cipped= 181X_Atn= 30(deg]X_Atn= 2.0[us]Scans= 181X_Sours= 181Trr_Ath_Noe= 18(db]ITT_Noise= 2.6[us]Scans= 181Noe= 2.6[us]Scans= 181Noe= 2.6[us]Scans= 181Noe= 2.6[us]Scans= 181Scans= 181Scans= 181Scans= 181Scans= 2.6[us]Scans= 181Scans= 181Scans= 181Scans= 2.6[us]Scans= 181Scans= 181Scans= 2	TBSO OBn S1
		$\begin{array}{c} -2.2000 \\ -7.2$
		X : parts per Million : Carbon 13: 12: 20: 0 10: 0 10: 0 00: 0 00: 0 00: 0 10: 0 10: 0 0: 0 00: 0 0: 0

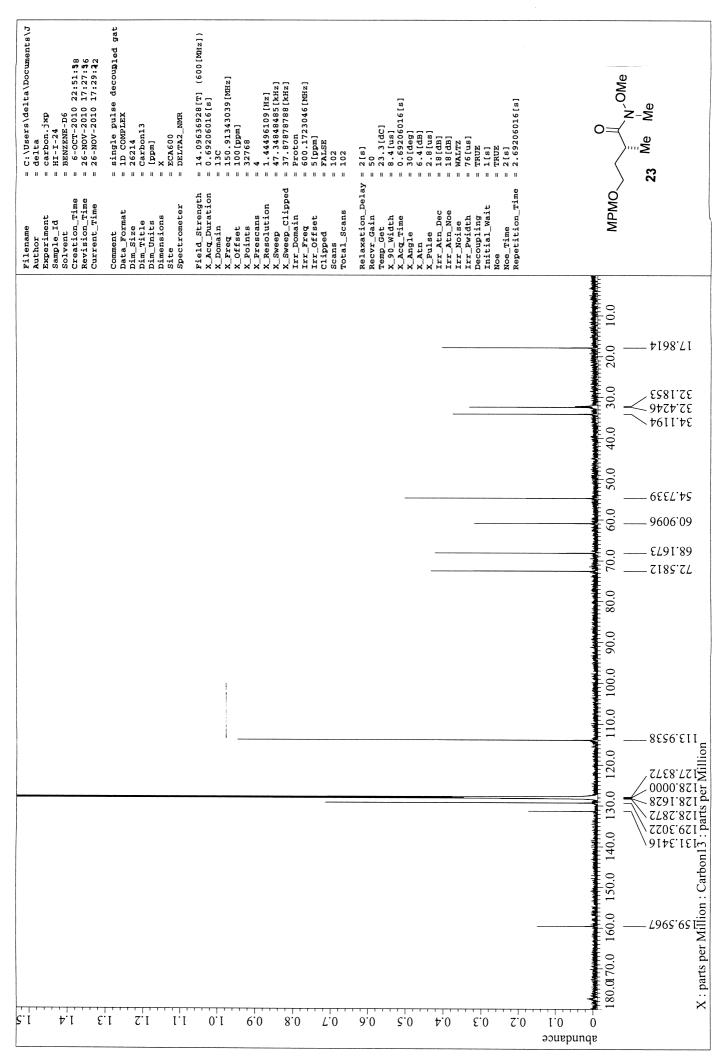
0.21				Filename Author		uments/J
14 ^{.0}				Exporiment Sample_Id Solvent Creation_Time Revision_Time Current_Time	ent = $proton.jxp$ Id = $mN-1-104$ = $CHLOROFORM-D$ $n_Trime = 27-SEP-2010 15:04:05$ $n_Trime = 24-NOV-2010 20:51:26$ Trime = 24-NOV-2010 20:51:49	40 40 50 50 50 50 50 50 50 50 50 50 50 50 50
12.0 13.0			10.6	Comment Data_Format Dim_Fite Dim_Title Dim_Units Dimensions		
0.1				Site Spectrometer Wield Strend	ا ۱۱۱ عر +	(L~200) 0
I 0.0I				X_ACQ_DU X_ACQ_DU X_DOMAIN X_Freq X_Points	X. Acc Duration = 2.9097984[s] (000[Wmz]) X. Acc Duration = 2.9097984[s] X.Domain = 1H X.Freq = 600.1723046[MHz] X.Freq = 5[pm] X.Pffset = 5[pm] X.Points = 32768	
0.6				X_Prescans X_Resolution X_Sweep X_Sweep_Clipj Irr Domain	X_Prescans = 1 X_Resolution = 0.34366642[Hz] X_Sweep = 11.2612616[kHz] X_Sweep = 9.0090901[kHz] X_ry Domain = Proton	
0.8						
0.7				Tri_Offset Clipped Scans Total_Scans	set cans	
0.9	<u>£6`£</u>			Relaxation_ Recvr_Gain Temp_Get X_90_Width	Delay =	
0.2				A And		
4.0		ξ			esat = Wait = on_Time =	
0.£		51.2				
0.2	<u>\$8.0</u>	60.1 90.1 90.1 90.1 90.1 90.1 90.1 90.1	Z168.0		TBSO	
0.I Sonabn					HO (0.000) OBn	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10.0 9.0 8.0 7.0 6.0	5.0 4.0 3.0	2.0 1.0			
:	1011111111 101 110101 1 1 1011111 1 10111111					


<pre>Filename = C:\Users\delta\Documents\J Author = delta = C:\Users\delta\Documents\J Experiment = carbon.jxp Sample_Id = MN_1-104 Solvent = MN_1-104 Solvent = 27-SEP_2010 21:43:12 Creation_Time = 27-SEP_2010 21:43:12 Current_Time = 27-SEP_2010 21:43:12 Current_Time = 27-SEP_2010 21:43:12 Comment = single pulse decoupled gat Data_Format = 1D COMFLEX Dim_Dize = 26214 Dim_Dite = Carbon13 Dim_Dite = [ppm] Dim_Dines = X</pre>	rrometer = Lowation = L Duration = ain = ad = est = scans = scans = scans = scans = eep_clipped = omain = ped = eeturn = .req = eeturn = .cres = .cres = .cres = .cres = .cres =	<pre>X_90_Width = 8.4[us] X_Acc_Time = 0.69206016[s] X_Angle = 0.69206016[s] X_Ath = 30[deg] X_Ath = 30[deg] X_Ath = 2.8[us] Trr_ht.Dec = 18[dB] Trr_ht.Dec = 18[dB] Trr_width = 2.8[us] Trr_width = 76[us] Decoupling = TRUE Decoupling = TRUE Noe_Time = 2[s] Recvz_Gain = 2[s] Relaxion_Delay = 2[s] Repetition_Time = 2.69206016[s] Temp_Get = 23.1[dC]</pre>	HO OBn 16
			X: parts per Million : Carbon13: par

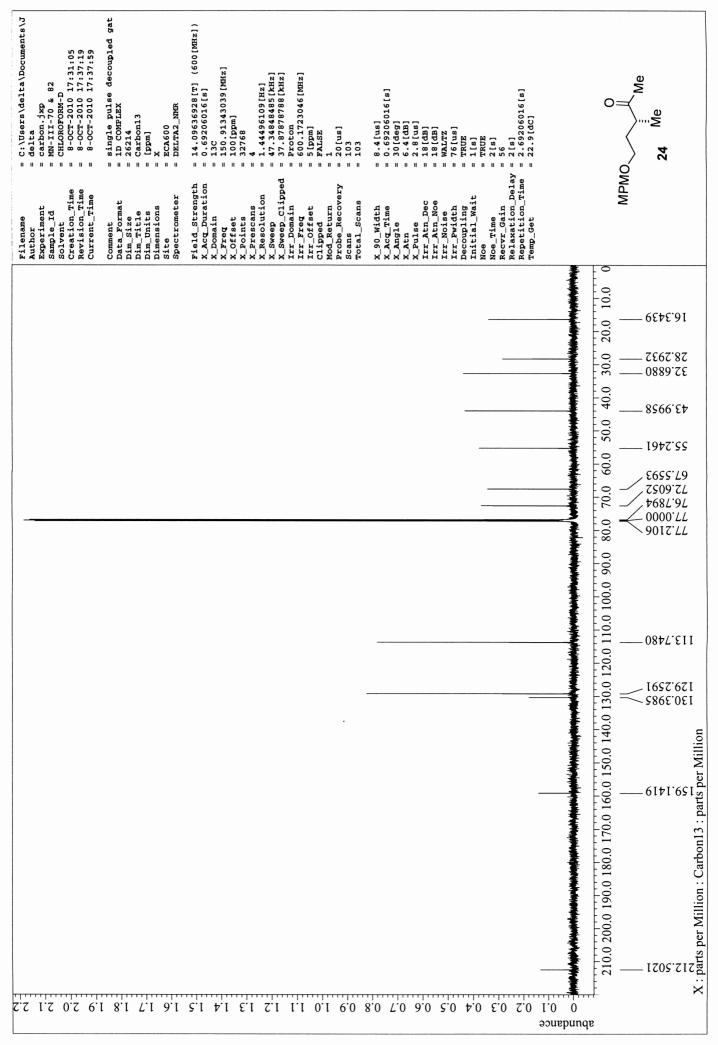
<pre>Filename = C:\Users\delta\Documents\J Author = delta Experiment = delta Experiment = proton.jxp Sample_Id = mLrnt-104 Sauple_Id = mLrntr-104 Creation_Time = 4-0CT-2010 21:57:16 Revision_Time = 4-0CT-2010 22:03:06 Current_Time = 4-0CT-2010 22:03:06 Current_Time = single_pulse Data_Format = 1D COMPLEX Dim_Title = proton Dim_Title = proton Dim_Title = proton Stee = DELTA2_NMR</pre>	<pre>Field_Strength = 14.09536928[T] (600[MHz]) X_Acq_Duration = 2.9097984[s] X_Freq = 600.1723046[MHz] X_Freq = 500.1723046[MHz] X_Points = 32768 X_Points = 32768 X_Points = 3.2768 X_Points = 3.2768 X_Points = 11.26126[KHz] X_Sweep = 11.26126[KHz] X_Sweep = 11.26126[KHz] X_Sweep = 11.26126[KHz] Trr_Offeet = 11.26126[KHz] Trr_Offeet = 5[ppm] Tri_Offeet = 5[pm] Tri_Offe</pre>	нии Дсе Дсе Дсе	e eeat Mait = ion_Delay = ion_Time = t on_Time =	Tols 7 OBn	- L	
	9.24				- 7000.0-	
17.6				0	- [[48.0	
		44.	z	1.0	- 7755' I	
		3.14	<u>70.1</u>	3.0 2.0	5.2898 2.3510 2.6442 2.6517 2.6517 2.6505	
			<u>10'7</u>		2447 2542 25095 25005 25175 25005 25105 20105	
			21.2	5.0	+'9215 +'9022 +'95222	
				6.0	9581.7 8861.7 0042.7	
		5.94	90'7. 88'1	1.0	2597.L 1897.L 68.L 5787.L 5787.L 5175.L	er Million
				8.0	7.3842 7.3242 7.3242 7.3242	ton : parts p
				0.6		illion : Prot
				10.0		X : parts per Million : Proton : parts per Million




<pre>Filename = C:\Users\delta\Documents\J Author = delta = delta Experiment = delta = delta Experiment = atr-r-13-2 Solvent = HT-r-13-2 Solvent = HT-r-13-2 Solvent = 5-0CT-2010 20:30:05 Creation_Time = 5-0CT-2010 20:30:05 Current_Time = 5-0CT-2010 20:30:05 Solvent = 10 CONPLEX Dim_Size = 26214 Dim_Size = 26214 Dim_Title = Carbon13 Dim_Title = Carbon13 Dim_Title = KCA600 Solvent = DETTA2_NMR</pre>	<pre>Field_Strength = 14.09636928[T] (600[MHz]) X_Acq_Duration = 0.69206016[s] X_Domain = 13C</pre>	$X = 90$ _Width = 8.4[us] $X_{Acq}Trime = 0.69206016[s]$ $X_{Atn} = 0.69206016[s]$ $X_{Atn} = 0.69206016[s]$ $X_{Lulse} = 30(deg]$ $X_{Lulse} = 18[dB]$ $Trr_Atn_Dec = 18[dB]$ $Trr_Atn_Noe = 18[dB]$ $Trr_Noise = 2.8[us]$ $Trr_Noise = 0.8103$ $Trr_Pwidth = 76[us]$ $Trr_Pwidth = 76[us]$ $Trr_Pwidth = 1[s]$ Noe Time = 2[s] Recv_Time = 21[s] Reptition_Time = 23.1[dC] Temp_Get = 23.1[dC]	
			X : parts per Million : Carbon 3 : parts per Million : Carbon
			X : parts per Million : Ca

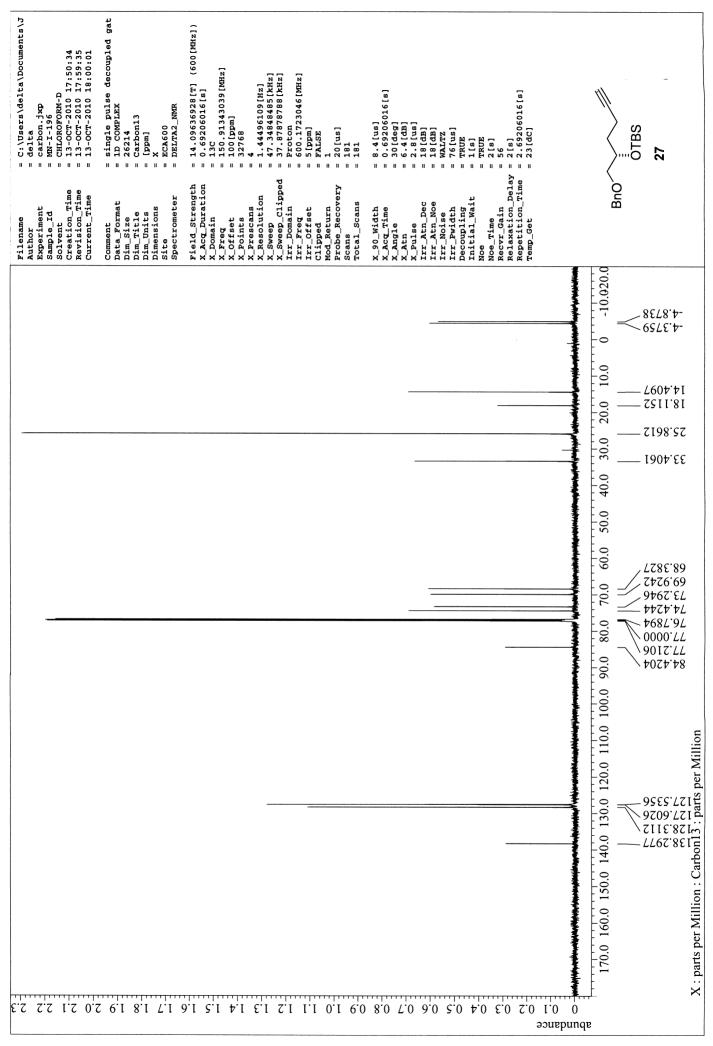


<pre>Filename = C:\Users\delta\Documents\J Author = delta Experiment = carbon.jxp Sample_Id = HL-L-13-1 Solvent = cALORFORM-D Solvent = FLORFORM-D Creation_Time = 5-0CT-2010 20:10:35 Revision_Time = 5-0CT-2010 20:117:14 Current_Time = 5-0CT-2010 20:117:14 Comment = single pulse decoupled gat Data Format = ID CONFLEX</pre>	r rend r rend r rend r r r r r r r r r r r r r r r r r r r	X_Points = 100100m1 X_Prescans = 1.44496109[Hz] X_Resolution = 1.44496109[Hz] X_Sweep_Clipped = 37.3484895[KHz] Irr_Domain = 17.348485[KHz] Irr_Domain = 77.3046[MHz] Irr_Preq = 600.1723046[MHz] Irr_Dfset = 600.1723046[MHz] Irr_Dfset = 5[ppm] Clipped = TRUE Mod_Return = 1 Probe_Recovery = 20[us] Scans = 72 Total_Scans = 72	(_width gle gle ilse Atn_Dec Atn_Noe Noise Pwise ial_wait	in on_Delay = on_Time = =	MPMO
					190.0 180.0 17.9811 0.0

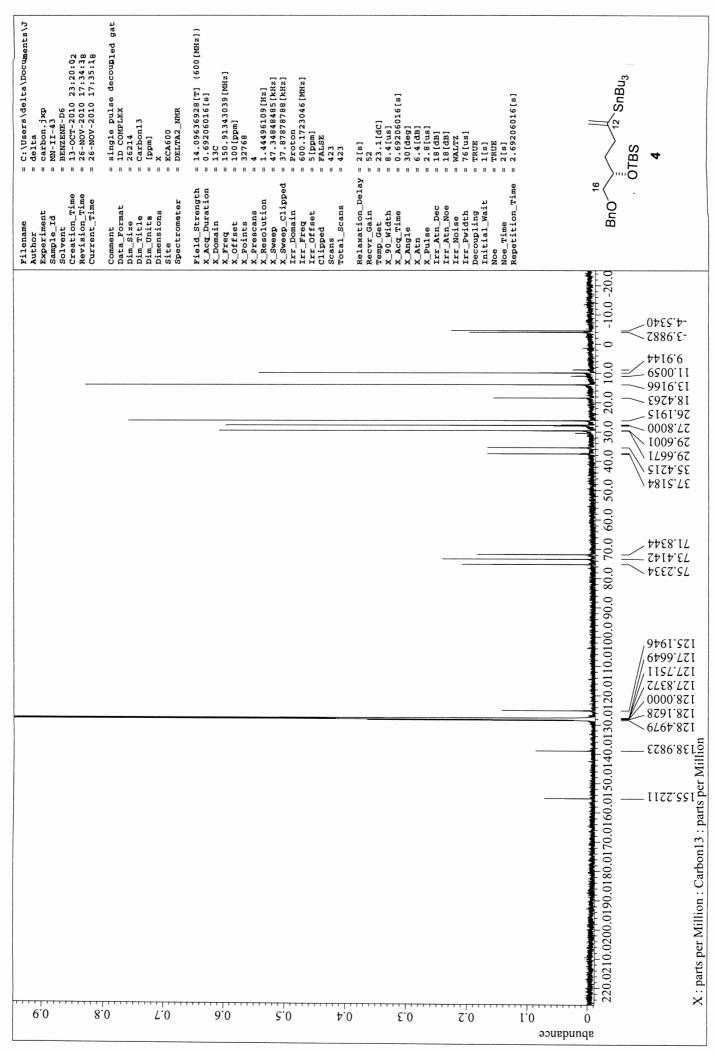


<pre>Filename = C:\Vsers\delta\Documents\J Author = delta delta\Documents\J Experiment = carbon.jxp Sample_Id = MN-III-91 Solvent = M-III-91 Creation_Time = 7-0CT-2010 19:46:48 Current_Time = 7-0CT-2010 19:47:23 Current_Time = 7-0CT-2010 19:47:23 Current_Time = 7-0CT-2010 19:47:23 Comment = single pulse decoupled gat Data_Format = 27214</pre>	e s s rength ration ration rion clipped ==== clipped	rr_Domain	 MPMO Me 22
			 X: parts per Million 190.0 180.0 170.0 160.0 130.0 100.0 0 X: parts per Million X: parts per Million

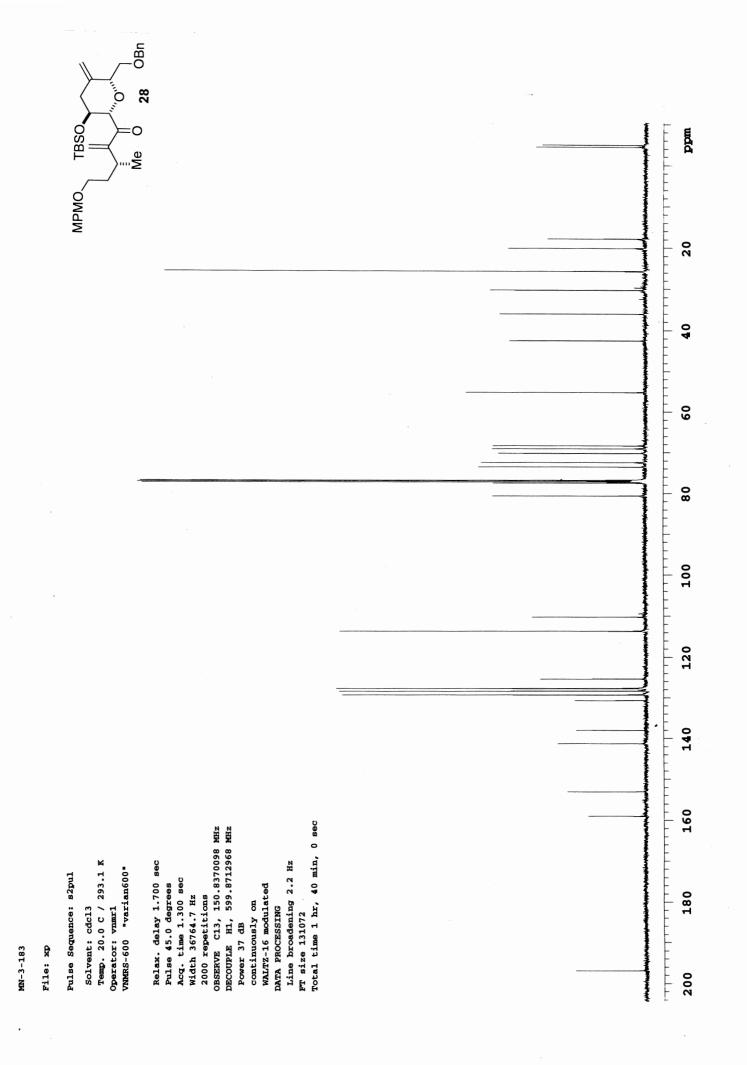
<pre>Filename = C:\Users\delta\Documents\J Author Experiment = MN-III-70 & 8 Sample_Id = MN-III-70 & 8 Sample_Id = MN-III-70 & 8 Solvent = MN-III-70 & 8 Solvent = MN-III-70 & 8 Solvent = MN-III-70 & 16:01:15 Comment = 8-0CT-2010 16:01:15 Comment = 10 COMPLEX Data_Format = 8-0CT-2010 16:01:15 Comment = 10 COMPLEX Dim_Size = 8-0CT-2010 16:01:15 Comment = 10 COMPLEX Dim_Size = 8-0CT-2010 16:01:15 Comment = 10 COMPLEX Dim_Size = 20097984[s] X_Domain = 11.313046[MHz] X_Prescans = 1 X_Neep_Clipped = 9.0090901[KHz] Irr_Jord = 11.313046[MHz] X_Prescans = 11.313046[MHz] Tri_Pode = 001.1723046[MHz] Tri_Pode = 001.1723046[MHz] Tri_Pode = 001 Tri_Domain = 11.313046[MHz] X_Prescans = 1 X_Neep_Clipped = 9.0090901[KHz] Trr_Tomain = 11.313046[MHz] X_Prescans = 1 X_Neep_Clipped = 9.0090901[KHz] Trr_Tomain = 11.313046[MHz] X_Prescans = 1 X_Neep_Clipped = 9.0090901[KHz] Trr_Tomain = 11.313046[MHz] Trr_Tomain = 11.31404 Trr_Tomain = 11.31404 Trr_Tomain = 11.31404 Trr_Tomain = 12.4[us] Trr_Total_Scans = 8 Trr_Mode = 0ff Trr_Mode = 11[s] Temp_Get = 12.1[dc] Trm_Total_Natt = 12.1[dc] Trm_Total_Natt = 12.1[dc] Trm_Total_Natt = 12.1[dc] Trm_Total_Natt = 12.1[dc] Trm_Total</pre>	MPMO 24 Me
00'E <u>1'1'</u> <u>1'1'</u> <u>1'1'</u> <u>5'0'</u> <u>5'0'</u> <u>5'0'</u> <u>5'0'</u> <u>5'0'</u> <u>5'0'</u>	
<u>98'1</u>	10.0 9.0 8.0 7.0 6.0 6.0 10.0 9.0 8.0 7.0 6.0 6.0 10.0 9.0 8.0 7.2 0.0 5.0 5.0 5.0 7.2 0.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

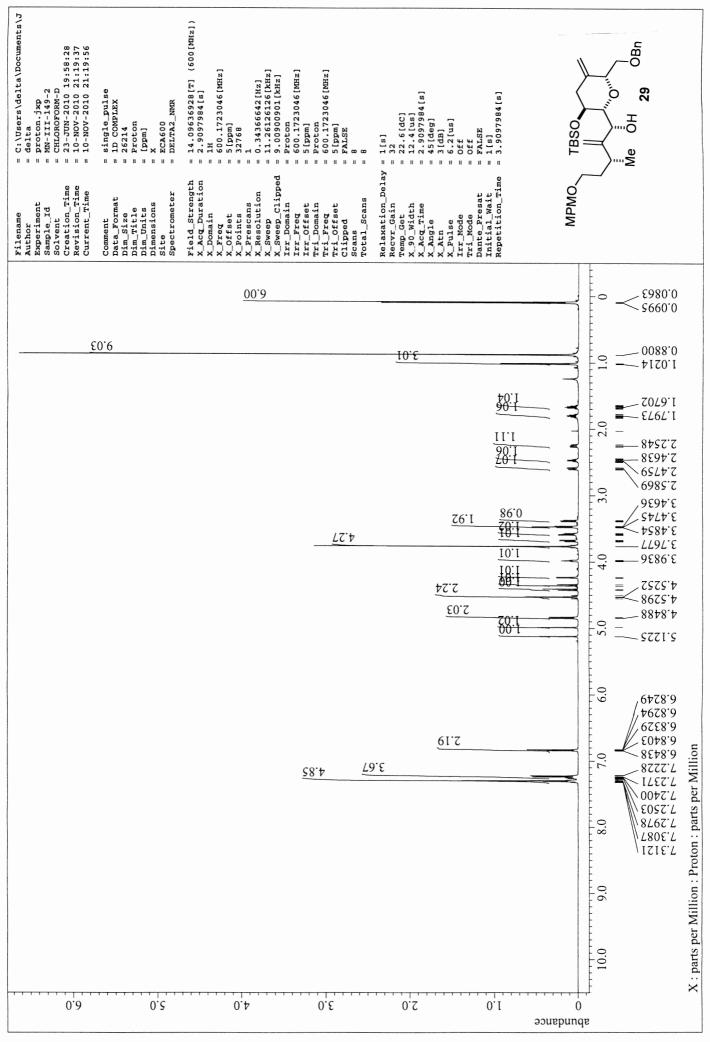

<pre>Filename = C:\Users\delta\Documents\J Author = C:\Users\delta\Documents\J Experiment = proton.jxp Sample_Id = NN-III-94 & 95 Solvent = proton.jxp Sample_Id = NN-III-94 & 95 Solvent = procr-2010 15:57:28 Revision_Time = 8-OCT-2010 17:23:43 Comment = 10-0010 17:23:43 Comment = 11.23:43 Comment = 11.23:43 X_Sweep Clipped = 9.009001 [KHz] X_SWEEP CLIPPED = 11.21261261 [KHz] X_SWEEP CLIPPED = 9.009001 [KH</pre>	Frr. Proton Frr. Freq = 600.1723046 [MHz] Tri. Offset = 5[ppm] Tri. Offset = 5[ppm] Tri. Offset = 5[ppm] Tri. Offset = 5[ppm] Clipped = FALSE Nod. Return = 1 Probe. Recovery = 5[us] Clipped = FALSE Tri. Offset = 12.4 [us] Scans = 8 Total_Scans = 8 Total_Scans = 8 Total_Scans = 8 Total_Scans = 4 Tri. Mode = 0ff Tri. Tri. Tri. Mode = 0ff Tri. Tri. Tri. Tri. Tri. Tri. Tri. Tri.
	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
	X : parts per Million :

<pre>Filename = C:\Users\delta\Documents\J Author = delta Experiment = delta Experiment = carbon.jxp Sample_Id = MN-III-95 Solvent = BENZENE-D6 Creation_Time = 8-0CT-2010 20:40:29 Revision_Time = 8-0CT-2010 21:27:11 Current_Time = 8-0CT-2010 21:27:11</pre>	Comment = single pulse decoupled gat Data_Format = 1D COMPLEX Dim_Size = 26214 Dim_Title = 26214 Dim_Units = [ppm] Dimensions = X Site = ECA600 Spectrometer = DELTA2_NMR	<pre>Field_Strength = 14.09636928[r] (600[MHz]) X_Acq_Duration = 0.69206016[s] X_Domain = 13C X_Freq = 13C.91343039[MHz] X_Freq = 100[ppm] X_Points = 32768 X_Prescans = 4 X_Prescans = 4 X_Resolution = 1,444946109[Hz] X_Resolution = 47.3484486[KHz]</pre>	_Clipped ain set urn ecovery cans	X_90_Width = 8.4[us] X_Acq_Time = 0.69206016[s] X_Angle = 30[deg] X_Atrine = 6.4[db] X_btine = 6.4[db] X_bulse = 2.8[us] Irr_Ath_Noe = 18[db] Irr_Ath_Noe = 18[db]	e ng wait in wait on_Delay = = on_Time	Temp_Get = 23.3[dC]	MPMO 11 SnMe ₃
			·				$\begin{array}{c} -0.4600 \\ -0.000 \\ -0.0000 \\ $
8.0 <i>L</i> .0) 9.0	 ς`0	<i>•••••</i> •••••••••••••••••••••••••••••••		0 I.0		200100.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 200100.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 X : parts per Million : Carbon13 : parts per Million

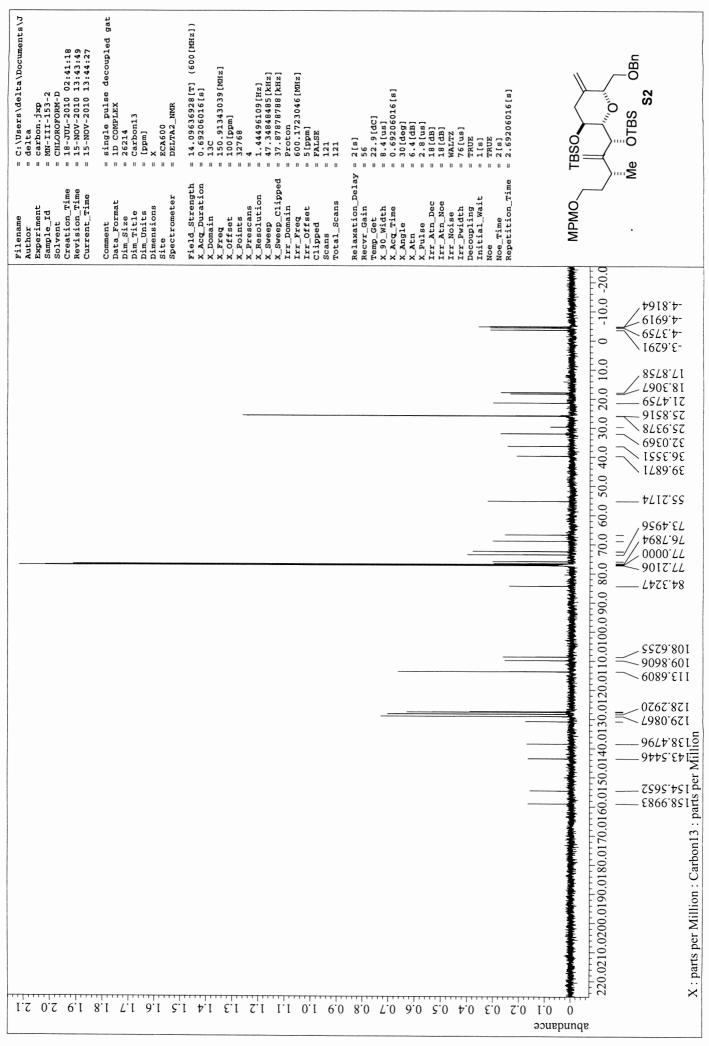

<pre>Filename = C:\Users\delta\Documents\J Author = proton.jxp Experiment = proton.jxp Solvent = mw.T-1900 17:15:48 Solvent = 13-0CT-2010 17:15:48 Comment = 14.09536928[T] (600[MHz]) Comment = 10.09536928[T] (600[MHz]) Comment = 14.09536928[T] (600[MHz]) Comment = 112.04[E] Comment = 112.04[E] Comment = 112.04[E] Comment = 12.4[E] Comment = 2.9997984[E] Comment = 12.4[E] Comment = 112.4[E] Comment = 112.4[E] Comment = 112.4[E] Comment = 2.9979984[E] Comment = 112.4[E] Comment = 112.4[E] Comment = 112.4[E] Comment = 118 Comment = 118 Comment = 2.9979984[E] Comment = 2.9979984</pre>	Bno CHO OTBS 26
<u> </u>	
0.1 81.0 91.2	SE92.1 952.1 952.1 962.1 966.1 966.1 957472 957472 254726 254726 957472
67.7 <u>11.1</u>	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$
	G G G G G G G G G G C L S G C L S G C L S G C L S S S S C L S S S C L S S S C L S S S C L S S S C L S S S C L S S S C L S S S S
<u>tt, t</u>	$\begin{array}{c} 10.0 \\ 10.0 \\ 9.7498 \\ 9.74409 \\ 9.74409 \\ 9.74409 \\ 7.3091 \\ 7.3091 \\ 7.3091 \\ 7.3091 \\ 7.3091 \\ 7.3091 \\ 7.3091 \\ 7.3041 \\ 7.3087 \\ 7.3041 \\ 7.3087 \\ 7.3041 \\ 7.3087 \\ 7.3041 \\ 7.3087 \\ 7.3041 \\ 7.3087 \\ 7.3041 \\ 7.3087 \\ 7.3081$
<u>66'0</u>	X: parts per Million : Pt

<pre>Filename = C:\Users\delta\Documents\J Author = delta Author = delta Experiment = carbon.jxp Sample_Id = MN-I-190 Solvent = cHLOROFONM-D Creation_Time = 13-0CT-2010 05:59:47 Current_Time = 22-NOV-2010 05:58:15 Current_Time = 22-NOV-2010 05:58:15</pre>		<pre>Field_Strength = 14.09636928[r] (600[MHz]) X_Acc_Duration = 0.65206016[s] X_Domain = 13C X_Freq = 150.91343039[MHz] X_Freq = 100[ppm] X_Points = 32768 X_Prescans = 4 44846485[NHz] X_Sweep_clipped = 1.4449409[Hz] X_Sweep_clipped = 37.87878788[NHz] Irr_Offset = 5[ppm] Irr_Offset = 5[ppm] Clipped = 217 month</pre>	Delay =	se nn_Dec ise didth ling ling tl_Wait ftion_rime	BnO	0TBS 26
					0 30.0 20.0 10.0 0 -10.0 -20.0	
					.0.90.0 80.0 70.0 60.0 50.0 40.0	39.4286 9960.07 10.0966 10.000.77 00000.77 00000.77 0000000000
					0.0150.0140.0130.0120.0110.010	arts per Million
0.2	0.4	0°£	5.0	0. I	abundance 220.0210.0200.0190.0180.0170.0160.0150.0140.0130.0120.0110.0100.0 90.0	X : parts per Million : Carbon13 : parts per Million


<pre>Filename = C:\Users\delta\Documents\J Author = delta = delta = delta Experiment = proton.jxp Sample_Id = mNr-1-196 Sourent = mNr-1-196 Coreation_Time = 13-0CT-2010 17:54:05 Creation_Time = 13-0CT-2010 17:54:05 Current_Time = 13-0CT-2010 17:54:13 Comment = 10 Comment = 13-0CT-2010 17:54:13 Comment = 10 Comment = 13-0CT-2010 17:54:13 Comment = 10 Comme</pre>	<pre>trometer 1 Strength 1 Strength 1 Turation 1 turati</pre>	<pre>X_90_Width = 12.4[us] X_Acq_Time = 2.9097984[s] X_Angle = 45[deg] X_Ath = 16[db] X_th = 31[db] X_th = 31[db] X_th = 5.2[us] X_th = 5.2[us] X_th = 5.2[us] X_th = 34 X_th = 54 X_th = 34 X_th = 34 X_th = 34 X_th = 34 Y_th =</pre>	Bno ÖTBS 27
<u>97'6</u>	<u>LI'9</u>		0.08680 0.0657 0.0657 0.0657 0.0657 0.0657 0.06557 0.055777 0.055777 0.055777 0.055777 0.055777 0.055777 0.055777 0.0557777 0.0557777 0.055777777 0.0557777777777777777777777777777777777
		82.1	1.5643 2.25643 1.9204 0 1.9204 0 0 0 0 0 0 0 0 0 0 0 0 0
		07.7	0. − 2040.£ 0. −
			0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
	<u>96.</u> ٤	82.0	L:5237 6852.7 1,0490.7
			X : parts per Million : Proton : parts per Million
0.4.0 13.0 14.0	1 0'01 0'6 0'8 0'2 0'9 0' <u>5</u>	эопависе 1.0 2.0 3.0 4.0 2	0

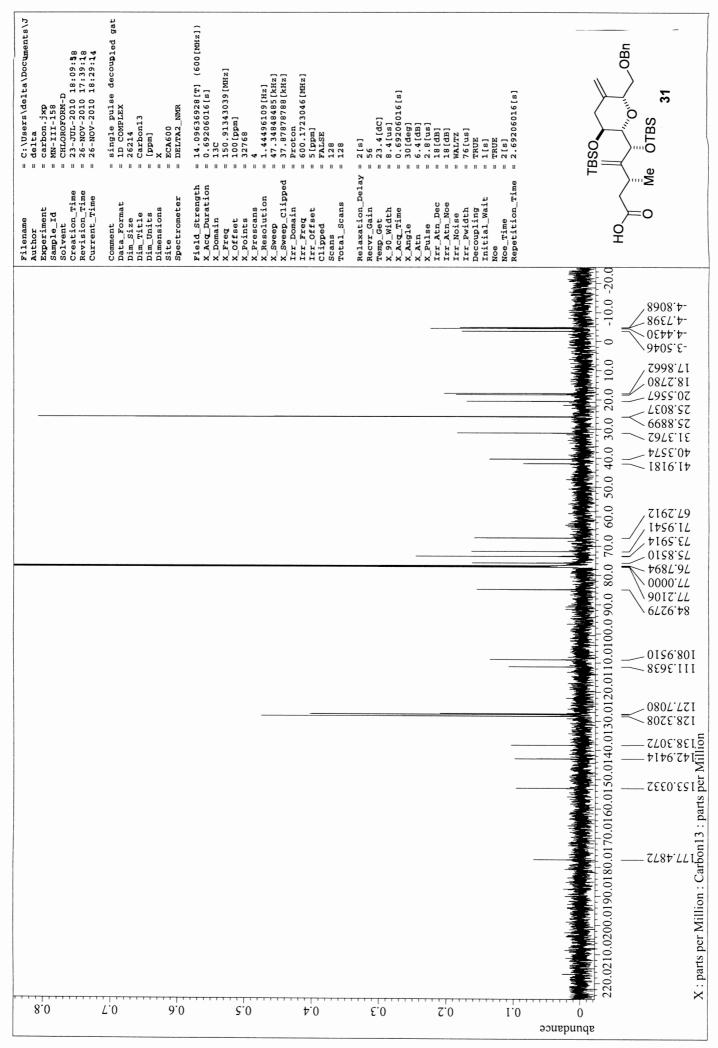


	= 14.0565928[r] (600 [MHz]) = 2.9097984[s] = 1H = 600.1723046[MHz] = 5[ppm] = 32768 = 1.365642[Hz] = 1.365642[Hz] = 1.26526136[KHz] = 1.26126136[KHz] = 1.26126136[KHz] = 1.26123046[MHz] = 1.2612430 = 1.26123046[MHz] = 1.26123046[MHz] = 1.26123046[MHz] = 1.2612304	OTBS 4
Filename Author Experiment Sample_Id Solvent Creation_Time Revision_Time Current_Time Current_Time Current_Time Dia_Size Dia_Size Dia_Units Site Site Spectrometer	<pre>Field.Strength X_Acq_Duration X_Offset X_Offset X_Prescans X_Prescans X_Prescans X_Sweep_clipped Irx_Domain Tri_Preq Tri_Offset Tri_Offset Tri_Offset Tri_Offset Tri_Offset Tri_Domain Tri_Offset Tri_Offset Tri_Offset Tri_Offset Tri_Offset Tri_Offset Tri_Ode Scans X_Angle X_Angle X_Angle X_Angle X_Angle X_Angle Tri_Mode Tri_Tion_Time Temp_Get</pre>	BnO
10.21	<u>67'S</u>	0 2710.1 271
	78.2 78.2 78.2 78.2 78.2 78.2 78.2 78.1 78.2	1.0208 2 1.3907 2 1.3907 2 2.4345 2 2.4345 2 2.008 2 2.008 2 2.009 2
	88.1 56.0 88.1	2.6235 2.6255 2.62555 2.62555 2.62555 2.625555 2.625555 2.625555 2.625555 2.6255555 2.6255555 2.625555555 2.6255555555555555555555555555555555555
	1.00 00.1	4.3631
	<u>65.5</u> <u>58.0</u>	5 Der Million
		10.0 9.0 8.0 7.0 7.0 7.0 7.2834
		10.0 X : parts per l


<pre>Filename = C:\Users\delta\Documents\J Author = delta Author = grunOROFNH-D Sample_Id = MM-TIT-107 Sslvent = grunOROFNH-D Scleation_Time = 27-MX-2010 21:11:29 Reveition_Time = 10-NOV-2010 18:55:09 Reveal = 21:81 Reveal = 21:81</pre>	Me 0 0Bn
5.24 5.24	X: parts per Million
0 I 0 5.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 I0.0 o I 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 I0.0	

<pre>Filename = C:\Users\delta\Documents\J Author = delta Author = delta Sxperiment = carbon.jxp Suple_Id = MN-III-149-2 Solvent = MN-III-149-2 Solvent = 20JW-2010 20:04:49 Revision_Time = 23-UW-2010 12:31:07 Current_Time = 15-NOV-2010 12:31:17 Comment = 10 COMFLEX Data_Format = 26214 Data_F</pre>	<pre>rield_Strength = 14.09636928[T] (600[MHz]) X_Acq_Duration = 0.6206016[s] X_Domain = 13C X_Preseq = 14496109[Hz] X_Preseq = 1.44496109[Hz] Y_Preseq = 1.44496109[Hz] Y_Preseq = 2.70000[Hz] Y_Preseq = 2.050.0</pre>	Relaxation_Delay = 2[s] Recvr_Gain = 56 Temp_Get = 23.4[dc] X_90_width = 8.4[us] X_Acg_Time = 0.69206016[s] X_Argle = 30[deg] X_Atl = 6.4[dB] X_Pulse = 30[deg] X_Pulse = 2.8[us] Trr_Atn_Dec = 18[dB] Trr_Atn_Dec = 18[dB] Trr_Atn_Noe = 18[dB] Trr_Atn_Noe = 18[dB] Trr_Pwidth = 76[us] Decoupling = TRUE Noe = 2[s] Noe = 2[s] Repetition_Time = 2.69206016[s]	MPMO TBSO Me OH 29 OBn
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	-		109.6595 1138.1828 1138.1828 113.0906 100.05095 113.0906 100.05095 113.0906 100.0000 100.0000 100.0000 100.000 100.000 100.00
0.2 6.1 8.1 7.1 8.1 2.1	₽'I €'I Z'I I'I 0'I 6'0	8°0 ∠°0 9°0 S°0 ⊅°0 €°0 Z	

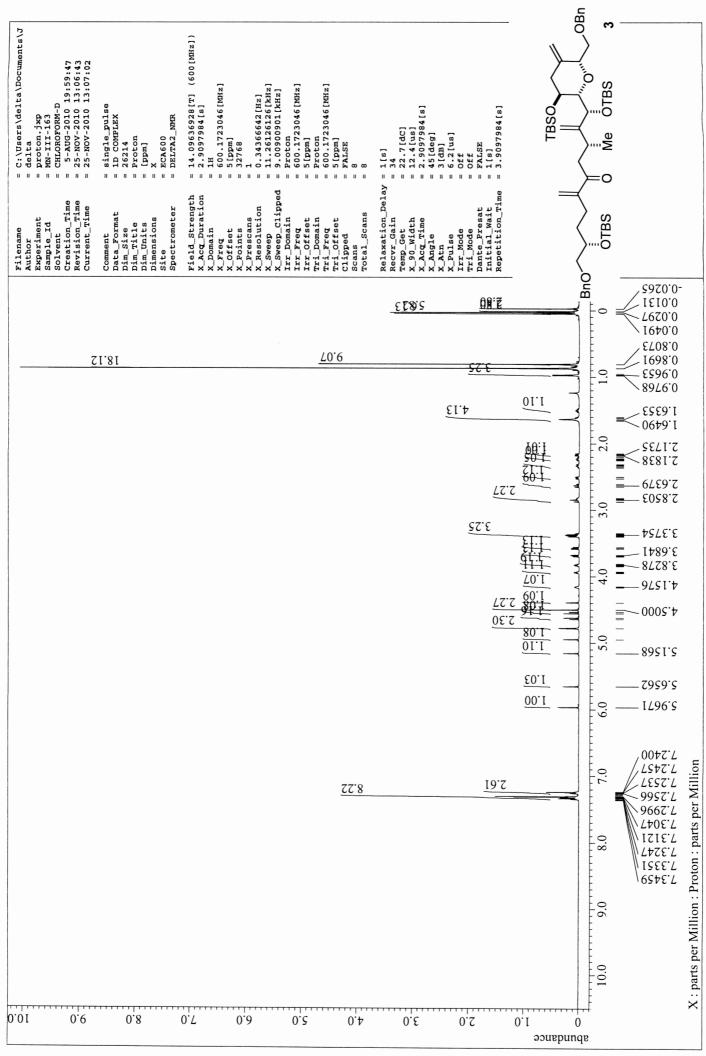
<pre>Filename = C:\Users\delta\Documents\J Author = proton_jxp Sample_Id = mw.rIT-153-2 Solvent = proton_jxp Sample_Id = mw.rIT-153-2 Solvent = proton_syp Sample_Id = mw.rIT-153-2 Solvent = proton_syp Subments_10_02:38:52 Revision_Time = 10-NOV-2010 21:36:35 Current_Time = 14.0955928[T] (600[MHz]) X_Acq_Durration = 14.0955928[T] (600[MHz]) X_Acq_Durration = 14.0955928[T] (600[MHz]) X_Acq_Durration = 14.0955642[Hz] X_Acq_Durration = 14.095642[Hz] X_Acq_Durration = 11.26126156[KHz] X_Pommin = 1 X_Prescans X_Resolution = 11.26126126[KHz] X_Pommin = 12.4[K] X_POMMin = 118] X_</pre>	
6166 <u>9166</u> <u>9166</u> <u>917</u> <u>917</u> <u>916</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u>917</u> <u></u>	X: parts per Million
0 I.0 2.0 3.0 4.0	

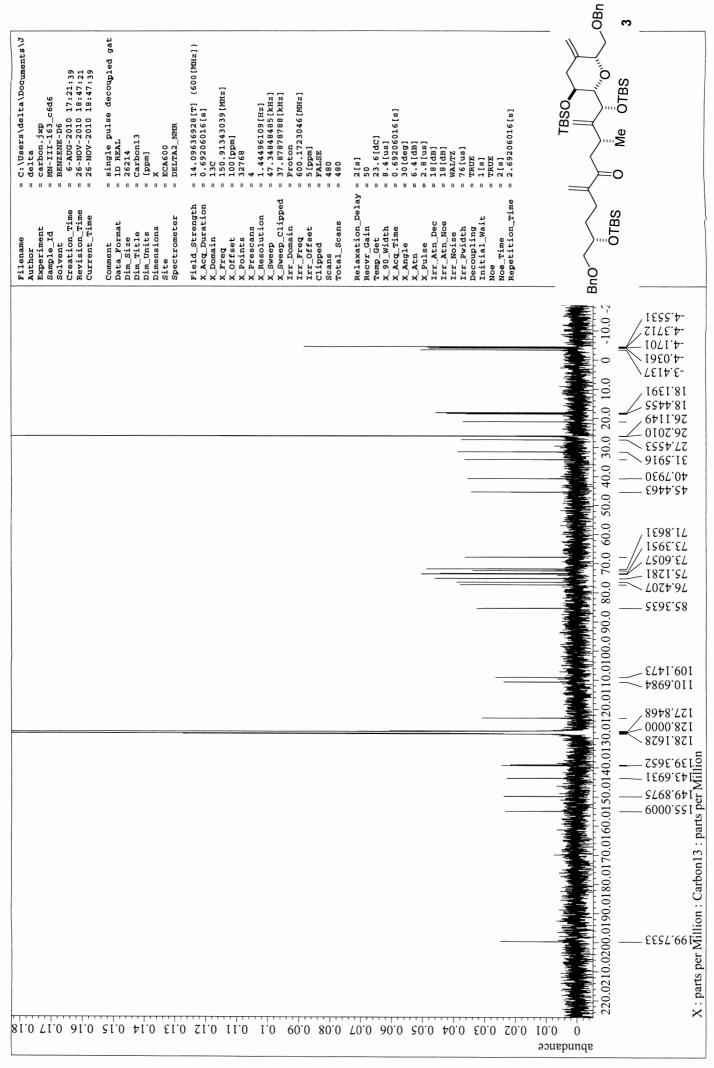


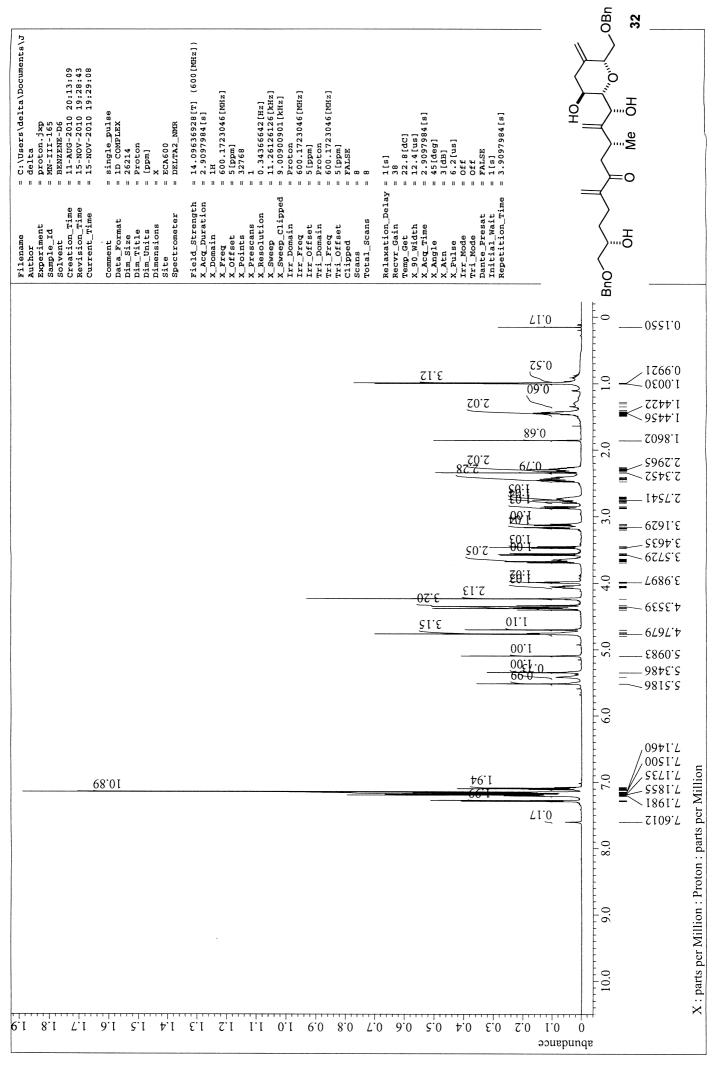
여 대 대 대 대 대 대 대 대 대 대 대 대 대 대 대 대 대 대 대	<pre>Dim_Size = 26214 Dim_Title = Proton Dim_Units = [ppm] Dimensions = X Site = DELTA2_NNR</pre>	ngth tion on ipped = = = = = = = = = = = = = = = = = = =	Tri_Domain = Proton Tri_Freq = 600.1723046[MHz] Tri_Offset = 5[ppm] Clipped = FALSE Scans = 8 Total_Scans = 8 Relaxation Delay = 1[s]		BS	Me OTBS 30	
<u> </u>		<u>L0'9</u>	<u>60.</u>	<u><u><u>3</u>8:</u><u>7</u> <u><u>46:</u>7 <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u></u></u>		$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	X : parts per Million : Proton : parts per Million
0.7 0	; ;9	0.2 0.4	0.£	0.2 0	I 0 Dindance		^

r

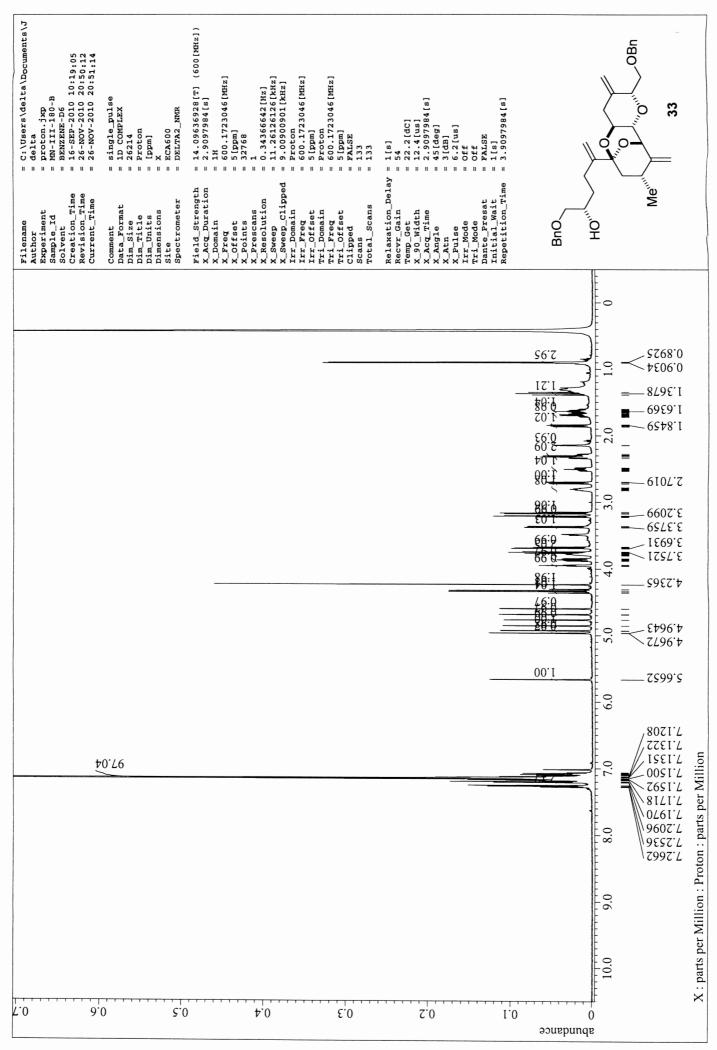
<pre>Filename = C:/Users/delta/Documents/J Author Experiment = carbon.jxp Sample_Id = delta = delta Sample_Id = curbon.jxp Experiment = nur_115, Current.Time = 19-JUL-2010 00:35:50 Current.Time = 19-JUL-2010 00:35:50 Comment = 19-JUL-2010 00:35:50 Dim_Tita = 19-JUL-2010 00:35:50 Comment = 19-JUL-2010 00:35:50 Dim_Tita = 19-JUL-2010 00:35:50 Dim_Tita = 19-JUL-2010 00:35:50 Dim_Tita = 19-JUL-2010 00:35:50 Comment = 10-CURLEX Data_Format = 19-JUL-2010 00:35:50 Comment = 10-CURLEX Dim_Size = 20:13 Dim_Tita = 19-JUL-2010 00:35:50 Comment = 10.0000 Dim_Tita = 10.0000 Spectronmeter = 10.0000 Spectronmeter = 10.0000 Spectronmeter = 10.059208[T] (600[MHz]) X_ACC_Duration = 0.69208[T] (600[MHz]) X_ACC_Duration = 0.69208[T] (500[MHz]) X_CCTime = 11.44986[D9[Hz] X_Points = 20[Us] X_Points = 2.8[Us] Tr_JUDec = 181 Current.Toffset = 2.8[Us] Tr_JUDec = 181 Cotal_Scans = 2.8[Us] Tr_JUDec = 18[db] Tr_JUDec = 28 Noe_Time = 2.65 Repetition_Time = 2.65 Repetition_Time = 2.8[dc] Temp_Get = 23[dc] Temp_Get = 23[dc] Temp_Get = 23[dc] Tr_MUDEC =</pre>	HO TBSO Me OTBS 30
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

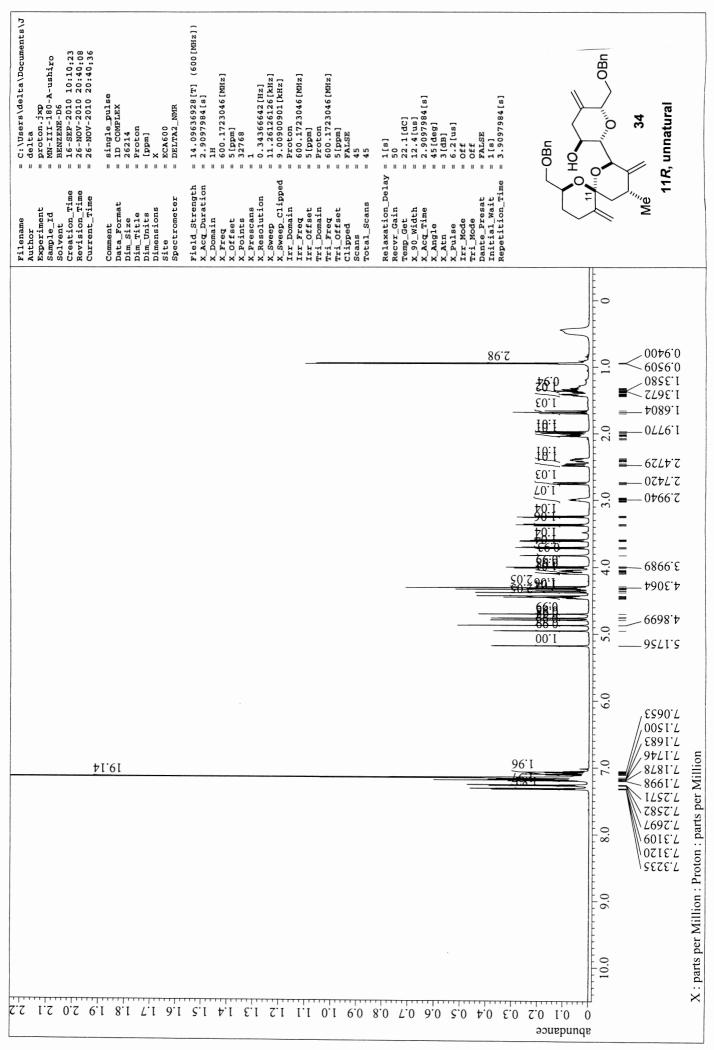

<pre>Filename = C:\Users\delta\Documents\J Author = delta = delta Experiment = proton.jxp Sample_Id = mw-rII-158 Solvent = mw-rII-158 Creation_Time = 23-JUL-2010 18:14:09 Revision_Time = 23-JUL-2010 18:14:09 Revision_Time = 23-JUL-2010 18:14:09 Current_Time = 23-JUL-2010 18:14:09 Current_Time = 23-JUL-2010 18:14:09 Current_Time = 23-JUL-2010 18:14:09 Current_Time = 23-JUL-2010 18:14:09 Solvent_Time = 23-JUL-2010 18:14:09 Current_Time = 23-JUL-2010 18:14:09 C</pre>	<pre>Field_Strength = 14.09636928[T] (600[WHz]) X_Acc_Duration = 2.9097984[s] X_Domain = 1H. X_Freq = 600.1723046[WHz] X_Offset = 5[ppm] X_Points = 32768 32768 1.1261562[Hz] X_Reep = 1.126156[Hz] X_Reep = 1.126156[Hz] X_Sweep = 1.126156[Hz] X_Sweep = 1.126156[Hz] Trr_Domain = 1.126156[Hz] Trr_Offset = 9.0090301[HHz] Trr_Offset = 5[ppm] Tri_Freq = 600.1723046[WHz] Tri_Freq = 600.1723046[WHz] Tri_Freq = 600.1723046[WHz] Tri_Offset = 5[ppm] Tri_Domain = 1.26156[Hz] Tri_Offset = 5[ppm] Tri_Freq = 600.1723046[WHz] Tri_Offset = 5[ppm] Tri_Domain = 1.20000001[HHz] Tri_Freq = 600.1723046[WHz] Tri_Freq = 600.1723046[WHz] Tri_Freq = 5[ppm] Tri_</pre>	X_{-90} -Width = 12.4[us] X_{-} Acq_Time = 2.9097984[s] X_{-} Angle = 45[deg] X_{-} Angle = 45[deg] X_{-} Ans = 3(dB] X_{-} Ans = 0ff Irr_Mode = 6.2[us] Irr_Mode = 0ff Irr_Mode = 0ff Irr_Mode = 1[s] Revr_Gain = 3.9097984[s] Repetition_Time = 22.5[dC] Temp_Get = 22.5[dC]	HO HO Me OTBS 31
<u></u>	<u>96'E</u>	2382 58°2 50°2 50°1	X: parts per Million : Proton : parts per Million X : parts per Million : Proton : parts per Million X : parts per Million Y = per P

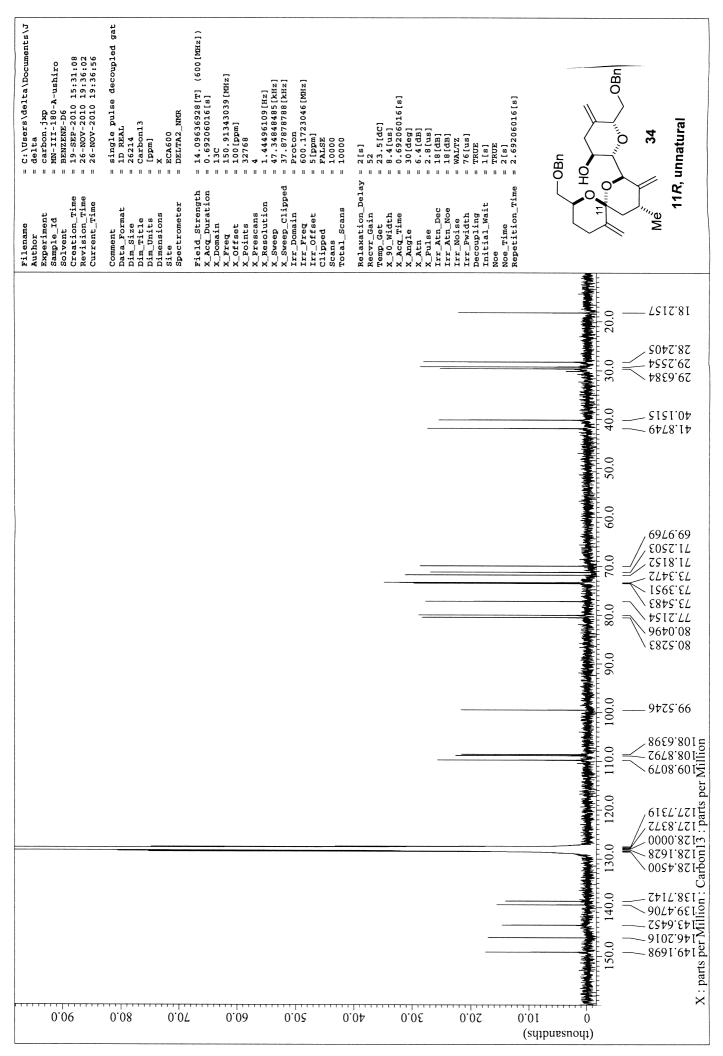


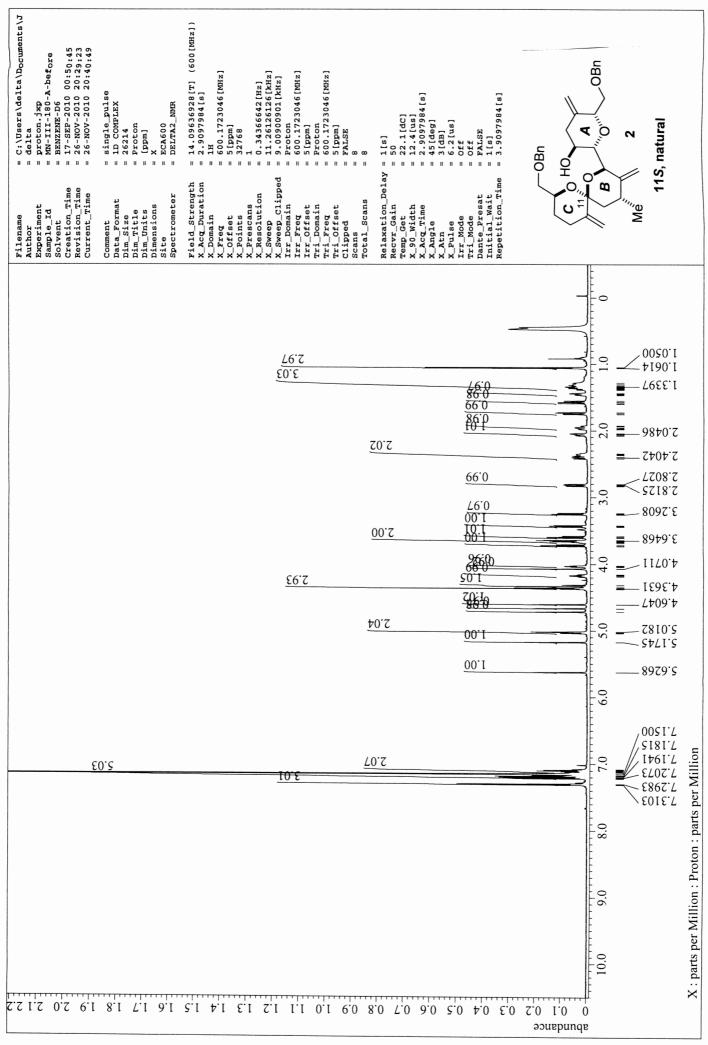

<pre>Filename = C:\Users\delta\Documents\J Author Sampleriment = Month-III-60 Sampleriment = MN-III-160 Samplerime = 28-UUL-2010 13:29:12 Current_Time = 28-UUL-2010 13:29:12 Current_Time = 28-UUL-2010 13:29:12 Current_Time = 28-UUL-2010 13:29:12 Comment = single_Pulse Time = 28-UUL-2010 13:29:12 Comment = single_Pulse Dim_Title = 28-UUL-2010 13:29:12 Comment = single_Pulse Dim_Title = 28-UUL-2010 13:29:12 Comment = single_Pulse Dim_Title = 28-UUL-2010 13:29:12 Comment = 10 COMPLEX Dim_Title = 10 COMPLEX Dim_Title = 10 COMPLEX Dim_Units = 10 COMPLEX Dim_Dimensions = 2.9097984[s] X_Pread = 11.26[2126[KHz] X_Pread = 11.26[2126[KHz] X_Pread = 11.26[2126[KHz] Trr_Offset = 10.030001[KHz] Trr_Offset = 11.20001173046[MHz] Trr_Offset = 11.20001123046[MHz] Trr_Offset = 11.20001123046[MHz] Trr_Offset = 11.20001123046[MHz] Trr_Offset = 11.26[220] Trr_Offset = 11.26[200] Trr_Offs</pre>	
<u>3.50</u> <u>5.40</u> <u>8.88</u>	0.0102 0.0582 0.0582 0.0582 0.0582 0.0582 0.0572
001 001 008 008 008 008 008 008	1.2453 → 1.2453
<u>51.2</u> <u>91.6</u> <u>56.1</u>	9.0 8.0 7.0 6.0 9.0 8.0 7.0 6.0 7.1764 7.3454 7.7777.25658 X : parts per Million : Proton : parts per Million

.


<pre>Filename = C:\USers\delta\Documents\J Author = delta = delta Experiment = carbon.jxp Sample_Id = MN-III-160 Sample_Id = MN-III-160 Creation_Time = 28-UUL-2010 13:37:09 Current_Time = 28-UUL-2010 13:37:09 Current_Time = 28-UUL-2010 13:37:09 Comment = single pulse decoupled gat Data_Format = 1D COMFLEX Data_Format = 1D COMFLEX Dim_Units = [ppm] Dim_Units = [ppm] Site = EA600 Solor = DATA_DOMENT </pre>	<pre>ield_Strength = Acq_Duration = Domain = Treq = Forestans = Points = Points = Sweep_Clipped = rr_Freq = rr_Offset = lipped = inped = rr_Offset = lipped = rr_Offset = lipped = rr_Offset = lipped = sans = otal_Scans = sans =</pre>	<pre>X_90_Width = 8.4[us] X_Acq_Time = 0.69206016[s] X_Angle = 0.69206016[s] X_Angle = 0.614[dB] X_tan = 6.4[dB] Irr_Ath_Dec = 18[dB] Irr_Ath_Nee = 18[dB] Irr_Noise = 2.8[us] Irr_Noise = 18[dB] Irr_Noise = 18[dB] Irr_Noise = 18[dB] Irr_Noise = 18[dB] Irr_Noise = 18[dB] Irr_Noise = 18[dB] Irr_Noise = 2.6[us] Nee True = 2[s] Nee True = 2[s] Repetition_Time = 23.4[dC] Temp_det = 23.4[dC]</pre>	
			X:196.8378 -4.031 X:196.8378 -4.6823 -3.4855 -4.6823 -3.4855 -4.6823 -3.4855 -4.6823 -3.285612 - 0 -3.26848 - 0 -3.26848 - 0 -3.26848 - 0 -3.26848 - 0 -10.0 - 0 -3.26848 - 0 -10.0 - 0 -2.4855 -2.48513 - 0 -2.0 - 0 -10.0 - 0 -2.0 -






b			33 OBn
<pre>c:\Users\delta\Documents\J carbon.jxp carbon.jxp mn-TII-165 m</pre>	<pre>= 14.09636928[T] (600[WHz]) = 0.6206016[s] = 13C = 13C = 150.91343039[MHz] = 100[Dpm] = 300[Brz] = 3276B = 4 47.3484485[KHz] = 47.3484485[KHz] = 37.87878788[KHz] = 37.8787888[KHz] = 27.050 = 600.1723046[MHz] = 1 = 188 = 188</pre>	= 8.4[us] = 0.69206016[s] = 30[deg] = 6.4[dB] = 2.8[us] = 18[dB] = 18[dB] = 18[dB] = 18[dB] = 18[dB] = 2.6[us] = 76[us] = 76[us] = 1[s] = 1[s] = 1[s] = 2[s] = 2[s] = 2.5206016[s] = 2.530616[s]	O Me OH
Filename Author Experiment Sample_Id Solvent Creation_Time Revision_Time Current_Time Current_Time Current_Time Dim_Dite Dim_Title Dim_Title Dim_Title Dim_Title Site Site	Field_Strength X_Acc_Duration X_Domain X_Preset X_Points X_Prescans X_Sweep_clipped Irr_Domain Irr_Offset Clipped Mod_Return Mod_Return Probe_Recovery Scans Total_Scans	X_90_Width X_Acc_Time X_Angle X_Angle X_Pulse Irr_Atn_Dec Irr_Noie Irr_Noie Irr_Noie Irr_Noie Irr_Noie Irr_Noie Irr_Noie Recupling Noe-Time Recur_Gain Relaxation_Delay Repatition_Time Temp_Get	E E
			Z20.0210.0200.0190.0180.0170.0160.0150.0140.0130.0120.0110.0100.0 90.0 80.0 70.0 60.0 20.0 10.0 0 -10.0 0 -10.0 20.0 10.0 0 -10.0 0 -10.0 0 -10.0 0 -10.0 0 -10.0 20.0 10.0 0 -10.0 0 -10.0 20.0 10.0 0 -10.0 0 -10.0 20.0 10.0 0 -10.0 0 -10.0 20.0 10.0 0 -10.0 0 -10.0 20.0 10.0 0 -10.0 0 -10.0 20.0 10.0 0 -10.0 0 -10.0 20.0 10.0 0 -10.0 0 -10.0 20.0 10.0 0 -10.0 0 -10.0 20.0 10.0 0 -10.0 0 -10.0 0 -10.0 0 -10.0 0 -10.0 0 -10.0 0 -10.0 0 -10.0 0 -10.0 0 -10.0 0 -10.0 0 -10.0 0 -10.0 0 -10.0 0 -10.0 0 -10.0 0 -10.0 0 -10.0 0 -10.0 0

<pre>Filename = C:\Users\delta\Documents\J Author = delta Experiment = delta Experiment = carbon.jxp Sample_Id = MN-III-180-B Solvent = BENZENE-D6 Creation_Time = 20-SEP-2010 20:32:33 Revision_Time = 26-NOV-2010 19:14:43 Current_Time = 26-NOV-2010 19:14:43</pre>	Comment = single pulse decoupled gat Data_Format = 1D REAL Dim_Zize = 26214 Dim_Title = Carbon13 Dim_Units = [ppm] Dim_Units = X Site = ECA600 Spectrometer = DELTA2_NMR	ngth tion = = = = = = = = = = = = = = = = = = =	ns contron in et et et et et et	Delay = = =	$X_{AACQ_{TTME}} = 0.69200016[s]$ $X_{AhD} = 30(deg]$ $X_{Pulse} = 6.4(dB]$ $X_{Pulse} = 2.8[us]$ $Irr_{Ahn_Dec} = 18(dB]$ $Irr_{Ahn_Oee} = 18(dB]$ $Trr_{Ahn_Oee} = 18(dB)$	a pada Lit t a a a a a a a a a a a a a a a a a a	I	HO	33
									70.0 60.0 50.0 40.0 30.0 20.0
									130.0 120.0 110.0 100.0 90.0 80.0 bonl3 : parts per Million
0.11 0.0	I 0'6	0.8 0.	L 0'9	0' <i>S</i>	0.4 0.	Ξ ΞΞΞΞ-Ξ-Ξ-Ξ-Ξ-Ξ-Ξ-Ξ-Ξ			X: parts per Million : Ca

<pre>Filename = C:\Users\delta\Documents\J Author = delta = delta Experiment = carbon.jxp Sample_Id = NU-III-180-A-before Solvent = NU-III-180-A-before Solvent = 17-SEP-2010 00:53:05 Revision_Time = 17-SEP-2010 19:40:13 Creation_Time = 26-NOV-2010 19:40:13 Current_Time = 26-NOV-2010 19:41:02 Comment = single pulse decoupled gat Data_Format = 10 REAL Data_Format = 10 REAL Data_Format = 26214 Dim_Title = 26214 Dim_Units = [ppm] Dim_Units = ECAOO Spectrometer = ECAOO Spectrometer = DELTA_NMR</pre>	<pre>Field_Strength = 14.09636928[T] (600[MHz]) X_Acd_Duration = 0.69206016[s] X_Domain = 13C X_Freq = 13C A_Freq = 100[Dpm] A_Freq = 100[Dpm] A_Freq = 100[Dpm] A_Freq = 14496109[Hz] X_Prescans = 1.44496109[Hz] X_Prescans = 4 A_7.34848485[KHz] X_Prescans = 1.44496109[Hz] X_Prescans = 1.44496109[Hz] X_Prescans = 4 A_7.34848485[KHz] X_Prescans = 1.44496109[Hz] X_Freq = 600.1723046[MHz] Irr_Domain = Proton Irr_Domain = Proton Irr_Offset = F1DS Cans = 10921 Total_Scans = 10921</pre>	<pre>Relaxation_Delay = 2[s] Recvr_Gain = 50 Temp_Get = 23.1dc] Temp_Get = 23.1dc] X_90_Width = 8.4[us] X_Angle = 0.69206016[s] X_Angle = 30[deg] X_Angle = 30[deg] X_Antle = 2.8[us] Tr_Pulse = 30[deg] Tr_Puise = 2.8[us] Tr_Pwidth = 76[us] Trr_Pwidth = 76[us] Trr_Pwidth = 76[us] Trr_Pwidth = 1[s] No Ne_Time = 2.69206016[s] Repetition_Time = 2.69206016[s]</pre>	Me 2 11S, natural
			$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$
			0.0 2000 2
			0.00 100 100 100 100 100 100 100
			X : parts per Million : Carbon 130.00 130.00 120.00
0.0£	50.0	0.01	0 (thousandfina)