Supporting Information

Towards N-doped graphene via solvothermal synthesis

Dehui Deng¹, Xiulian Pan^{1*}, Liang Yu¹, Yi Cui¹, Yeping Jiang², Jing Qi³, Wei-Xue Li¹, Qiang Fu¹, Xucun Ma², Qikun Xue², Gongquan Sun³ and Xinhe Bao^{1*}

1 State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China. 2 Institute of Physics, The Chinese Academy of Sciences, Beijing 100190, China ³Direct Alcohol Fuel Cell Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan Road 457, Dalian 116023, China

Figure S1. TEM images of NG-1 at different magnifications.

Figure S2. XPS spectra: (a) wide spectra of NG-1 and NG-2. The Ag 3d signals come from the Ag substrate. (b) N1s spectra of NG-2 upon in situ heat-treatment, fitting this signal indicating the presence of three types of nitrogen species: graphitic, pyridinic and pyrrolic N. (c) C1s, (d) O1s and (e) Cl2p of NG-1 upon in situ heat-treatment. The O bonds with C is

mainly in the type of C-OH, C=O and C-O-C¹⁻², while the Cl bonds with C is in the type of C- $Cl³$.

Figure S3. An atomic model for N-doped graphene. The grey balls represent C atoms, while the red, blue, and green ones present graphitic, pyridinic and pyrrolic N atoms, respectively.

Temperature ${}^{\circ}C$,	C $(at, \%)$	Graphitic\Pyridinic\ Pyrrolic N (at. $%$)	O $(at, \%)$	Cl $(at, \%)$	N/C $(\%)$
RT	89.6	2.82\0.39\0.79	3.7	2.7	4.5
250	92.6	2.33\0.68\0.19	1.8	2.4	3.5
400	94.0	2.37\0.77\0.06	1.4	14	3.4
600	96.0	2.38\0.47\0.05	0.2	0.9	3.0

Table S1. Compositions of NG-1 after in situ treatment at different temperatures estimated from XPS measurements.

Table S2. Compositions of NG-2 after in situ treatment at different temperatures estimated from XPS measurements.

Temperature	C	Graphitic\Pyridinic\	O	Cl	N/C
$^{\circ}\textrm{C}$	$(at, \%)$	Pyrrolic N (at. $%$)	$(at, \%)$	$(at, \%)$	$(\%)$
RT	79.2	3.29\5.00\4.71	6.0	1.8	16.4
250	81.4	3.07\5.60\3.53	5.3	1.1	15.0
400	85.2	2.98\6.21\2.61	2.0	0.9	13.8
600	89.1	3.00\4.78\1.62	1.0	0.5	10.5

Figure S4. STM image of the SiC (0001) substrate covered with a perfect monolayer graphene derived from epitaxial growth. The size of the image is 5 nm× 5 nm.

Figure S5. DFT calculation of oxygen activation by N-doped graphene. (a) and (b) Adjacent carbon atoms being the active sites for top oxygen on the graphitic-N-doped graphene: (a) 5.6 at.% N species distributed homogeneously and (b) 2 at.% N species distributed inhomogeneously in the graphene structure; (c) pyridinic N atoms being the active sites for oxygen by bonding through the lone pair electrons. The grey, blue, red and white balls represent C, N, O and H atoms, respectively.

The Vienna Ab-initio Simulation Package (VASP) was used in the calculation with the spin-polarized projector augmented wave method and a cutoff energy of 400 eV^{4-7} . The PW91 functional with generalized gradient approximation method was adopted for the exchange-

correlation term⁸, and the Monkhorst-Pack scheme was used to sample the Brillouin zone. A periodically repeating hexagonal (3×3) supercell was taken for the graphitic N-doped graphene model with lattice vectors *a* and *b* parallel, *c* vertical to the plane. The lattice constant a and b were taken from pure graphene after being optimized. c was set as 14 Å which was large enough to avoid interplanar interactions. Various adsorption sites for dissociative atomic oxygen were considered, and energetically most favorable site was found to be the top site of C atoms adjacent to graphitic N with a value of -0.73 eV/O atom (Figure S5a) in the supercell containing 5.6at.% N species. When the graphitic N species were not evenly distributed in the case of low N content e.g. two N atoms in a (7x7) supercell, the adjacent C atoms were more active if the distance between the two N was less than three C atoms. The dissociative energy was -0.87 eV/O atom (Figure S5b).

For pyridinic N species located at the graphene edge oxygen, it interacts directly with nitrogen via the lone-pair electrons of nitrogen (Figure S5c, using graphene nanobelt with (6 x 4sqrt(3)) as a model) The dissociative energy is -0.72 eV/O.

Figure S6. Oxygen reduction voltammogram of pure graphene (obtained by thermal splitting of silicon carbide granules⁹), XC-72, NG-1-600 (NG-1 sample subjected to treatment at 600 °C in Ar), NG-2-600 (NG-2 treated at 600 °C in Ar) and 40% Pt-C/GC in O₂-saturated 1.0 M NaOH at the scan rate of 5 mV⋅s⁻¹. Before measurements, the samples were repeatedly swept from $+0.3$ to -0.8 V in an N₂-protected 1.0 M NaOH until a steady voltammogram curve had been obtained.

The ORR activity was evaluated using a CHI 760B potentiostat/galvanostat equipped with a three-electrode electrochemical cell and gas flow controlling systems. A mercury/mercuric oxide electrode (1 M NaOH-filled) was used as the reference electrode, and a Pt-foil as the

counter electrode. A glassy carbon rotating ring disk electrode with a diameter of 5 mm covered by a thin film of the catalyst was used as the working electrode. Typically 5 mg catalyst was ultrasonically suspended in 1 mL ethanol and 50 µL of Nafion solution (5wt. %, Du Pont) to form a homogeneous ink. Then $25 \mu L$ of the ink was spread onto the surface of the glassy carbon with a micropipette followed by drying under an infrared lamp. All experiments were conducted in a 1 M NaOH solution saturated with oxygen at 25 °C, a rotation rate of 2500 rpm and a sweep rate of 5 mV⋅s⁻¹. All potentials were referred to the normal hydrogen electrode (NHE).

References

- 1. X. B. Fan, W. C. Peng, Y. Li, X. Y. Li, S. L. Wang, G. L. Zhang, and F. B. Zhang, Adv. Mater. **20**, 4490 (2008).
- 2. H. P. Boehm, Carbon **40**, 145 (2002).
- 3. John F. Moulder, William F. Stickle, Peter E. Sobol and Kenneth D. Bomben (editor: Jill Chastain), Handbook of X-ray Photoelecton Spectroscopy (1992).
- 4. P. E. Blochl, Phys. Rev. B **50**, 17953 (1994).
- 5. G. Kresse, and D. Joubert, Phys. Rev. B **59**, 1758 (1999).
- 6. G. Kresse, and J. Hafner, Phys. Rev. B **48**, 13115 (1993).
- 7. G. Kresse, and J. Furthmuller, Phys. Rev. B **54**, 11169 (1996).
- 8. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B **46**, 6671 (1992).
- 9. D. H. Deng, X. L. Pan, H. Zhang, Q. Fu, D. L. Tan, and X. H. Bao, Adv. Mater. **22**, 2168 (2010).