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a)  b)  

Figure S1. TEM images of NG-1 at different magnifications. 
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Figure S2. XPS spectra: (a) wide spectra of NG-1 and NG-2. The Ag 3d signals come from 

the Ag substrate. (b) N1s spectra of NG-2 upon in situ heat-treatment, fitting this signal 

indicating the presence of three types of nitrogen species: graphitic, pyridinic and pyrrolic N. 

(c) C1s, (d) O1s and (e) Cl2p of NG-1 upon in situ heat-treatment. The O bonds with C is 
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mainly in the type of C-OH, C=O and C-O-C1-2, while the Cl bonds with C is in the type of C-

Cl3.  

 

 

Figure S3. An atomic model for N-doped graphene. The grey balls represent C atoms, while 

the red, blue, and green ones present graphitic, pyridinic and pyrrolic N atoms, respectively. 

 

Table S1. Compositions of NG-1 after in situ treatment at different temperatures estimated 
from XPS measurements. 

Temperature 
(°C) 

C 
(at. %) 

Graphitic\Pyridinic\  
Pyrrolic N (at. %) 

O 
(at. %) 

Cl 
(at. %) 

N/C 
(%) 

RT 89.6 2.82\0.39\0.79 3.7 2.7 4.5 

250  92.6 2.33\0.68\0.19 1.8 2.4 3.5 

400 94.0 2.37\0.77\0.06 1.4 1.4 3.4 

600 96.0 2.38\0.47\0.05 0.2 0.9 3.0 

 

 

Table S2. Compositions of NG-2 after in situ treatment at different temperatures estimated 
from XPS measurements.  

Temperature 
(°C) 

C 
(at. %) 

Graphitic\Pyridinic\  
Pyrrolic N (at. %) 

O 
(at. %) 

Cl 
(at. %) 

N/C 
(%) 

RT 79.2 3.29\5.00\4.71 6.0 1.8 16.4 

250  81.4 3.07\5.60\3.53 5.3 1.1 15.0 

400 85.2 2.98\6.21\2.61 2.0 0.9 13.8 

600 89.1 3.00\4.78\1.62 1.0 0.5 10.5 
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Figure S4.  STM image of the SiC (0001) substrate covered with a perfect monolayer 

graphene derived from epitaxial growth. The size of the image is 5 nm× 5 nm.  

 

 

 

Figure S5. DFT calculation of oxygen activation by N-doped graphene. (a) and (b) Adjacent 

carbon atoms being the active sites for top oxygen on the graphitic-N-doped graphene: (a) 5.6 

at.% N species distributed homogeneously and (b) 2 at.% N species distributed 

inhomogeneously in the graphene structure; (c) pyridinic N atoms being the active sites for 

oxygen by bonding through the lone pair electrons. The grey, blue, red and white balls 

represent C, N, O and H atoms, respectively. 

The Vienna Ab-initio Simulation Package (VASP) was used in the calculation with the 

spin-polarized projector augmented wave method and a cutoff energy of 400 eV4-7. The PW91 

functional with generalized gradient approximation method was adopted for the exchange-

 

 

(c) -0.72 eV/O (b) -0.87 eV/O (a) -0.73 eV/O 
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correlation term8, and the Monkhorst-Pack scheme was used to sample the Brillouin zone. A 

periodically repeating hexagonal (3×3) supercell was taken for the graphitic N-doped 

graphene model with lattice vectors a and b parallel, c vertical to the plane. The lattice 

constant a and b were taken from pure graphene after being optimized. c was set as 14 Å 

which was large enough to avoid interplanar interactions. Various adsorption sites for 

dissociative atomic oxygen were considered, and energetically most favorable site was found 

to be the top site of C atoms adjacent to graphitic N with a value of -0.73 eV/O atom (Figure 

S5a) in the supercell containing 5.6at.% N species. When the graphitic N species were not 

evenly distributed in the case of low N content e.g. two N atoms in a (7x7) supercell, the 

adjacent C atoms were more active if the distance between the two N was less than three C 

atoms. The dissociative energy was -0.87 eV/O atom (Figure S5b). 

For pyridinic N species located at the graphene edge oxygen, it interacts directly with 

nitrogen via the lone-pair electrons of nitrogen (Figure S5c, using graphene nanobelt with (6 x 

4sqrt(3)) as a model) The dissociative energy is -0.72 eV/O.  

 

-0.4 -0.2 0.0 0.2
0.0003

0.0002

0.0001

0.0000

C
u

rr
e
n

t 
/ 

A

 Graphene

 XC-72

 NG-1-600

 NG-2-600

 40% Pt/C

 

 

Potential / V (vs MMO)  
Figure S6. Oxygen reduction voltammogram of pure graphene (obtained by thermal splitting 

of silicon carbide granules9), XC-72, NG-1-600 (NG-1 sample subjected to treatment at 600 

°C in Ar), NG-2-600 (NG-2 treated at 600 °C in Ar) and 40% Pt-C/GC in O2-saturated 1.0 M 

NaOH at the scan rate of 5 mV⋅s-1. Before measurements, the samples were repeatedly swept 

from +0.3 to –0.8 V in an N2-protected 1.0 M NaOH until a steady voltammogram curve had 

been obtained. 

The ORR activity was evaluated using a CHI 760B potentiostat/galvanostat equipped with 

a three-electrode electrochemical cell and gas flow controlling systems. A mercury/mercuric 

oxide electrode (1 M NaOH-filled) was used as the reference electrode, and a Pt-foil as the 
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counter electrode. A glassy carbon rotating ring disk electrode with a diameter of 5 mm 

covered by a thin film of the catalyst was used as the working electrode. Typically 5 mg 

catalyst was ultrasonically suspended in 1 mL ethanol and 50 µL of Nafion solution (5wt. %, 

Du Pont) to form a homogeneous ink. Then 25 µL of the ink was spread onto the surface of 

the glassy carbon with a micropipette followed by drying under an infrared lamp. All 

experiments were conducted in a 1 M NaOH solution saturated with oxygen at 25 °C, a 

rotation rate of 2500 rpm and a sweep rate of 5 mV⋅s-1. All potentials were referred to the 

normal hydrogen electrode (NHE). 
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