Asymmetric Total Synthesis of (+)-Danicalipin A

Takehiko Yoshimitsu,* Ryo Nakatani, Akihiro Kobayashi, Tetsuaki Tanaka
Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan yoshimit@phs.osaka-u.ac.jp
\section*{Supporting Information}

General Procedures S2
Epoxy alcohol 6 and Pivalate 7: S2
Dichloride 8 and Dichloro alcohol 9: S3
Determination of the relative configuration of dichloride 9: S4
Dichloro alcohol anti-10 and syn-10: S4
Determination of the relative configuration of anti-10: S5
Determination of the relative configuration of syn-10: S6
Enzymatic enantio-enrichment of anti-10: S6
Synthesis of C1-C11 fragment (Compound 5): S7
Dichloro alcohol 13: S7
Imine 12: S8
Aldehyde S4: S8
TBS ether 14: S8
Compound 15: S9
Iodide 16: S9
Nitro compound 5: S10
Synthesis of C12-C22 gragment (Compound 4): S10
Isoxazoline anti-3 and syn-3: S11
Aldol S5: S12
Diol anti-2 and syn-2: S13
Benzylidene acetal anti-19: S14
Determination of stereochemistry of compound 19 via Payne rearrangement: S15
TBS ether 17: S18
Diol 18: S19
(+)-Danicalipin A S20
Acetonide anti-20: S20
Acetonide syn-21: S21
${ }^{1} \mathrm{H}$ NMR $/{ }^{13} \mathrm{C}$ NMR Spectra: S22
Comparison of ${ }^{1} \mathrm{H} N M R /{ }^{13} \mathrm{C}$ NMR Spectra of Synthetic and Natural Danicalipin A: S95-96
Determination of ees of epoxyalcohol 6 and vinyl alcohol $\mathbf{1 0}$ by Mosher Method S97-99
Determination of diastereoselectivity (ds) of compound $\mathbf{1 0}, \mathbf{3}$, and $\mathbf{2}$ by ${ }^{1} \mathrm{H}$ NMR analysis of the crude mixtures S100-102

General: Melting points are uncorrected. All reagents were used as received from commercial suppliers unless otherwise noted. ${ }^{1} \mathrm{H}$ NMR spectra (500, 400 or 300 MHz) and ${ }^{13} \mathrm{C}$ NMR spectra (125, 100 or 75 MHz) were measured in the specified solvents. Chemical shifts are reported in ppm relative to the internal solvent signal [chloroform- d : $7.26\left({ }^{1} \mathrm{H}\right.$ NMR $), 77.0\left({ }^{13} \mathrm{C}\right.$ NMR $)$; methanol- $d_{4} ; 3.30\left({ }^{1} \mathrm{H}\right.$ NMR $)$, $49.0\left({ }^{13} \mathrm{C}\right.$ NMR $)$]. The proton signal of TMS (0.00 ppm) was also used in some cases as the internal standard for ${ }^{1} \mathrm{H}$ NMR spectra. FT-IR spectra were recorded for samples loaded as neat films on NaCl plates. Mass spectra were obtained according to the specified technique. Analytical thin layer chromatography (TLC) was performed using Kieselgel60F 254 2, and compounds were visualized with UV light, anisaldehyde solution, phosphomolybdic acid in EtOH , iodine, or KMnO_{4} solution.

Synthesis of epoxy alcohol 6:

[(2R,3S)-3-Hexyloxiran-2-yl]methanol (6): To a magnetically stirred suspension of $4 \AA \mathrm{MS}(3.2 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(180 \mathrm{~mL})$ at $-25^{\circ} \mathrm{C}$ were added D-diethyl tartrate $(0.86 \mathrm{~mL}, 5.06 \mathrm{mmol})$ and $\mathrm{Ti}(\mathrm{O} i-\mathrm{Pr})_{4}(0.93$ $\mathrm{mL}, 3.17 \mathrm{mmol}$). After 1 h , TBHP ($\sim 5.5 \mathrm{M}$ in decane with molecular sieve $4 \AA, 7.8 \mathrm{~mL}, 42.2 \mathrm{mmol}$) was added, and stirring was continued for an additional 35 min . To the mixture was added a solution of (Z)-non-2-en-1-ol ($3.0 \mathrm{~g}, 21.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, and the mixture was stirred at $-25^{\circ} \mathrm{C}$ for further 13 h . Following addition of brine and a 10% aqueous solution of NaOH , the mixture was allowed to warm to room temperature. After 30 min , Celite was added, and stirring was continued for further 3 h . The mixture was filtered through a Celite pad, and the filtrate was concentrated by rotary evaporation. The residue was purified by flash silica gel column chromatography (EtOAc/n-hexane $1: 4)$ to give epoxide $6(3.12 \mathrm{~g}, 93 \%)$ as a colorless oil. The enantiomeric purity of this material was determined by Mosher method to be 80% ee. $[\alpha]^{26}{ }_{\mathrm{D}}+3.3\left(c 0.66, \mathrm{CHCl}_{3}, 80 \%\right.$ ee) $\left[\right.$ lit. ${ }^{1 \mathrm{~b}}[\alpha]^{25}{ }_{\mathrm{D}}+2.5(c$ $\left.\left.2.2, \mathrm{CHCl}_{3}, 90 \% \mathrm{ee}\right)\right]$ All the spectroscopic data of this compound were in good agreement with those recorded in the literature. ${ }^{\text {1a,b }}$

[(2R,3S)-3-Hexyloxiran-2-yl]methyl pivalate (7): To a stirred solution of epoxide 6 ($623 \mathrm{mg}, 3.94$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at room temperature were added $\mathrm{Et}_{3} \mathrm{~N}(0.82 \mathrm{~mL}, 5.91 \mathrm{mmol})$, pivaloyl chloride ($0.64 \mathrm{~mL}, 5.12 \mathrm{mmol}$), and DMAP ($48.1 \mathrm{mg}, 0.39 \mathrm{mmol}$). After 2.8 h , the mixture was poured into a separatory funnel where it was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and sat. NaHCO_{3}. The organic phase was separated, dried over MgSO_{4}, filtered, and concentrated. Purification of the residue
by flash silica gel column chromatography (EtOAc / n-hexane $1: 10$) gave epoxide $7(905 \mathrm{mg}, 95 \%)$ as a pale yellow oil. Epoxide 7: pale yellow oil; $[\alpha]^{21}{ }_{\mathrm{D}}+9.2$ (c $1.38, \mathrm{CHCl}_{3}, 80 \%$ ee); IR (neat) v 2959, $2930,1734,1283,1148 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 4.29(\mathrm{dd}, 1 \mathrm{H}, J=12.1,4.4 \mathrm{~Hz}), 4.05$ $(\mathrm{dd}, 1 \mathrm{H}, J=12.1,6.8 \mathrm{~Hz}), 3.17(\mathrm{ddd}, 1 \mathrm{H}, J=6.8,4.4,4.4 \mathrm{~Hz}), 3.01(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.25(\mathrm{~m}, 10 \mathrm{H}), 1.23$ $(\mathrm{s}, 9 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 178.4,62.7,56.4,53.8,38.7,31.7$, 29.0, 28.0, 27.1 (overlapped, $3 \times \mathrm{C}$), 26.5, 22.5, 14.0; MS m/z: $243[\mathrm{M}+\mathrm{H}]^{+}, 57$ (100%); HRMS (FAB) calcd for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$243.1960, found: 243.1976.

(2S,3R)-2,3-Dichlorononyl pivalate (8): To a stirred solution of epoxide 7 ($891 \mathrm{mg}, 3.68 \mathrm{mmol}$) in toluene $(40 \mathrm{~mL})$ at room temperature were added $\mathrm{Ph}_{3} \mathrm{P}(2.89 \mathrm{~g}, 11.0 \mathrm{mmol})$ and $\mathrm{NCS}(1.47 \mathrm{~g}, 11.0$ $\mathrm{mmol})$. The mixture was heated at $90^{\circ} \mathrm{C}$ for 1.5 h , and then an additional amount of NCS $(0.49 \mathrm{~g}, 3.68$ mmol) was added. After 1 h , the mixture was cooled with an ice bath and treated with sat. NaHCO_{3} and TBHP (80% solution in di-tert-butylperoxide, $0.92 \mathrm{~mL}, 7.36 \mathrm{mmol}$). The mixture was poured into a separatory funnel where it was partitioned between EtOAc and sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The organic phase was separated, dried over MgSO_{4}, filtered, and concentrated. The residue was purified by flash silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / n\right.$-hexane $\left.1: 20\right)$ to give dichloride $\mathbf{8}(936 \mathrm{mg}, 86 \%)$ as a colorless oil. Dichloride 8: colorless oil; $[\alpha]^{22}{ }_{\mathrm{D}}+8.4$ (c 1.06, $\mathrm{CHCl}_{3}, 80 \%$ ee); IR (neat) v 2959, 2930, 2861, 1738, $1479,1460,1283,1152 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 4.50(\mathrm{dd}, 1 \mathrm{H}, J=12.1,3.8 \mathrm{~Hz}), 4.38$ $(\mathrm{dd}, 1 \mathrm{H}, J=12.1,5.9 \mathrm{~Hz}), 4.16(\mathrm{ddd}, 1 \mathrm{H}, J=7.5,5.9,3.8 \mathrm{~Hz}), 4.06(\mathrm{ddd}, 1 \mathrm{H}, J=9.2,7.5,2.7 \mathrm{~Hz})$, $2.02(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.57(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.15(\mathrm{~m}, 7 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{t}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 177.8,65.1,62.2,61.6,38.8,34.6,31.5,28.5,27.0$ (overlapped, $3 \times \mathrm{C}$), 25.6, 22.5, 14.0; MS m/z: $297[\mathrm{M}+\mathrm{H}]^{+}, 57$ (100%); HRMS (FAB) calcd for $\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{O}_{2}{ }^{35} \mathrm{Cl}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 297.1388, found: 297.1407.

9
(2S,3R)-2,3-Dichlorononan-1-ol (9): To a stirred solution of dichloride $\mathbf{8}$ (907 mg, 3.05 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $\operatorname{DIBAL}(1.03 \mathrm{M}$ in n-hexane, $6.8 \mathrm{~mL}, 7.02 \mathrm{mmol})$. After 20 min , sat. $\mathrm{NH}_{4} \mathrm{Cl}$ was added, and the mixture was stirred at room temperature for 30 min . Celite was added to the solution, and the mixture was stirred for further 11 h and then filtered through a Celite pad. The filtrate was concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography (EtOAc/n-hexane 1:10) to give alcohol 9 ($608 \mathrm{mg}, 94 \%$) as a colorless oil. Alcohol 9:
colorless oil; $[\alpha]^{23}{ }_{\mathrm{D}}+31.3$ (c 1.03, $\mathrm{CHCl}_{3}, 80 \%$ ee); IR (neat) v 3366, 2955, 2928, 2859, 1458, 1067, $656 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 4.15-4.00(\mathrm{~m}, 4 \mathrm{H}), 2.06(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{t}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz})$, $1.78(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.25(\mathrm{~m}, 7 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 66.4,64.5,61.8,34.9,31.6,28.6,25.5,22.5,14.0 ; \mathrm{MS} \mathrm{m} / z: 146\left[\mathrm{M}-\mathrm{CH}_{3} \mathrm{OCl}\right]^{+}, 146$ (100\%); HRMS (EI) calcd for $\mathrm{C}_{8} \mathrm{H}_{15}{ }^{35} \mathrm{Cl}\left[\mathrm{M}-\mathrm{CH}_{3} \mathrm{OCl}\right]^{+}$146.0862, found: 146.0866.

Determination of the relative configuration of dichloride 9:

To a stirred solution of dichloride $9(9.5 \mathrm{mg}, 0.045 \mathrm{mmol})$ in HMPA $(1.0 \mathrm{~mL})$ at room temperature was added $\mathrm{NaI}(134 \mathrm{mg}, 0.89 \mathrm{mmol})$. The mixture was heated at $160^{\circ} \mathrm{C}$ for 1 h . After cooling, the mixture was poured into a separatory funnel where it was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The organic phase was separated, dried over MgSO_{4}, filtered, and concentrated. The residue was purified by flash silica gel column chromatography (EtOAc/n-hexane 1:4) to give alcohol S1 (6.7 mg , quant.) as a colorless oil. The material was identical in all respect with the authentic (Z)-allylic alcohol that was used as the starting material of the epoxidation reaction. The identity of alcohol S1 obtained by the above-mentioned procedure was further confirmed by its transformation into cis-epoxide $\mathbf{6}$ with m CPBA.

(3S,4S,5R)-4,5-Dichloroundec-1-en-3-ol (anti-10), (3R,4S,5R)-4,5-Dichloroundec-1-en-3-ol (syn10): To a stirred solution of alcohol $9(520 \mathrm{mg}, 2.44 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(24 \mathrm{~mL})$ were added NaHCO_{3} $(1.02 \mathrm{~g}, 12.2 \mathrm{mmol})$ and Dess-Martin periodinane $(1.45 \mathrm{~g}, 3.42 \mathrm{mmol})$ at room temperature. After 1 h , sat. NaHCO_{3} and sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ were added. The mixture was poured into a separatory funnel where it was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was separated, dried over MgSO_{4}, filtered, and concentrated. The residue (567 mg) was dissolved in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and subjected to the next vinylation reaction without purification. The $\mathrm{Et}_{2} \mathrm{O}$ solution of the crude aldehyde was added to a mixed solution of vinyl magnesiumbromide (1.0 M in THF, $7.32 \mathrm{~mL}, 7.32 \mathrm{mmol}$) and $\mathrm{Et}_{2} \mathrm{O}(14 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 1.3 h . Following addition of an additional amount of vinyl magnesiumbromide (1.0 M in $\mathrm{THF}, 2.44 \mathrm{~mL}, 2.44 \mathrm{mmol}$) at the same temperature, the mixture was stirred for further 40 min and then allowed to warm to $0{ }^{\circ} \mathrm{C}$. After 1.5 h of stirring at the same temperature, the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$. The mitxture was poured into a separatory funnel where it was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was separated, dried over MgSO_{4}, filtered,
and concentrated. The residue was purified by flash silica gel column chromatography (toluene/n-hexane 1:1) to give less polar syn-alcohol 10 ($147 \mathrm{mg}, 25 \%$) as a colorless oil and more polar anti-alcohol $10(246 \mathrm{mg}, 42 \%)$ as a colorless oil. Anti-alcohol 10: colorless oil; $[\alpha]^{24}{ }_{\mathrm{D}}+11.3(c$ $0.45, \mathrm{CHCl}_{3}, 80 \%$ ee); IR (neat) v 3383, 2957, 2926, 2859, 1466, 991, 934, $662 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.93(\mathrm{ddd}, 1 \mathrm{H}, J=17.4,10.5,6.9 \mathrm{~Hz}), 5.44(\mathrm{~d}, 1 \mathrm{H}, J=17.4 \mathrm{~Hz}), 5.36(\mathrm{~d}, 1 \mathrm{H}, J=$ $10.5 \mathrm{~Hz}), 4.71(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{dd}, 1 \mathrm{H}, J=9.2,4.1 \mathrm{~Hz}), 3.94(\mathrm{dt}, 1 \mathrm{H}, J=9.2,2.3 \mathrm{~Hz}), 2.29(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.3 \mathrm{~Hz}), 2.09(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.20(\mathrm{~m}, 7 \mathrm{H}), 0.90(\mathrm{t}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 134.3,119.4,72.9,69.1,61.8,34.4,31.5,28.6,25.2,22.5,14.0 ; \mathrm{MS} \mathrm{m} / \mathrm{z}:$ $203[\mathrm{M}-\mathrm{Cl}]^{+}, 57$ (100\%); HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}^{35} \mathrm{Cl}[\mathrm{M}-\mathrm{Cl}]^{+}$, 203.1203, found: 203.1204; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{OCl}_{2} \mathrm{C} 55.24, \mathrm{H} 8.43$, Cl 29.65 , found: C 54.98, H 8.40, Cl 29.60. Syn-alcohol 10: colorless oil; $[\alpha]^{21}{ }_{\mathrm{D}}+49.3$ (c 1.07, $\mathrm{CHCl}_{3}, 80 \%$ ee); IR (neat) v 3420, 2957, 2928, 2859, 990, 928, $656 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.92(\mathrm{ddd}, 1 \mathrm{H}, J=16.9,10.5,5.0 \mathrm{~Hz}), 5.39(\mathrm{~d}, 1 \mathrm{H}, J=16.9$ $\mathrm{Hz}), 5.29(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 4.84(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{dt}, 1 \mathrm{H}, J=9.2,2.3 \mathrm{~Hz}), 3.95(\mathrm{dd}, 1 \mathrm{H}, J=9.2,1.8$ $\mathrm{Hz}), 2.12(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.22(\mathrm{~m}, 7 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}$, $J=6.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 137.5,117.1,71.4,69.3,61.7,34.7,31.6,28.6,25.2,22.5$, 14.0; MS m/z: $203[\mathrm{M}-\mathrm{Cl}]^{+}$, $57(100 \%)$; HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}^{35} \mathrm{Cl}[\mathrm{M}-\mathrm{Cl}]^{+}, 203.1203$, found: 203.1202; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{OCl}_{2} \mathrm{C} 55.24, \mathrm{H} 8.43, \mathrm{Cl} 29.65$, found: C 55.02, H 8.36, Cl 29.41.

Determination of relative configuration of anti-alcohol 10:

To a solution of anti-alcohol $\mathbf{1 0}(12.7 \mathrm{mg}, 0.053 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(60 \%$ in oil, $4.2 \mathrm{mg}, 0.11 \mathrm{mmol}$). After being stirred at room temperature for 13 h , the mixture was poured into a separatory funnel where it was partitioned between sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was separated, dried over MgSO_{4}, filtered, and concentrated. The residue was purified by flash silica gel column chromatography (EtOAc / n-hexane $1: 10$) to give epoxide $\mathbf{S} 2(10.2 \mathrm{mg}, 95 \%)$ as a colorless oil. Epoxide S2: colorless oil; $[\alpha]^{20}{ }_{\mathrm{D}}-1.4\left(c 0.51, \mathrm{CHCl}_{3}, 80 \%\right.$ ee $)$; IR (neat) v 2955, 2926, 2855, 1732, 1456, 1260, $802 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.59(\mathrm{~m}, 1 \mathrm{H}), 5.50(\mathrm{~m}, 1 \mathrm{H}), 5.32(\mathrm{~m}, 1 \mathrm{H}), 3.65$ $(\mathrm{m}, 1 \mathrm{H}), 3.34(\mathrm{dd}, 1 \mathrm{H}, J=7.3,1.8 \mathrm{~Hz}), 3.03(\mathrm{dd}, 1 \mathrm{H}, J=7.3,1.8 \mathrm{~Hz}), 1.89-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.18$ $(\mathrm{m}, 8 \mathrm{H}), 0.94-0.83(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 134.2,120.2,62.9,62.7,58.9,35.0,31.6$, 28.7, 26.2, 22.5, 14.0; MS m/z: $202[M]^{+}$, 69 (100%); HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}^{35} \mathrm{Cl}[\mathrm{M}]^{+}$ 202.1124, found: 202.1122 .

Determination of relative configuration of syn-alcohol 10:

To a solution of syn-alcohol $\mathbf{1 0}(13.8 \mathrm{mg}, 0.058 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(60 \%$ in oil, $11.5 \mathrm{mg}, 0.289 \mathrm{mmol}$). After being stirred at room temperature for 70 min , the mixture was poured into a separatory funnel where it was partitioned between sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and EtOAc . The organic phase was separated, dried over MgSO_{4}, filtered, and concentrated. The residue was purified by flash silica gel column chromatography (EtOAc / n-hexane $1: 50$) to give epoxide $\mathbf{S 3}$ (12 mg , quant.) as a colorless oil. Epoxide S3: colorless oil; $[\alpha]^{21}{ }_{\mathrm{D}}-19.9$ (c 0.42, $\mathrm{CHCl}_{3}, 80 \%$ ee); IR (neat) v 2955, 2926, $2855,1460,928 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.70(\mathrm{ddd}, 1 \mathrm{H}, J=17.0,10.3,6.6 \mathrm{~Hz}), 5.53$ (ddd, $1 \mathrm{H}, J=17.0,1.0,1.0 \mathrm{~Hz}), 5.40(\mathrm{ddd}, 1 \mathrm{H}, J=10.3,1.0,1.0 \mathrm{~Hz}), 3.67(\mathrm{dt}, 1 \mathrm{H}, J=9.0,5.5 \mathrm{~Hz})$, $3.60(\mathrm{ddd}, 1 \mathrm{H}, J=6.4,4.2,1.0 \mathrm{~Hz}), 3.21(\mathrm{dd}, 1 \mathrm{H}, J=9.4,4.2 \mathrm{~Hz}), 1.85-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.01(\mathrm{~m}$, $8 \mathrm{H}), 0.98-0.75(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 131.1,121.3,62.0,60.9,59.2,34.9,31.5$, 28.7, 25.8, 22.5, 14.0; MS m/z: $203[\mathrm{M}+\mathrm{H}]^{+}, 73$ (100\%); HRMS (FAB) calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}^{35} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$ 203.1203, found: 203.1187.

Enzymatic enantio-enrichment of anti-alcohol 10:

To a stirred solution of anti-alcohol $10(239 \mathrm{mg}, 1.00 \mathrm{mmol}, 80 \%$ ee $)$ in t-BuOMe (10 mL) at room temperature were added vinyl acetate ($1.84 \mathrm{~mL}, 20.0 \mathrm{mmol}$), Lipase PS IM Amano (120 mg), and $\mathrm{Et}_{3} \mathrm{~N}(28 \mu \mathrm{~L}, 0.2 \mathrm{mmol})$. After being stirred at room temperature for 5 days, the mixture was filtered through a pad of Celite, and the filtrate was concentrated. The residue was purified by flash silica gel column chromatography (EtOAc/n-hexane $1: 40$) to furnish anti-alcohol $10(207 \mathrm{mg}, 87 \%)$ as a colorless oil. $[\alpha]^{25}+13.6\left(c 1.08, \mathrm{CHCl}_{3}\right)(>99 \%$ ee $)$; The enantiomeric purity of the material was determined by the Mosher method.

Synthesis of C1-C11 fragment 5:

1-Methoxydodeca-1,11-diene (11): To a stirred suspension of (methoxymethyl)triphenylphosphonium chloride ($18 \mathrm{~g}, 51.6 \mathrm{mmol}$) in THF $(60 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added t-BuOK ($5.06 \mathrm{~g}, 45.1 \mathrm{mmol}$). After 15 min, a solution of 10 -undecenal ($5.07 \mathrm{~g}, 30.1 \mathrm{mmol}$) in THF (40 mL) was added to the suspension, and the mixture was stirred for 20 min and then allowed to warm to room temperature. After 20 min , the mixture was cooled to $0^{\circ} \mathrm{C}$, and TBHP ($\sim 5.5 \mathrm{M}$ in decane with molecular sieve $4 \AA, 1.09 \mathrm{~mL}, 6.02$ mmol) was added. After 10 min of stirring, the mixture was poured into a separatory funnel where it was partitioned between sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and EtOAc. The organic layer was separated, dried over MgSO_{4}, filtered, and concentrated. The residue was purified by flash silica gel column chromatography (n-hexane) to furnish diene 11 ($4.91 \mathrm{~g}, 83 \%$) as a pale yellow oil. Diene 11: pale yellow oil; IR (neat) $v 2926,2855,1655,1464,1209,1111,934,910 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.27 *(\mathrm{~d}, 0.6 \mathrm{H}$, $J=12.4 \mathrm{~Hz}), 5.88-5.76(\mathrm{~m}, 1.4 \mathrm{H}$, overlapped), $5.02-4.96(\mathrm{~m}, 1 \mathrm{H}$, overlapped), 4.95-4.90 (m, 1 H , overlapped), $4.72^{*}(\mathrm{dt}, 0.6 \mathrm{H}, \mathrm{J}=12.4,7.3 \mathrm{~Hz}), 4.33(\mathrm{dt}, 0.4 \mathrm{H}, \mathrm{J}=7.3,6.4 \mathrm{~Hz}), 3.57(\mathrm{~s}, 1.2 \mathrm{H}), 3.50^{*}(\mathrm{~s}$, $1.8 \mathrm{H}), 2.07-2.00(\mathrm{~m}, 2.8 \mathrm{H}$, overlapped), 1.94-1.87* (m, 1.2H), 1.42-1.25 (m, 12H, overlapped) (*The asterisk indicates the chemical shift of (E)-isomer 11$) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 146.9,145.9$, $139.1,139.0,114.04,114.01,107.0,103.0,59.3,55.6,33.8,30.8,29.8,29.5,29.4,29.2,29.1,29.0$, 28.9, 27.7, 23.8; MS m/z: 196 [M] ${ }^{+}, 71$ (100\%); HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}$ [M] ${ }^{+}$196.1827, found: 196.1843.

2,2-Dichlorododec-11-en-1-ol (13): To a solution of diene $\mathbf{1 1}(4.2 \mathrm{~g}, 21.4 \mathrm{mmol})$ in MeOH (200 mL) was added NCS ($3.43 \mathrm{~g}, 25.7 \mathrm{mmol}$) at room temperature. After being stirred at the same temperature for 20 min , the mixture was concentrated under reduced pressure. The white residue was dissolved in 1,2-dichloroethane (200 mL), then TFA ($4.12 \mathrm{~mL}, 53.5 \mathrm{mmol}$) was added to the solution at room temperature. After 42.5 h of stirring under reflux, the mixture was poured into a separatory funnel where it was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The organic layer was separated, dried over MgSO_{4}, filtrated, and concentrated under reduced pressure. The crude residue was used in the next step without further purification. The brown residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (200 mL) followed by the addition of $t-\mathrm{BuNH}_{2}(2.72 \mathrm{~mL}, 25.7 \mathrm{mmol})$ and $\mathrm{NCS}(4.29 \mathrm{~g}, 32.1 \mathrm{mmol})$ at room temperature. After being stirred at the same temperature for 11.5 h , the mixture was poured into a separatory funnel where it was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and sat. $\mathrm{NH}_{4} \mathrm{Cl}$. The organic phase was separated, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude residue was used in the next reaction without further purification. To a solution of the crude imine $\mathbf{1 2}(7.09 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added $3 \mathrm{~N} \mathrm{HCl}(100 \mathrm{~mL})$ at room temperature. After stirring for 1 h , water was added, and the whole mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were combined, dried over MgSO_{4},
filtered, and concentrated. The crude aldehyde $\mathbf{S 4}(6.13 \mathrm{~g})$ thus obtained was dissolved in MeOH (200 mL), and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. To this was added $\mathrm{NaBH}_{4}(972.5 \mathrm{mg}, 25.7 \mathrm{mmol})$, and the mixture was stirred at room temperature for 50 min . Following evaporation of the solvent under reduced pressure, the residue was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}$. The organic extracts were combined, dried over MgSO_{4}, filtered, and concentrated. The residue was purified by flash silica gel column chromatography (EtOAc/n-hexane 1:10) to give alcohol $13(3.44 \mathrm{~g}, 63 \%)$ as a pale yellow oil. Alcohol 13: pale yellow oil; IR (neat) v 3383, 2926, 2855, 1640, 1456, 1071, 993, 910, $708 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 5.80(\mathrm{ddt}, 1 \mathrm{H}, J=16.9,10.1,6.9 \mathrm{~Hz}), 4.98(\mathrm{~d}, 1 \mathrm{H}, J=16.9$ $\mathrm{Hz}), 4.92(\mathrm{~d}, 1 \mathrm{H}, J=10.1 \mathrm{~Hz}), 3.38(\mathrm{~d}, 2 \mathrm{H}, J=4.6 \mathrm{~Hz}), 2.66(\mathrm{brs}, 1 \mathrm{H}), 2.23-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.99$ $(\mathrm{m}, 2 \mathrm{H}), 1.68-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.24(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 139.1,114.1,94.6$, $72.0,43.5,33.7,29.3,29.00,28.96,28.8,24.7,{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta: 140.1,114.7,95.6$, $72.6,44.6,34.9,30.5,30.4,30.2,30.13,30.07,25.9$; MS m/z: $252[\mathrm{M}]^{+}, 55$ (100%); HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}^{35} \mathrm{Cl}_{2}[\mathrm{M}]^{+} 252.1048$, found: 252.1051 .
Provided below are the selected data of imine 12 and aldehyde $\mathbf{S 4}$.

\boldsymbol{N}-(2,2-Dichlorododec-11-enylidene)-2-methylpropan-2-amine (12): pale yellow oil, IR (neat) v 2970, 2928, 2855, 1661, 1641, 1464, 1368, 1213, 991, 949, 910, 741, $673 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 7.56(\mathrm{~s}, 1 \mathrm{H}), 5.75(\mathrm{ddt}, 1 \mathrm{H}, J=16.9,10.5,6.9 \mathrm{~Hz}), 4.93(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.29$ $(\mathrm{m}, 2 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.18(\mathrm{~m}, 10 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, CDCl_{3}) $\delta: 154.8,139.1,114.1,90.5,57.1,43.4,33.79,33.75,29.32,29.30,29.14$ (overlapped, $3 \times \mathrm{C}$), 29.05, 28.9, 25.0; MS m/z: $305[\mathrm{M}]^{+}, 209$ (100%); HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{29}{ }^{35} \mathrm{Cl}_{2} \mathrm{~N}[\mathrm{M}]^{+} 305.1677$, found: 305.1673.

2,2-Dichlorododec-11-enal (S4): pale yellow oil, IR (neat) v 2926, 2855, 1746, 1441, 1132, 991, 910, $723,685,667,610 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 9.25(\mathrm{~s}, 1 \mathrm{H}), 5.81(\mathrm{ddt}, 1 \mathrm{H}, J=16.9,10.5$, $6.9 \mathrm{~Hz}), 4.99(\mathrm{ddt}, 1 \mathrm{H}, J=16.9,2.3,1.4 \mathrm{~Hz}), 4.93(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 2 \mathrm{H})$, $1.67-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.24(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 185.0,139.1,114.2,88.7,40.5$, 33.7, 29.23, 29.18, 28.99, 28.96, 28.8, 24.4.

14
tert-Butyl(2,2-dichlorododec-11-enyloxy)dimethylsilane (14): To a stirred solution of alcohol 13 $(3.08 \mathrm{~g}, 12.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added 2,6-lutidine ($2.8 \mathrm{~mL}, 24.4 \mathrm{mmol}$) and

TBSOTf ($3.2 \mathrm{ml}, 18.2 \mathrm{mmol}$). After 25 min , the mixture was poured into a separatory funnel where it was partitioned between sat. NaHCO_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was separated, dried over MgSO_{4}, filtered, and concentrated. The residue was purified by flash silica gel column chromatography (n-hexane) to give TBS ether $\mathbf{1 4}$ ($4.26 \mathrm{~g}, 95 \%$) as a pale yellow oil. TBS ether 14: pale yellow oil; IR (neat) v 2928, 2857, 1464, 1258, 1155, 1119, 839, $779 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 5.81(\mathrm{ddt}, 1 \mathrm{H}, J=16.9,10.1,6.9 \mathrm{~Hz}), 4.99(\mathrm{ddt}, 1 \mathrm{H}, J=16.9,1.8,1.8 \mathrm{~Hz}), 4.93(\mathrm{~m}, 1 \mathrm{H})$, $3.92(\mathrm{~s}, 2 \mathrm{H}), 2.20-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.24(\mathrm{~m}, 10 \mathrm{H}), 0.91(\mathrm{~s}$, 9H), $0.11(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 139.2,114.1,93.5,72.1,43.5,33.8,29.32,29.30$, 29.1, 29.0, 28.9, 25.7 (overlapped, 3 x C), 24.7, 18.3, -5.4 (overlapped, $2 \times \mathrm{C}$); MS m/z: $367[\mathrm{M}+\mathrm{H}]^{+}$, $73(100 \%)$; HRMS (FAB) calcd for $\mathrm{C}_{18} \mathrm{H}_{37} \mathrm{O}^{35} \mathrm{Cl}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$367.1991, found: 367.1954.

11-(tert-Butyldimethylsilyloxy)-10,10-dichloroundecan-1-ol (15): TBS ether $\mathbf{1 4}$ ($2.2 \mathrm{~g}, 5.99 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$, and the solution was cooled to $-78{ }^{\circ} \mathrm{C}$. An outlet stream containing O_{3} and O_{2} from an ozonizer was introduced into the mixture at $-78{ }^{\circ} \mathrm{C}$ for 40 min . After being quenched with $\mathrm{Ph}_{3} \mathrm{P}(1.88 \mathrm{~g}, 7.18 \mathrm{mmol})$, the mixture was allowed to warm to room temperature. After 4.5 h of strring, the mixture was concentrated under reduced pressure to give the crude aldehyde (4.3 g) as a colorless oil. The crude material was used in the next reaction without further purification. To a solution of aldehyde (4.3 g) in $\mathrm{MeOH}(60 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaBH}_{4}(272 \mathrm{mg}, 7.18 \mathrm{mmol})$. After being stirred at room temperature for 30 min , the mixture was concentrated under reduced pressure and poured into a separatory funnel where it was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and sat. $\mathrm{NH}_{4} \mathrm{Cl}$. The organics were separated, filtered, dried over MgSO_{4}, and concentrated. The residue was purified by flash silica gel column chromatography (EtOAc / n-hexane 1:5) to give alcohol 15 ($1.86 \mathrm{~g}, 84 \%$) as a colorless oil. Alcohol 15: colorless oil; IR (neat) v 3335, 2886, 2857, 1464, 1258, 1153, 1119, 839, $779 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 3.92(\mathrm{~s}, 2 \mathrm{H}), 3.64(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.20-2.13(\mathrm{~m}, 2 \mathrm{H})$, $1.63-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.42-1.23(\mathrm{~m}, 10 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta:$ 93.5, 72.1, 63.0, 43.5, 32.7, 29.4, 29.35, 29.29, 29.0, 25.71 (overlapped, $3 \times \mathrm{C}$), 25.70, 24.7, 18.3, -5.4 (overlapped, $2 \times \mathrm{C}$); MS m/z: $371[\mathrm{M}+\mathrm{H}]^{+}, 73$ (100%); HRMS (FAB) calcd for $\mathrm{C}_{17} \mathrm{H}_{37} \mathrm{O}_{2}{ }^{35} \mathrm{Cl}_{2} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]^{+} 371.1940$, found: 371.1941 .

tert-Butyl(2,2-dichloro-11-iodoundecyloxy)dimethylsilane (16): To a stirred solution of alcohol $15(3.75 \mathrm{~g}, 10.1 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$ were added imidazole $(1.03 \mathrm{mg}, 15.1 \mathrm{mmol}), \mathrm{Ph}_{3} \mathrm{P}$
$(3.97 \mathrm{~g}, 15.1 \mathrm{mmol})$, and iodine $(1.92 \mathrm{mg}, 15.1 \mathrm{mmol})$ at room temperature. After 15 min , further amounts of imidazole ($515 \mathrm{mg}, 7.55 \mathrm{mmol}$), $\mathrm{Ph}_{3} \mathrm{P}(1.99 \mathrm{mg}, 7.55 \mathrm{mmol})$, and iodine $(960 \mathrm{mg}, 7.55$ mmol) were added. After 15 min , sat. NaHCO_{3} and TBHP ($\sim 5.5 \mathrm{M}$ in decane with molecular sieve $4 \AA$, $2.39 \mathrm{~mL}, 13.1 \mathrm{mmol}$) were added, and stirring was continued for further 10 min . The mixture was poured into a separatory funnel where it was partitioned between sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was separated, dried over MgSO_{4}, filtered, and concentrated. The residue was purified by flash silica gel column chromatography (n-hexane) to give iodide 16 ($4.75 \mathrm{~g}, 98 \%$) as a colorless oil. Iodide 16: colorless oil; IR (neat) v 2928, 2855, 1462, 1256, 1155, 1119, 839, $779 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}$ (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 3.92(\mathrm{~s}, 2 \mathrm{H}), 3.19(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 2.20-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.54(\mathrm{~m}$, $2 \mathrm{H}), 1.44-1.24(\mathrm{~m}, 10 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 93.4,72.1,43.4$, 33.5, 30.4, 29.24, 29.21, 29.0, 28.5, 25.7 (overlapped, $3 \times$ C), 24.7, 18.2, 7.3, -5.4 (overlapped, $2 \times$ C); MS m/z: $481[\mathrm{M}+\mathrm{H}]^{+}, 73$ (100%); HRMS (FAB) calcd for $\mathrm{C}_{17} \mathrm{H}_{36} \mathrm{O}^{35} \mathrm{Cl}_{2} \mathrm{ISi}[\mathrm{M}+\mathrm{H}]^{+} 481.0958$, found: 481.0944.

tert-Butyl(2,2-dichloro-11-nitroundecyloxy)dimethylsilane (5): To a stirred solution of iodide $16(2.1 \mathrm{~g}, 4.36 \mathrm{mmol})$ in DMF (44 mL) at room temperature was added $\mathrm{NaNO}_{2}(361 \mathrm{mg}, 5.24 \mathrm{mmol})$. After $20 \mathrm{~min}, 20 \%$ aq. NaCl solution was added to the mixture, and the mixture was poured into a separatory funnel where it was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was separated, dried over MgSO_{4}, filtered, and concentrated. The residue was purified by flash silica gel column chromatography (EtOAc/n-hexane $1: 10$) to give nitro compound $5(1.04 \mathrm{~g}, 60 \%)$ as a colorless oil. In this process, nitrite ester was also produced as a byproduct which, by treatment with DIBAL, could be converted into the starting alcohol 15. Nitro compound 5: colorless oil; IR (neat) v 2928, 2857, 1555, 1258, 1152, 1119, 839, $779 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 4.38(\mathrm{t}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 3.92(\mathrm{~s}$, $2 \mathrm{H}), 2.20-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.26(\mathrm{~m}, 10 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.11$ (s, 6H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 93.4,75.7,72.1,43.4,29.1,29.0,28.9,28.7,27.3,26.2,25.7$ (overlapped, 3 x C), 24.7, 18.2, -5.4 (overlapped, $2 \times \mathrm{C}$); MS m/z: 400; [M+H] ${ }^{+}, 73$ (100\%); HRMS (FAB) calcd for $\mathrm{C}_{17} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{~N}^{35} \mathrm{Cl}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$400.1842, found: 400.1829.

tert-Butyl((3S,4S,5R)-4,5-dichloroundec-1-en-3-yloxy)dimethylsilane (4): To a stirred solution of anti-alcohol $10(335 \mathrm{mg}, 1.40 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{~mL})$ were added 2,6-lutidine $(0.2 \mathrm{~mL}, 1.72 \mathrm{mmol})$
and TBSOTf ($0.4 \mathrm{~mL}, 1.74 \mathrm{mmol}$) at room temperature. After 30 min , additional amounts of 2,6-lutidine ($0.2 \mathrm{~mL}, 1.72 \mathrm{mmol}$) and TBSOTf $(0.4 \mathrm{~mL}, 1.74 \mathrm{mmol})$ were added, and stirring was continued for further 20 min . Then the mixture was poured into a separatory funnel where it was partitioned between sat. NaHCO_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was separated, dried over MgSO_{4}, filtered, and concentrated. The residue was purified by flash silica gel column chromatography (n-hexane) to give silyl ether 4 ($484 \mathrm{mg}, 98 \%$) as a colorless oil. Silyl ether 4: colorless oil; $[\alpha]^{22}{ }_{\mathrm{D}}$ $+13.1\left(c 0.95, \mathrm{CHCl}_{3}\right)$; IR (neat) $v 2957,2930,2859,1464,1254,1084,932,837,777 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.84(\mathrm{ddd}, 1 \mathrm{H}, J=17.4,10.5,7.3 \mathrm{~Hz}$), $5.33(\mathrm{dd}, 1 \mathrm{H}, J=17.4,1.0 \mathrm{~Hz}$), 5.28 (dd, $1 \mathrm{H}, J=10.5,1.0 \mathrm{~Hz}), 4.55(\mathrm{t}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 4.10(\mathrm{ddd}, 1 \mathrm{H}, J=9.6,6.9,2.3 \mathrm{~Hz}), 4.01(\mathrm{dd}, 1 \mathrm{H}, J=$ $6.4,5.5 \mathrm{~Hz}), 2.00(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.24(\mathrm{~m}, 7 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, J$ $=6.9), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 136.5,118.6,74.8,69.4,62.3,33.7$, $31.7,28.8,25.9,25.77$ (overlapped, $2 \times \mathrm{C}$), 25.75, 22.6, 18.1, 14.0, -4.1, -4.9; MS m/z: $353[\mathrm{M}+\mathrm{H}]^{+}$, 73 (100\%); HRMS (FAB) calcd for $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{O}^{35} \mathrm{Cl}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$353.1834, found: 353.1852.

(S)-5-[(1S,2S,3R)-1-(tert-Butyldimethylsilyloxy)-2,3-dichlorononyl]-3-[10-(tert-butyldimethylsilyl oxy)-9,9-dichlorodecyl]-4,5-dihydroisoxazole (anti-3)
(R)-5-[(1S,2S,3R)-1-(tert-Butyldimethylsilyloxy)-2,3-dichlorononyl]-3-[10-(tert-butyldimethylsilyl oxy)-9,9-dichlorodecyl]-4,5-dihydroisoxazole (syn-3): To a stirred solution of silyl ether 4 (261 mg , $0.739 \mathrm{mmol})$ in toluene $(7.4 \mathrm{~mL})$ were added nitro compound $5(414 \mathrm{mg}, 1.03 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.31 \mathrm{~mL}$, $2.22 \mathrm{mmol})$, and phenyl isocyanate (1.0 M in toluene, $75 \mu \mathrm{~L}, 0.075 \mathrm{mmol}$) at room temperature. The mixture was heated at $90^{\circ} \mathrm{C}$. After 1 h , an additional amount of phenyl isocyanate $(1.0 \mathrm{M}$ in toluene, $75 \mu \mathrm{~L}, 0.075 \mathrm{mmol}$) was added, and the mixture was heated at the same temperature for further 9.7 h . Then, additional amounts of phenyl isocyanate (1.0 M in toluene, $75 \mu \mathrm{~L}, 0.075 \mathrm{mmol}$) were added every 1 h for $14 \mathrm{~h}^{*}$ [*The total amount of phenyl isocyanate used for this process was 1.13 mL (1.11 $\mathrm{mmol})$]. After further 10 h of stirring at the same temperature, phenyl isocyanate (1.0 M in toluene, 75 $\mu \mathrm{L}, 0.075 \mathrm{mmol}$) were again added every 1 h for an additional 14 h . After further 10.5 h of stirring, the mixture was heated for an additional 7.5 h during which time phenyl isocyanate (1.0 M in toluene, 75 $\mu \mathrm{L}, 0.075 \mathrm{mmol}$) was repeatedly added seven times (1 h interval). The mixture was then quenched with MeOH and filtered through a Celite pad. The filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (toluene/ n-hexane $2: 1$) to give a less
polar syn-isoxazoline $\mathbf{3}(41 \mathrm{mg}, 7 \%)$ as a pale yellow oil and a more polar anti-isoxazoline $\mathbf{3}$ (298 mg , 53%) as a pale yellow oil. Anti-isoxazoline 3: pale yellow oil; $[\alpha]^{21}{ }_{\mathrm{D}}+29.0\left(c 1.09, \mathrm{CHCl}_{3}\right)$; IR (neat) v 2953, 2930, 2857, 1464, 1256, 1121, 839, $779 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 4.81(\mathrm{dt}, 1 \mathrm{H}, J$ $=9.6,3.7 \mathrm{~Hz}), 4.47(\mathrm{t}, 1 \mathrm{H}, J=4.1 \mathrm{~Hz}), 4.23(\mathrm{ddd}, 1 \mathrm{H}, J=9.6,7.8,2.3 \mathrm{~Hz}), 3.95(\mathrm{dd}, 1 \mathrm{H}, J=7.8,4.1$ $\mathrm{Hz}), 3.91(\mathrm{~s}, 2 \mathrm{H}), 3.08(\mathrm{dd}, 1 \mathrm{H}, J=17.4,9.6 \mathrm{~Hz}), 2.83(\mathrm{dd}, 1 \mathrm{H}, J=17.4,10.5 \mathrm{~Hz}), 2.36-2.28(\mathrm{~m}, 2 \mathrm{H})$, 2.19-2.13 (m, 2H), $2.02(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.44-1.22(\mathrm{~m}, 17 \mathrm{H}), 0.94-0.85(\mathrm{~m}$, $21 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.104(\mathrm{~s}, 6 \mathrm{H}), 0.095(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 159.3,93.4,80.4$, $72.1,71.9,68.4,62.0,43.4,37.9,34.2,31.6,29.2,29.1,29.0,28.8,27.7,26.3,25.8$ (overlapped, 3 x C), 25.7 (overlapped, $3 \times \mathrm{C}$), 25.6, 24.7, 22.5, 18.2, 18.1, 14.0, $-4.3,-4.9,-5.4$ (overlapped, $2 \times \mathrm{C}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 161.7,94.5,81.8,73.3,73.1,69.4,63.3,44.7,38.6,35.5,32.8,30.3$, $30.22,30.16,30.1,29.9,28.4,27.3,26.7,26.4$ (overlapped, $3 \times \mathrm{C}$), 26.2 (overlapped, $3 \times \mathrm{C}$), 25.9, 23.6, 19.2, 19.1, 14.4, -3.9, -4.6, -5.2 (overlapped, $2 \times \mathrm{C}$); MS m/z: $734[\mathrm{M}+\mathrm{H}]^{+}, 73$ (100\%); HRMS (FAB) calcd for $\mathrm{C}_{34} \mathrm{H}_{68} \quad \mathrm{O}_{3} \mathrm{~N}^{35} \mathrm{Cl}_{4} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+}$734.3492, found: 734.3486. Syn-isoxazoline 3: pale yellow oil; $[\alpha]^{22}{ }_{\mathrm{D}}-29.4\left(c 0.68, \mathrm{CHCl}_{3}\right.$); IR (neat) $v 2953,2928,2857,1464,1256,1121,837,779 \mathrm{~cm}$ ${ }^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 4.76$ (ddd, $1 \mathrm{H}, J=10.5,9.6,7.3 \mathrm{~Hz}$), 4.28 (ddd, $1 \mathrm{H}, J=9.6,7.3$, $2.3 \mathrm{~Hz}), 4.16(\mathrm{dd}, 1 \mathrm{H}, J=7.3,3.2 \mathrm{~Hz}), 4.08(\mathrm{dd}, 1 \mathrm{H}, J=7.3,3.2 \mathrm{~Hz}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 2.97(\mathrm{dd}, 1 \mathrm{H}, J=$ $16.9,10.5 \mathrm{~Hz}), 2.78(\mathrm{dd}, 1 \mathrm{H}, J=16.9,9.6 \mathrm{~Hz}), 2.40-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~m}, 1 \mathrm{H})$, $1.78(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.44-1.23(\mathrm{~m}, 17 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=6.9$ $\mathrm{Hz}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 158.8,93.5,81.7,76.8$, $72.1,67.1,61.3,43.4,39.3,34.8,31.6,29.21,29.18,29.10,29.0,28.7,27.7,26.2,26.0$ (overlapped, 3 x C), 25.7 (overlapped, 3 x C), 25.6, 24.7, 22.6, 18.4, 18.3, 14.0, -4.3, -4.7, -5.4 (overlapped, $2 \times$ C); MS m/z: $734[\mathrm{M}+\mathrm{H}]^{+}, 155(100 \%)$; HRMS (FAB) calcd for $\mathrm{C}_{34} \mathrm{H}_{68} \mathrm{O}_{3} \mathrm{~N}^{35} \mathrm{Cl}_{4} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 734.3492$, found: 734.3495.

(5S,6S)-17,17-Dichloro-5-[(1S,2R)-1,2-dichlorooctyl]-6-hydroxy-2,2,3,3,20,20,21,21-octamethyl-4, 19-dioxa-3,20-disiladocosan-8-one (S5): To a solution of anti-isoxazoline $\mathbf{3}$ ($281 \mathrm{mg}, 0.38 \mathrm{mmol}$) in $\mathrm{MeCN}(19 \mathrm{~mL})$ at room temperature were added $\mathrm{H}_{2} \mathrm{O}(1.2 \mathrm{~mL})$ and $\mathrm{Mo}(\mathrm{CO})_{6}(121 \mathrm{mg}, 0.46 \mathrm{mmol})$. The mixture was stirred at $90{ }^{\circ} \mathrm{C}$ for 1.5 h , and silica gel 60 N (spherical, neutral) was added to the mixture. After 5 min , the mixture was filtered through a Celite pad, and the filtrate was concentrated. The residue was purified by flash silica gel column chromatography $\left(\mathrm{Et}_{2} \mathrm{O} / n\right.$-hexane $\left.1: 20\right)$ to give aldol S5 (228 mg, 81\%) as a colorless oil. Aldol S5: colorless oil; $[\alpha]^{21}{ }_{\mathrm{D}}-7.4\left(c 0.89, \mathrm{CHCl}_{3}\right)$; IR (neat) v 3522, 2928, 2857, 1732, 1713, 1464, 1260, 1117, 839, $779 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 4.51(\mathrm{ddd}, 1 \mathrm{H}, J=9.2,7.3,2.3 \mathrm{~Hz}), 4.40(\mathrm{ddd}, 1 \mathrm{H}, J=11.9,6.0,3.2 \mathrm{~Hz}), 4.21(\mathrm{dd}, 1 \mathrm{H}, J=6.0,4.6$
$\mathrm{Hz}), 4.05(\mathrm{dd}, 1 \mathrm{H}, J=7.3,4.6 \mathrm{~Hz}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 3.32(\mathrm{~d}, 1 \mathrm{H}, J=3.7 \mathrm{~Hz}), 2.79(\mathrm{dd}, 1 \mathrm{H}, J=17.9,2.3$ $\mathrm{Hz}), 2.58(\mathrm{dd}, 1 \mathrm{H}, J=17.9,9.2 \mathrm{~Hz}), 2.48-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H})$, $1.69-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.44-1.20(\mathrm{~m}, 17 \mathrm{H}), 0.96-0.84(\mathrm{~m}, 21 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta: 212.6,93.5,74.6,72.1,68.8,68.6,62.7,44.3,43.7,43.5,34.2,31.6$, 29.19, 29.17, 29.06, 29.0, 28.8, 25.9 (overlapped, $3 \times$ C), 25.7 (overlapped, 3 x C), 25.6, 24.7, 23.6, $22.5,18.3,18.1,14.0,-4.1,-4.6,-5.4$ (overlapped, $2 \times \mathrm{C}$); MS m/z: $739[\mathrm{M}+\mathrm{H}]^{+}, 73$ (100\%); HRMS (FAB) calcd for $\mathrm{C}_{34} \mathrm{H}_{69} \mathrm{O}_{4}{ }^{35} \mathrm{Cl}_{3}{ }^{37} \mathrm{ClSi}_{2}[\mathrm{M}+\mathrm{H}]^{+} 739.3459$, found: 739.3476.

(5S,6S,8R)-17,17-Dichloro-5-[(1S,2R)-1,2-dichlorooctyl]-2,2,3,3,20,20,21,21-octamethyl-4,19-dioxa-3,20-disiladocosane-6,8-diol (anti-2)
(5S,6S,8S)-17,17-Dichloro-5-[(1S,2R)-1,2-dichlorooctyl]-2,2,3,3,20,20,21,21-octamethyl-4,19-
dioxa-3,20-disiladocosane-6,8-diol (syn-2): To a stirred suspension of $\mathrm{Me}_{4} \mathrm{NHB}(\mathrm{OAc})_{3}(695 \mathrm{mg}, 2.64$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1.5 \mathrm{~mL})$ was added $\mathrm{AcOH}(1.5 \mathrm{~mL})$ at room temperature, and the mixture was stirred for 40 min . To this mixture was added a solution of aldol $\mathbf{S 5}(202 \mathrm{mg}, 0.273 \mathrm{mmol})$ in $\mathrm{MeCN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL} ; 3: 1 \mathrm{v} / \mathrm{v})$. After $1 \mathrm{~h}, 0.5 \mathrm{M}$ aqueous solution of sodium potassium tartrate (10 mL) was added, and stirring was continued for further 5 min . The mixture was poured into a separatory funnel where it was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and sat. NaHCO_{3}. The organic phase was separated, dried over MgSO_{4}, filtered, and concentrated. The residue was purified by flash silica gel column chromatography $\left(\mathrm{Et}_{2} \mathrm{O} / n\right.$-hexane $\left.1: 20\right)$ to give a less polar syn-diol $2(24.3 \mathrm{mg}, 12 \%)$ as a pale yellow oil and a more polar anti-diol $2(145 \mathrm{mg}, 72 \%)$ as a pale yellow oil. Anti-diol 2: pale yellow oil; $[\alpha]^{21}{ }_{\mathrm{D}}+6.5\left(c \quad 0.84, \mathrm{CHCl}_{3}\right)$; IR (neat) v 3383, 2928, 2857, 1464, 1256, 1119, 837, $777 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 4.57(\mathrm{ddd}, 1 \mathrm{H}, J=9.6,6.4,2.3 \mathrm{~Hz}$), $4.23(\mathrm{ddd}, 1 \mathrm{H}, J=8.5,5.0,2.7 \mathrm{~Hz})$, 4.18-4.12 (m, 2H), $3.98(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 2.32(\mathrm{brs}, 1 \mathrm{H}), 2.23-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H})$, $1.83-1.49(\mathrm{~m}, 8 \mathrm{H}), 1.44-1.20(\mathrm{~m}, 17 \mathrm{H}), 0.91(\mathrm{~s}, 18 \mathrm{H}), 0.88(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}$, $3 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 93.5,75.7,72.1,70.2,69.8,68.7,63.1,43.5,37.4$, $37.2,34.1,31.6,29.5,29.4,29.3,29.0,28.9,25.9$ (overlapped, $3 \times \mathrm{C}$), 25.8, 25.7 (overlapped, $3 \times \mathrm{C}$), $24.7,22.5,18.2,18.1,14.0,-4.1,-4.5,-5.4$ (overlapped, $2 \times \mathrm{C}$) ${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta: 94.5$, $78.7,73.2,70.3,70.0,69.0,64.0,44.8,40.4,39.1,35.0,32.9,30.7,30.5,30.4,30.1,30.0,27.1,26.7$, 26.6 (overlapped, $3 \times \mathrm{C}$), 26.2 (overlapped, $3 \times \mathrm{C}$), 25.9, 23.6, 19.2, 19.1, 14.4, $-3.5,-4.2,-5.2$ (overlapped, 2 x C); MS m/z: $763[\mathrm{M}+\mathrm{Na}]^{+}, 73$ (100\%); HRMS (FAB) calcd for $\mathrm{C}_{34} \mathrm{H}_{70} \mathrm{O}_{4}{ }^{35} \mathrm{Cl}_{3}{ }^{37} \mathrm{ClSi}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 763.3435$, found: 763.3463. Syn-diol 2: pale yellow oil; $[\alpha]^{22}{ }_{\mathrm{D}}+9.9$
(c $0.79, \mathrm{CHCl}_{3}$); IR (neat) v 3391, 2928, 2857, 1464, 1256, 1119, 837, $777 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta: 4.57(\mathrm{ddd}, 1 \mathrm{H}, J=10.1,6.4,2.3 \mathrm{~Hz}), 4.17(\mathrm{ddd}, 1 \mathrm{H}, J=10.1,5.5,1.4 \mathrm{~Hz}) 4.13(\mathrm{dd}, 1 \mathrm{H}, J=$ $6.4,4.6 \mathrm{~Hz}), 4.04(\mathrm{dd}, 1 \mathrm{H}, J=5.5,4.6 \mathrm{~Hz}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{brs}, 1 \mathrm{H}), 2.21-2.13(\mathrm{~m}$, $2 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.15(\mathrm{~m}, 23 \mathrm{H}), 0.91(\mathrm{~s}, 18 \mathrm{H}), 0.88(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz})$, $0.144(\mathrm{~s}, 3 \mathrm{H}), 0.136(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 93.5,76.2,74.1,73.5,72.1$, $68.6,62.9,43.5,38.6,38.2,34.1,31.7,29.7,29.5,29.4,29.3,29.0,28.9,25.9$ (overlapped, 2 x C), $25.8,25.7$ (overlapped, $3 \times \mathrm{C}$), 25.3, 24.8, 22.6, 18.3, 18.2, 14.0, -4.1, $-4.5,-5.4$ (overlapped, $2 \times \mathrm{C}$); MS m/z: $763[\mathrm{M}+\mathrm{Na}]^{+}, 73$ (100%); HRMS (FAB) calcd for $\mathrm{C}_{34} \mathrm{H}_{70} \mathrm{O}_{4}{ }^{35} \mathrm{Cl}_{3}{ }^{37} \mathrm{ClSi}_{2} \mathrm{Na} \quad[\mathrm{M}+\mathrm{Na}]^{+}$ 763.3435, found: 763.3433.

tert-Butyl(10-\{(2R,4R,6S)-6-[(1S,2S,3R)-1-(tert-butyldimethylsilyloxy)-2,3-dichlorononyl]-2-phenyl-1,3-dioxan-4-yl\}-2,2-dichlorodecyloxy)dimethylsilane (19): To a stirred solution of anti-diol $2(21 \mathrm{mg}, 0.0283 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ at room temperature were added benzaldehyde dimethylacetal ($0.43 \mathrm{~mL}, 0.0425 \mathrm{mmol}$) and PPTS ($7 \mathrm{mg}, 0.0283 \mathrm{mmol}$). After 70 min , an additional amount of benzaldehyde dimethylacetal $(0.43 \mathrm{~mL}, 0.0425 \mathrm{mmol})$ was added. The mixture was stirred at the same temperature for 100 min , during which time further amount of benzaldehyde dimethylacetal $(0.43 \mathrm{~mL}, 0.0425 \mathrm{mmol})$ was added twice. The mixture was poured into a separatory funnel where it was partitioned between sat. NaHCO_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was separated, dried over MgSO_{4}, filtered, and concentrated. The residue was purified by flash silica gel column chromatography $\left(\mathrm{Et}_{2} \mathrm{O} / n\right.$-hexane $\left.1: 20\right)$ to give acetal $19(23 \mathrm{mg}, 97 \%)$ as a colorless oil. Acetal 19: colorless oil; $[\alpha]^{21}{ }_{\mathrm{D}}+15.4$ (c 0.66, CHCl_{3}); IR (neat) $v 2953,2928,2857,1734,1462,1362,1256$, 1117, 839, 777, $696 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.53-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 3 \mathrm{H}), 5.89$ $(\mathrm{s}, 1 \mathrm{H}), 4.98(\mathrm{dd}, 1 \mathrm{H}, J=9.2,1.2 \mathrm{~Hz}), 4.54(\mathrm{ddd}, 1 \mathrm{H}, J=9.2,6.1,1.8 \mathrm{~Hz}), 4.42(\mathrm{dt}, 1 \mathrm{H}, J=9.8,2.4$ $\mathrm{Hz}), 4.18(\mathrm{dd}, 1 \mathrm{H}, J=9.8,1.2 \mathrm{~Hz}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 3.90(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.10(\mathrm{~m}, 3 \mathrm{H}), 1.97(\mathrm{brd}, 1 \mathrm{H}, J=$ $14.0 \mathrm{~Hz}), 1.83(\mathrm{ddd}, 1 \mathrm{H}, J=13.4,11.6,6.7 \mathrm{~Hz}), 1.77-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.42-1.17(\mathrm{~m}$, $17 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{t}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 138.8,128.8,128.3$ (overlapped, $2 \times \mathrm{C}$), 126.1 (overlapped, $2 \times \mathrm{C}$), 96.7, $93.5,73.2,72.4,72.1,70.2,67.9,62.7,43.5,36.2,35.4,31.6,29.8,29.6,29.4,29.3,29.0,28.5,25.73$ (overlapped, $3 \times \mathrm{C}$), 25.71 (overlapped, $3 \times \mathrm{C}$), 25.0, 24.80, 24.75, 22.5, 18.3, 18.0, 14.1, -4.0, -4.4, -5.4 (overlapped, 2 x C); MS m/z: $849[\mathrm{M}+\mathrm{Na}]^{+}, 73$ (100%); HRMS (FAB) calcd for $\mathrm{C}_{41} \mathrm{H}_{74} \mathrm{O}_{4}{ }^{35} \mathrm{Cl}_{4} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$849.3778, found: 849.3769.

Determination of the stereochemistry of the C13~C16 centers of compound 19 via sequential Payne rearrangement.

SI Scheme 1. Determination of stereochemistry of the C13~C16 centers via sequential Payne rearrangement.

The transformation of benzylidene acetal $\mathbf{1 9}$ into bisepoxide $\mathbf{S 7}$ allowed us to establish all the relative stereochemistry at the $\mathrm{C} 11 \sim \mathrm{C} 13$ positions. Reductive opening of the acetal moiety of compound $\mathbf{1 9}$ with DIBAL in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0{ }^{\circ} \mathrm{C}$ to room temperature delivered diol $\mathbf{S 6}$, which was unexpectedly produced by concomitant removal of the secondary TBS group during the reaction. Diol S6 was then subjected to sequential Payne rearrangement by treatment with NaH in THF at room temperature to afford an epoxy alcohol which, upon further stirring in the presence of 15 -crown-5, gave bisepoxide S7 in 44% overall yield from S6. The analysis of the coupling constants of bisepoxide $\mathbf{S 7}$ showed cis relationship ($J_{a b}=4.1 \mathrm{~Hz}$) between the C 15 and C 16 protons and trans relationship ($J_{c d}=1.8 \mathrm{~Hz}$) between C13 and C14 protons, respectively, indicating that anti-diol 2 possessed the configuration suitable for accessing natural danicalipin A (1).

S8

(7R,8S,9S,10S,12R)-12-(Benzyloxy)-22-(tert-butyldimethylsilyloxy)-7,8,21,21-

tetrachlorodocosane-9,10-diol (S6)

(5S,6S,8R)-6-(Benzyloxy)-17,17-dichloro-5-[(1S,2R)-1,2-dichlorooctyl]-2,2,3,3,20,20,21,21-
octamethyl-4,19-dioxa-3,20-disiladocosan-8-ol (S8)
(11R,13S,14S,15S,16R)-13-(Benzyloxy)-14-(tert-butyldimethylsilyloxy)-2,2,15,16-

tetrachlorodocosane-1,11-diol (S9)

(11R,13S,14S,15S,16R)-11-(Benzyloxy)-2,2,15,16-tetrachlorodocosane-1,13,14-triol (S10): To a solution of benzylidene acetal $19(14.5 \mathrm{mg}, 0.0175 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added DIBAL (1.03 M in n-hexane, $0.17 \mathrm{~mL}, 0.175 \mathrm{mmol}$). After $3 \mathrm{~h}, 28 \% \mathrm{NH}_{4} \mathrm{OH}$ was added, and the mixture was allowed to warm to room temperature. After 15 min , Celite was added and the whole mixture was stirred for an additional 2 h . After filtration of the mixture through a Celite pad followed by concentration of the filtrate under reduced pressure, the residue was purified by flash silica gel column chromatography (EtOAc/n-hexane 1:15) to give alcohol $\mathbf{S 8}(2.2 \mathrm{mg}, 15 \%)$ as a colorless oil. Further elution with EtOAc/n-hexane ($1: 10$ to $1: 4$) gave a less polar diol $\mathbf{S 6}(6.2 \mathrm{mg}, 49 \%)$ as a colorless oil, a more polar diol $\mathbf{S 9}(0.9 \mathrm{mg}, 7 \%)$ as a colorless oil, and most polar triol $\mathbf{S 1 0}(2.5 \mathrm{mg}$, 24%) as a colorless oil. Diol S6: colorless oil; $[\alpha]^{19}{ }_{\mathrm{D}}+12.4\left(c 0.10, \mathrm{CHCl}_{3}\right)$; IR (neat) v 3412, 2926, $2855,1730,1464,1258,1119,1067,839 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.40-7.28(\mathrm{~m}, 5 \mathrm{H})$, $4.60(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}), 4.55(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}), 4.27(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{dd}, 1 \mathrm{H}, J=8.2$, $3.7 \mathrm{~Hz}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~d}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}) 2.21-2.14(\mathrm{~m}, 2 \mathrm{H})$, 2.03-1.74 (m, 4H), 1.69-1.53 (m, 5H), 1.46-1.20 (m, 17H), $0.91(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.11$ (s, 6 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 137.8,128.6$ (overlapped, 2 x C), 128.0, 127.9 (overlapped, 2 x C), $93.5,77.8,73.8,72.1,71.2,69.0,66.8,62.8,43.5,32.6,32.3,31.6,29.7,29.6,29.35,29.30,29.0$, 28.7, 26.3, 25.7 (overlapped, $3 \times \mathrm{C}$), 25.6, 24.8, 22.6, 18.3, 14.0, -5.3 (overlapped, $2 \times \mathrm{C}$); MS m/z: $715[\mathrm{M}+\mathrm{H}]^{+}, 91(100 \%)$; HRMS (FAB) calcd for $\mathrm{C}_{35} \mathrm{H}_{63} \mathrm{O}_{4}{ }^{35} \mathrm{Cl}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 715.3250$, found: 715.3256. Diol S8: colorless oil; $[\alpha]^{23}{ }_{\mathrm{D}}-2.1\left(c 0.14, \mathrm{CHCl}_{3}\right)$; IR (neat) v 3509, 2955, 2928, 2857, 1732, 1464, $1257,1119,1074,837,777 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.37-7.28(\mathrm{~m}, 5 \mathrm{H}), 4.65(\mathrm{~d}, 1 \mathrm{H}, J=$ $11.6 \mathrm{~Hz}), 4.57(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 4.44(\mathrm{ddd}, 1 \mathrm{H}, J=9.8,5.5,2.4 \mathrm{~Hz}), 4.27(\mathrm{dd}, 1 \mathrm{H}, J=6.7,3.7 \mathrm{~Hz})$, $4.12(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{t}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.72(\mathrm{~m}$, $4 \mathrm{H}), 1.66-1.19(\mathrm{~m}, 22 \mathrm{H}), 0.94-0.82(\mathrm{~m}, 21 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 137.5,128.2$ (overlapped, $2 \times \mathrm{C}$), 127.9 (overlapped, $2 \times \mathrm{C}$), 127.7, 93.3, 77.7, 73.5, $72.0,71.9,68.3,68.1,62.6,43.3,37.7,35.5,32.8,31.4,29.3,29.2,29.1,28.8,28.7,25.9,25.8,25.7$ (overlapped, $3 \times \mathrm{C}$), 25.5 (overlapped, $3 \times \mathrm{C}$), 25.4, 24.5, 22.3, 18.0, 13.8, -3.9, -5.3, -5.6 (overlapped, $2 \times \mathrm{C})$; MS m/z: $831[\mathrm{M}+\mathrm{H}]^{+}$, $91(100 \%)$; HRMS (FAB) calcd for $\mathrm{C}_{41} \mathrm{H}_{77} \mathrm{O}_{4}{ }^{35} \mathrm{Cl}_{3}{ }^{37} \mathrm{ClSi}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 831.4085, found: 831.4080. Diol S9: colorless oil; $[\alpha]^{23}{ }_{\mathrm{D}}+3.7\left(c 0.04, \mathrm{CHCl}_{3}\right)$; IR (neat) $v 3420,2928$, $2855,1722,1464,1256,1117,1066,835,777 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.37-7.29(\mathrm{~m}, 5 \mathrm{H})$, $4.65(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 4.56(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}), 4.44(\mathrm{ddd}, 1 \mathrm{H}, J=10.3,5.5,2.4 \mathrm{~Hz}), 4.26(\mathrm{dd}, 1 \mathrm{H}$, $J=6.7,3.7 \mathrm{~Hz}), 4.12(\mathrm{dt}, 1 \mathrm{H}, J=8.6,3.7 \mathrm{~Hz}), 4.06(\mathrm{dd}, 1 \mathrm{H}, J=6.7,5.5 \mathrm{~Hz}), 3.90(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz})$, $3.79(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 2.23-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{brs}, 1 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{ddd}, 2 \mathrm{H}$, $J=14.6,8.5,1.8 \mathrm{~Hz}), 1.69-1.20(\mathrm{~m}, 23 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 137.7,128.5$ (overlapped, $2 \times \mathrm{C}$), 128.2 (overlapped, $2 \times \mathrm{C}$), $127.9,94.7,77.9,73.7,72.2,72.1,68.5,68.3,62.9,43.5,37.9,35.7,33.0,31.7,29.5,29.4,29.3,29.0$
(overlapped, $2 \times \mathrm{C}$), 26.2, 26.0 (overlapped, 3 x C), 25.6, 24.8, 22.5, 18.3, 14.0, -3.6, -5.1; MS m/z: $717[\mathrm{M}+\mathrm{H}]^{+}$, 91 (100\%); HRMS (FAB) calcd for $\mathrm{C}_{35} \mathrm{H}_{63} \mathrm{O}_{4}{ }^{35} \mathrm{Cl}_{3}{ }^{37} \mathrm{ClS}_{\mathrm{i}}[\mathrm{M}+\mathrm{H}]^{+} 717.3220$, found: 717.3248. Triol S10: colorless oil; $[\alpha]^{23}{ }_{\mathrm{D}}+7.7\left(c 0.15, \mathrm{CHCl}_{3}\right.$); IR (neat) v 3404, 2928, 2855, 1715, $1454,1065,746,698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 4.59(\mathrm{~d}, 1 \mathrm{H}, J=11.6$ $\mathrm{Hz}), 4.55(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{~d}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 4.27(\mathrm{ddd}, 1 \mathrm{H}, J=9.8,4.3,2.4 \mathrm{~Hz}), 4.12(\mathrm{dd}, 1 \mathrm{H}, J=8.5$, $3.7 \mathrm{~Hz}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{brs}, 1 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.16(\mathrm{~m}, 2 \mathrm{H})$, 1.99-1.74 (m, 4H), 1.69-1.19 (m, 23H), 0.92-0.83 (m, 3H) ; ${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta: 140.2$, 129.3 (overlapped, $2 \times \mathrm{C}$), 129.1 (overlapped, $2 \times \mathrm{C}$), 128.6, $95.7,77.7,77.0,72.6,72.4,70.2,68.9$, $64.1,44.6,37.3,35.5,34.0,32.9,30.8,30.5,30.4,30.2,29.8,27.5,26.3,25.9,23.6,14.4 ; \mathrm{MS} m / z: 625$ $[\mathrm{M}+\mathrm{Na}]^{+}, 57(100 \%)$; HRMS (FAB) calcd for $\mathrm{C}_{29} \mathrm{H}_{48} \quad \mathrm{O}_{4}{ }^{35} \mathrm{Cl}_{3}{ }^{37} \mathrm{ClNa}[\mathrm{M}+\mathrm{Na}]^{+} 625.2175$, found: 625.2180 .

$J_{a b}=4.1 \mathrm{~Hz} J_{c d}=1.8 \mathrm{~Hz}$
\{(R)-11-(Benzyloxy)-2,2-dichloro-12-[(2R,2'S,3S,3'S)-3'-hexyl-2,2'-bioxiran-3-yl]dodecyloxy\}(tertbutyl)dimethylsilane ($\mathbf{S 7}$): To a stirred solution of diol S6 ($8.3 \mathrm{mg}, 0.012 \mathrm{mmol}$) in THF (1.0 mL) at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(60 \%$ in oil, $1.4 \mathrm{mg}, 0.036 \mathrm{mmol})$. After $75 \mathrm{~min}, 15-\mathrm{crown}-5(7.1 \mu \mathrm{~L}, 0.036$ mmol) was added, and the mixture was stirred at room temperature for 6.3 h . The mixture was poured into a separatory funnel where it was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and sat. $\mathrm{NH}_{4} \mathrm{Cl}$. The organic extracts were combined, dried over MgSO_{4}, filtered, and concentrated. The residue was purified by flash silica gel column chromatography (EtOAc / n-hexane $1: 15$) to give epoxide $\mathbf{S} 7(3.4 \mathrm{mg}, 44 \%$) as a pale yellow oil. Epoxide S7: pale yellow oil; $[\alpha]^{26}{ }_{\mathrm{D}}-5.5$ (c 0.13, CHCl_{3}); IR (neat) v 2928, 2857, 1738, $1464,1258,1153,1117,1071,839,779 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.39-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.60$ $(\mathrm{s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{ddd}, 1 \mathrm{H}, J=7.3,4.1,1.8 \mathrm{~Hz}), 3.01(\mathrm{dt}, 1 \mathrm{H}, J=6.4,4.1 \mathrm{~Hz})$, $2.73(\mathrm{dd}, 1 \mathrm{H}, J=6.9,4.1 \mathrm{~Hz}), 2.68(\mathrm{dd}, 1 \mathrm{H}, J=6.9,1.8 \mathrm{~Hz}), 2.20-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.90(\mathrm{ddd}, 1 \mathrm{H}, J=$ $14.7,8.2,4.1 \mathrm{~Hz}), 1.67-1.45(\mathrm{~m}, 8 \mathrm{H}), 1.43-1.17(\mathrm{~m}, 17 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.11$ $(\mathrm{s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 138.6,128.4$ (overlapped, $2 \times \mathrm{C}$), 127.8 (overlapped, $2 \times \mathrm{C}$), $127.6,93.5,76.7,72.1,71.4,57.0,55.4,55.3,55.1,43.5,36.8,34.3,31.7,29.7,29.4,29.3,29.1,29.0$, 28.1, 26.5, 25.7 (overlapped, $3 \times \mathrm{C}$), 25.1, 24.8, 22.5, 18.3, 14.1, -5.4 (overlapped, $2 \times \mathrm{C}$); MS m / z : $665[\mathrm{M}+\mathrm{Na}]^{+}, 91(100 \%)$; HRMS (FAB) calcd for $\mathrm{C}_{35} \mathrm{H}_{60} \mathrm{O}_{4}{ }^{35} \mathrm{Cl}_{2} \mathrm{SiNa}[\mathrm{M}+\mathrm{Na}]^{+} 665.3536$, found: 665.3533.

17

S11

(5S,6R,8S)-6,8,17,17-Tetrachloro-5-[(1S,2R)-1,2-dichlorooctyl]-2,2,3,3,20,20,21,21-octamethyl-4,19-dioxa-3,20-disiladocosane (17)
(5S,6S, 8S)-6,8,17,17-Tetrachloro-5-[(1S,2R)-1,2-dichlorooctyl]-2,2,3,3,20,20,21,21-octamethyl-4,19-dioxa-3,20-disiladocosane (S11)
(5S,8S,E)-8,17,17-Trichloro-5-[(1S,2R)-1,2-dichlorooctyl]-2,2,3,3,20,20,21,21-octamethyl-4,19-
dioxa-3,20-disiladocos-6-ene (S12): To a stirred solution of anti-diol $2(132 \mathrm{mg}, 0.178 \mathrm{mmol})$ in 1,2-dichloroethane (1.8 mL) at room temperature were added $\mathrm{Ph}_{3} \mathrm{P}(140 \mathrm{mg}, 0.534 \mathrm{mmol})$ and NCS $(71.4 \mathrm{mg}, 0.534 \mathrm{mmol})$. After being heated at $90^{\circ} \mathrm{C}$ for 50 min , the mixture was poured into a separatory funnel where it was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and sat. NaHCO_{3}. The organic phase was separated, dried over MgSO_{4}, filtered, and concentrated. The residue was purified by flash silica gel column chromatography (n-hexane) to give a less polar hexachloride $\mathbf{S 1 1}(7.3 \mathrm{mg}, 5 \%$) as a colorless oil, a more polar hexachloride $17(52.7 \mathrm{mg}, 38 \%)$ as a colorless oil, and most polar olefin S12 (52.7 $\mathrm{mg}, 40 \%$) as a colorless oil. Hexachloride 17: colorless oil; $[\alpha]^{21}{ }_{\mathrm{D}}+21.0\left(c 1.35, \mathrm{CHCl}_{3}\right.$); IR (neat) v 2953, 2930, 2857, 1464, 1258, 1121, 837, $777 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 4.69(\mathrm{~d}, 1 \mathrm{H}, J$ $=11.4 \mathrm{~Hz}), 4.39-4.33(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{dd}, 1 \mathrm{H}, J=6.9,1.4 \mathrm{~Hz}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 2.22-2.13(\mathrm{~m}$, $3 \mathrm{H}), 1.96-1.21(\mathrm{~m}, 25 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H})$, $0.09(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta: 93.5,76.6,72.1,67.7,62.0,61.4,60.5,43.9,43.5,38.9$, $32.8,31.6,29.7,29.3,29.2,29.01,28.97,26.5,26.4,26.0$ (overlapped, $3 \times \mathrm{C}$), 25.7 (overlapped, 3 x C), 24.7, 22.5, 18.5, 18.2, 14.0, -3.6, -3.8, -5.4 (overlapped, $2 \times \mathrm{C}$); MS $m / z: 775[\mathrm{M}+\mathrm{H}]^{+}, 73$ (100\%); HRMS (FAB) calcd for $\mathrm{C}_{34} \mathrm{H}_{69} \mathrm{O}_{2}{ }^{35} \mathrm{Cl}_{6} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 775.2967$, found: 775.2972. Hexachloride S11: colorless oil; $[\alpha]^{21}{ }_{\mathrm{D}}+20.4\left(c 0.06, \mathrm{CHCl}_{3}\right)$; IR (neat) v 2953, 2928, 2857, 1464, 1258, 1119, 839, 779 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 4.45-4.35(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{dd}, 1 \mathrm{H}, J=6.0,4.1 \mathrm{~Hz}), 4.22-4.15(\mathrm{~m}$, $2 \mathrm{H}), 3.92$ (s, 2H), 2.38 (ddd, $1 \mathrm{H}, J=14.7,8.2,4.1 \mathrm{~Hz}$), 2.28-2.14 (m, 3H), 1.93-1.74 (m, 3H), $1.70-1.21(\mathrm{~m}, 21 \mathrm{H}), 0.97-0.83(\mathrm{~m}, 21 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 93.5,77.1,72.1,67.7,62.2,60.05,60.02,43.5,41.9,36.3,33.4,31.6,29.7,29.29,29.27$, 29.01, 28.98, 28.90, 25.9 (overlapped, $3 \times$ C), 25.8, 25.7 (overlapped, $3 \times \mathrm{C}$), 24.8, 22.5, 18.31, 18.27, 14.0, -3.7, -4.5, -5.3 (overlapped, $2 \times \mathrm{C}$); MS $m / z: 775[\mathrm{M}+\mathrm{H}]^{+}, 73$ (100%); HRMS (FAB) calcd for $\mathrm{C}_{34} \mathrm{H}_{69} \mathrm{O}_{2}{ }^{35} \mathrm{Cl}_{6} \mathrm{Si}_{2}[\mathrm{M}+\mathrm{H}]^{+} 775.2967$, found: 775.2963. This compound was tentatively assigned as (11S, 13S)-syn-isomer (danicalipin numbering) that was likely to be produced through the anchimeric
assistance of the neighboring chlorine atom. Olefin S12: colorless oil; $[\alpha]^{22}{ }_{\mathrm{D}}+10.5\left(c 0.25, \mathrm{CHCl}_{3}\right)$; IR (neat) v 2953, 2928, 2857, 1464, 1258, 1119, 837, $777 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.84$ (dd, $1 \mathrm{H}, J=15.6,7.8 \mathrm{~Hz}$), 5.74 (dd, 1H, $J=15.6,6.4 \mathrm{~Hz}$), $4.63(\mathrm{dd}, 1 \mathrm{H}, J=6.4,4.1 \mathrm{~Hz}), 4.38(\mathrm{dt}, 1 \mathrm{H}, J$ $=7.3,7.3 \mathrm{~Hz}), 4.05-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 2.21-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.72(\mathrm{~m}, 3 \mathrm{H})$, $1.70-1.25(\mathrm{~m}, 20 \mathrm{H}), 0.913(\mathrm{~s}, 9 \mathrm{H}), 0.906(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H})$, 0.07 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 134.7,130.1,93.4,73.0,72.1,69.6,62.2,61.8,43.5$, $38.3,33.8,31.6,29.7,29.29,29.25,29.0,28.9,28.7,26.4,25.74$ (overlapped, 3 x C), 25.71 (overlapped, $3 \times \mathrm{C}$), 24.7, 22.5, 18.2, 18.1, 14.0, -4.1, $-4.9,-5.4$ (overlapped, $2 \times \mathrm{C}$); MS m/z: 761 $[\mathrm{M}+\mathrm{Na}]^{+}, 73$ (100\%); HRMS (FAB) calcd for $\mathrm{C}_{34} \mathrm{H}_{67} \mathrm{O}_{2}{ }^{35} \mathrm{Cl}_{5} \mathrm{Si}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 761.3020$, found: 761.3007.

 hexachloride $\mathbf{1 7}(7.0 \mathrm{mg}, 0.009 \mathrm{mmol})$ in $\mathrm{MeOH}(1.0 \mathrm{~mL})$ at room temperature was added $\mathrm{AcCl}(30 \mu \mathrm{l}$, 0.42 mmol), and the mixture was heated at $80^{\circ} \mathrm{C}$. After 2 h , an additional $\mathrm{AcCl}(30 \mu \mathrm{l}, 0.42 \mathrm{mmol})$ was added. Then the mixture was stirred for further 18 h during which time additional amount of AcCl ($30 \mu \mathrm{l}, 0.42 \mathrm{mmol}$) was added twice. The mixture was concentrated under reduced pressure, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and poured into a separatory funnel where it was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The organic phase was separated, dried over MgSO_{4}, filtered, and concentrated. The residue was purified by flash silica gel column chromatography (EtOAc/n-hexane 1:10) to give diol $\mathbf{1 8}(4.8 \mathrm{mg}$, $97 \%)$ as a pale yellow oil. The spectroscopic and analytical data of this material were in good agreement with those recorded in the literature. ${ }^{2 a, b}$ Diol 18: pale yellow oil; $[\alpha]^{25}+33.1$ (c 0.71, $\mathrm{MeOH})\left[\mathrm{lit} .^{2 a}[\alpha]^{22}{ }_{\mathrm{D}}+35.9(c 0.005, \mathrm{MeOH})\right]$ IR (neat) $v 3412,2930,2857,1464,1379,1244,1067$, $708 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 4.96(\mathrm{~d}, 1 \mathrm{H}, J=10.1 \mathrm{~Hz}), 4.51(\mathrm{dt}, 1 \mathrm{H}, J=10.5,2.7 \mathrm{~Hz}$), $4.30(\mathrm{dd}, 1 \mathrm{H}, J=9.6,2.7 \mathrm{~Hz}), 4.15(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~d}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 3.77(\mathrm{brt}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz})$, $2.37-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}), 1.98(\mathrm{ddd}, 1 \mathrm{H}, J=15.1,11.0,2.3 \mathrm{~Hz})$, $1.89(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.70-1.20(\mathrm{~m}, 20 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta: 4.77(\mathrm{dt}, 1 \mathrm{H}, J=11.0,1.8 \mathrm{~Hz}), 4.56(\mathrm{ddd}, 1 \mathrm{H}, J=8.2,4.1,2.3 \mathrm{~Hz}), 4.37(\mathrm{dd}, 1 \mathrm{H}, J=10.1$, $2.3 \mathrm{~Hz}), 4.20(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{dd}, 1 \mathrm{H}, J=9.6,1.4 \mathrm{~Hz}), 2.32(\mathrm{ddd}, 1 \mathrm{H}, J=15.1,11.5,2.3$ $\mathrm{Hz}), 2.21-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{ddd}, 1 \mathrm{H}, J=15.1,11.0,2.3 \mathrm{~Hz}), 1.86-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.22(\mathrm{~m}, 20 \mathrm{H})$, $0.91(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 94.6,75.1,72.1,66.5,63.0,62.7,60.4,44.3$, $43.5,38.7,32.5,31.6,29.22,29.16,28.9$ (overlapped, $2 \times \mathrm{C}$), 28.6, 26.6, 26.2, 24.8, 22.5, 14.0; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) 95.6, 75.6, 72.6, 68.5, 63.9, 63.6, 62.1, 45.3, 44.6, 39.9, 33.0, 32.8, 30.37, $30.35,30.1,30.0,29.7,27.9,27.4,25.9,23.6,14.3$; MS $m / z: 549[\mathrm{M}+\mathrm{H}]^{+}, 154$ (100\%); HRMS (FAB) calcd for $\mathrm{C}_{22} \mathrm{H}_{41} \mathrm{O}_{2}{ }^{35} \mathrm{Cl}_{5}{ }^{37} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+} 549.1208$, found: 549.1201.

(+)-Danicalipin A (1): To a stirred solution of diol $18(7.7 \mathrm{mg}, 0.014 \mathrm{mmol})$ in DMF (0.8 mL) at room temperature was added $50 \% \mathrm{SO}_{3} \cdot \mathrm{Py}(22.3 \mathrm{mg}, 0.07 \mathrm{mmol})$. After 1 h , the mixture was directly filtered through a short plug of silica gel $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 10\right)$, ${ }^{* *}$ and then the filtrate was concentrated under reduced pressure. ${ }^{* *}$ This filtration that ensures the removal of the residual reagents prior to the second chromatographic purification was essential for the successful isolation of danicalipin A. The problematic desulfation of danicalipin observed during chromatographic process was almost completely suppressed by this protocol. The residue was purified by flash silica gel column chromatography $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 5\right)$ to give (+)-danicalipin $\mathrm{A}(\mathbf{1})(9.3 \mathrm{mg}, 94 \%)$ as a colorless gum. (+)-Daniclipin A (1): colorless gum; $[\alpha]^{26}{ }_{\mathrm{D}}+33.0(c 0.40, \mathrm{MeOH})\left[\mathrm{lit}{ }^{2 \mathrm{a}}[\alpha]^{25}{ }_{\mathrm{D}}+12.8(c 0.2, \mathrm{MeOH})\right.$; lit. ${ }^{2 \mathrm{~b}}[\alpha]^{24}{ }_{\mathrm{D}}+38(c 0.78$, solvent not indicated) $]$; IR (neat) $v 3460,2924,2855,1728,1454,1260,1015$, $831 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta: 4.88(\mathrm{brd}, 1 \mathrm{H}, J=11.6 \mathrm{~Hz}), 4.75$ (brd, $1 \mathrm{H}, J=11.0 \mathrm{~Hz}$), 4.53 (dd, 1H, $J=10.4 \mathrm{~Hz}), 4.45(\mathrm{dd}, 1 \mathrm{H}, J=10.4,1.2 \mathrm{~Hz}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 4.21(\mathrm{~m}, 1 \mathrm{H}), 2.52$ (ddd, 1H, $J=15.3,11.6,1.8 \mathrm{~Hz}), 2.28-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{ddd}, 1 \mathrm{H}, J=15.3,11.1,1.8 \mathrm{~Hz}), 1.94(\mathrm{~m}, 1 \mathrm{H})$, $1.84-1.22(\mathrm{~m}, 23 \mathrm{H}), 0.90(\mathrm{t}, 3 \mathrm{H}, J=6.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta: 91.4,80.9,75.5,68.5$, $63.4,62.4,62.3,45.5,45.1,39.9,33.5,32.9,30.48,30.45,30.15,30.11,30.09,27.7,27.5,25.8,23.6$, 14.4 ; MS m/z: $727[\mathrm{M}+\mathrm{Na}-2 \mathrm{H}]^{-}, 153$ (100\%); HRMS (FAB) calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{8}{ }^{35} \mathrm{Cl}_{6} \mathrm{~S}_{2} \mathrm{Na}$ [M+Na-2H] ${ }^{-} 727.0037$, found: 727.0037. The spectroscopic and analytical data of this material were in good agreement with those reported. ${ }^{2 \mathrm{a}, \mathrm{b}}$

Determination of stereochemistry at the $\mathbf{C 1 1}$ and C13 positions:

tert-Butyl(10-\{(4R,6S)-6-[(1S,2S,3R)-1-(tert-butyldimethylsilyloxy)-2,3-dichlorononyl]-2,2-dimethyl-1,3-dioxan-4-yl\}-2,2-dichlorodecyloxy)dimethylsilane (20): To a stirred solution of anti-diol $2(11.1 \mathrm{mg}, 0.015 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at room temperature were added 2,2-dimethoxypropane $(9.2 \mu \mathrm{l}, 0.075 \mathrm{mmol})$ and PPTS ($2 \mathrm{mg}, 0.088 \mathrm{mmol}$). After 8.8 h , the mixture was heated at reflux for 110 min . Additional amounts of 2,2-dimethoxypropane ($9.2 \mu \mathrm{l}, 0.075 \mathrm{mmol}$) and PPTS ($2 \mathrm{mg}, 0.088 \mathrm{mmol}$) were added, and the mixture was heated at reflux for further 1 h . The mixture was poured into a separatory funnel where it was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and sat. NaHCO_{3}. The organic phase was separated, dried over MgSO_{4}, filtered, and concentrated. The residue was purified by flash silica gel column chromatography $\left(\mathrm{Et}_{2} \mathrm{O} / n\right.$-hexane 1:50) to give acetal 20 (9.9 $\mathrm{mg}, 85 \%$) as a pale yellow oil. Acetal 20: pale yellow oil; $[\alpha]^{25}{ }_{\mathrm{D}}-1.4\left(c 0.46, \mathrm{CHCl}_{3}\right)$; IR (neat) $v 2953$,

2930, 2857, 1464, 1379, 1256, 1225, 1119, 837, $777 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 4.43$ (ddd, $1 \mathrm{H}, J=10.1,6.0,2.3 \mathrm{~Hz}), 4.20(\mathrm{ddd}, 1 \mathrm{H}, J=9.6,6.0,5.0 \mathrm{~Hz}), 4.13(\mathrm{dd}, 1 \mathrm{H}, J=5.5,5.0 \mathrm{~Hz}), 4.02(\mathrm{dd}$, $1 \mathrm{H}, J=6.0,5.5 \mathrm{~Hz}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.77(\mathrm{~m}, 1 \mathrm{H})$, $1.67-1.23(\mathrm{~m}, 23 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 0.93-0.87(\mathrm{~m}, 21 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.113(\mathrm{~s}, 3 \mathrm{H}), 0.108$ (s, 6H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 100.6,93.5,75.2,72.1,68.0,67.3,66.9,62.6, ~ 43.5,35.9,33.5$, $33.3,31.6,29.5,29.4,29.3,29.0,28.8,25.93$ (overlapped, $3 \times \mathrm{C}$), 25.91, 25.7 (overlapped, $3 \times \mathrm{C}$), $25.4,24.8,24.7,24.5,22.6,18.3,18.2,14.0,-3.8,-4.6,-5.4$ (overlapped, $2 \times \mathrm{C}$); MS m/z: 763 $\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 73(100 \%)$; HRMS (EI) calcd for $\mathrm{C}_{36} \mathrm{H}_{71} \mathrm{O}_{4}{ }^{35} \mathrm{Cl}_{4} \mathrm{Si}_{2}\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+} 763.3645$, found: 763.3640.

tert-Butyl(10-\{(4S,6S)-6-[(1S,2S,3R)-1-(tert-butyldimethylsilyloxy)-2,3-dichlorononyl]-2,2-dimethyl-1,3-dioxan-4-yl\}-2,2-dichlorodecyloxy)dimethylsilane (21): To a stirred solution of syn-diol $2(16.4 \mathrm{mg}, 0.022 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at room temperature were added 2,2-dimethoxypropane ($9.5 \mu \mathrm{l}, 0.077 \mathrm{mmol}$) and PPTS $(2.2 \mathrm{mg}, 0.088 \mathrm{mmol})$. After 45 h , the mixture was poured into a separatory funnel where it was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and sat. NaHCO_{3}. The organic phase was separated, dried over MgSO_{4}, filtered, and concentrated. The residue was purified by flash silica gel column chromatography $\left(\mathrm{Et}_{2} \mathrm{O} / n\right.$-hexane $\left.1: 50\right)$ to give acetal $21(16.9 \mathrm{mg}, 98 \%)$ as a pale yellow oil. Acetal 21: pale yellow oil; $[\alpha]^{25}{ }_{\mathrm{D}}+10.3\left(c 0.82, \mathrm{CHCl}_{3}\right)$; IR (neat) $v 2955,2930,2857$, $1462,1379,1258,1202,1121,837,777 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 4.47$ (ddd, $1 \mathrm{H}, J=10.1$, $6.9,2.7 \mathrm{~Hz}$), $4.24(\mathrm{ddd}, 1 \mathrm{H}, J=11.4,5.5,2.7 \mathrm{~Hz}), 4.10-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~m}, 1 \mathrm{H})$, $2.20-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.21(\mathrm{~m}, 24 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$, $0.94-0.85(\mathrm{~m}, 21 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 98.5,93.5$, $75.3,72.1,70.0,68.9,68.5,62.6,43.5,36.6,33.8,32.0,31.6,29.9,29.5,29.4,29.3,29.0,28.8,25.9$ (overlapped, $3 \times \mathrm{C}$), 25.72 (overlapped, $3 \times \mathrm{C}$), 25.70, 24.9, 24.7, 22.6, 19.7, 18.3, 18.2, 14.0, -3.7, -4.6, -5.4 (overlapped, $2 \times \mathrm{C}$); MS m/z: $763\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 73$ (100%); HRMS (EI) calcd for $\mathrm{C}_{36} \mathrm{H}_{71} \mathrm{O}_{4}{ }^{35} \mathrm{Cl}_{4} \mathrm{Si}_{2}$ $\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+} 763.3645$, found: 763.3653 .

References

1. (a) Burke, C. P.; Shi, Y. Org. Lett. 2009, 11, 5150. (b) Kanerva, L. T.; Vänttinen, E. Tetrahedron. Asymmetry. 1993, 4, 85-90.
2. (a) Kawahara, T.; Kumaki, Y.; Kamada, T.; Ishii, T.; Okino, T. J. Org. Chem. 2009, 74, 6016-6024.
(b) Bedke, D. K.; Shibuya, G. M.; Pereira, A.; Gerwick, W. H.; Haines, T. H.; Vanderwal, C. D. J. Am. Chem. Soc. 2009, 131, 7570-7572.

LもL•8を
ФLL・モG
96を・9G
9ゅじて9 \qquad
$9 \angle 9^{\circ} 9 L$
$000^{\circ} L L$
$S T E \cdot L L$
L8E．8LT——

ع09•19
$0 \angle I \cdot 29$
$960 \cdot \mathrm{~g} 9$
[8G•9L $000^{\circ} \mathrm{LL}$ $\angle て \sigma^{\circ} L L$
T9L.LLT-

 โદ $^{\circ} 8 \varepsilon$ \qquad ,

ててと・ゥとโ
8ヵロ・6IT

6もて・0てT
6LI・もとโ

てع6•8G \qquad
688° 29
S899L
もてを・LL
くんに もとL——

$$
\begin{aligned}
& \text { (1) }
\end{aligned}
$$

$86^{\circ} 0$
$86^{\circ} 0$
00° I

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$.
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$
$\left.\begin{array}{l}G 0^{\circ} G Z \\ 68 \cdot 8 Z \\ G 0^{\circ} 6 Z \\ Z L \cdot 6 Z \\ \bar{\sigma} \cdot 6 Z \\ 0 \varepsilon \cdot 6 Z \\ \varepsilon \varepsilon \cdot 6 Z \\ G L \cdot \varepsilon \varepsilon \\ 6 L \cdot \varepsilon \varepsilon \\ L D \cdot \varepsilon \sigma\end{array}\right]$
ZI•LS
$69^{\circ} 9 L$
$00^{\circ} \mathrm{LL}$
Zと・LL
9ぁ・06
ぁI•бIT
$\varepsilon \tau 6$ T
Z8・モGI－

TI•6をT

ぁ0て・6とโ

$G D L \cdot 9 L$
$000 \cdot L L$
$G G Z \cdot L L$

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$
$88 \varepsilon^{\circ} \mathrm{G}$
6Iて・8I
૬与9．ぁて
与 $\angle 9 \cdot 9$－
ZSI•9Z
ォをと・レて——
૬もし・8て—
806•8て
ᄃゅ0．6て
9عI•6て
0 Oォ・モも

$080^{\circ} \mathrm{ZL}$
$\mathrm{G} 99^{\circ} \mathrm{GL}$
$9 \angle 9^{\circ} 9 \mathrm{~L}$
$000{ }^{\circ} \mathrm{LL}$
GTE
LL

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ \qquad

$00^{\varepsilon} 00^{\prime} \mathrm{zHW} 001$

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$$
96 \div 6 \cdot 0
$$

$$
00^{\circ} \mathrm{I}=
$$

$500 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$
てもを・S－

6T0．09－
8ヵ0．09
โとて・て9－
とてし・し9
8 L
$589^{\circ} 9 \mathrm{~L}-$
$980^{\circ} \mathrm{LL}$
STE．LL－
与6も・と6

青
\sum_{n}

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$125 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$
૬と・ャโ——

TS•6も
0I・て9—
95＊と9
$06 \cdot \varepsilon 9$
6も・89
［9・てL
SS•SL

$125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$

$100 \mathrm{MHz}^{2} \mathrm{CDCl}_{3}$

09s.00T

synthetic
$500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$
$600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$
Okino et al. J. Org. Chem. 2009, 74, 6016.

Vanderwal et al. J. Am. Chem. Soc. 2009, 131, 7570.

