The Roles of Molecular Structure and Effective Optical Symmetry in Evolving Dipolar Chromophoric Building Blocks to Potent Octopolar NLO Chromophores

Tomoya Ishizuka, ${ }^{1}$ Louise E. Sinks, ${ }^{1}$ Kai Song, ${ }^{2}$ Sheng-Ting Hung, ${ }^{3}$ Animesh Nayak, ${ }^{1,4}$ Koen Clays, ${ }^{3 *}$ and Michael J. Therien ${ }^{4 *}$
${ }^{1}$ Department of Chemistry, University of Pennsylvania, 231 South $34{ }^{\text {th }}$ Street, Philadelphia, PA 19104-6323, USA; ${ }^{2}$ Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China ${ }^{3}$ Department of Chemistry, University of Leuven, B-3001 Leuven, Belgium; and ${ }^{4}$ Department of Chemistry, French Family Science Center, 124 Science Drive, Duke University, Durham, NC 27708, USA

E-mail: koen.clays@fys.kuleuven.be; michael.therien@duke.edu

Design and Synthesis.

A. Porphyrin Precursors. The syntheses and characterization of starting materials (5-bromo--10,20-bis(2,6-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato)zinc(II) (S1), (5-(triisopropylethynyl)-10,20-bis(2,6-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato)zinc(II) (S2), and (5-ethynyl-10,20-bis(2,6-bis(3,3-dimethyl-1-butyloxy)phenyl)porphinato)zinc(II) (S3) have been reported in an earlier work. (Scheme S1) ${ }^{1}$
B. Terpyridine Ligands. $2,2^{\prime} ; 6^{\prime}, 2^{\prime \prime}$-Terpyridine was purchased from Aldrich. 4’-bromo-2,2';6',2"-terpyridine (S4) was synthesized from the starting material 2,6-bis(2-pyridyl)$4(1 H)$-pyridone, ${ }^{2,3}$ phosphorous pentabromide $\left(\mathrm{PBr}_{5}\right)$ and phosphorous oxybromide $\left(\mathrm{POBr}_{3}\right)$ using a previously reported method. ${ }^{1}$
(a) 4-Bromo-2,2';6',2"-terpyridine (S5) was synthesized from a literature method
(Scheme S2). ${ }^{7}$

2,2'-Bipyridine- \boldsymbol{N}-oxide (S7). ${ }^{4}$ To the solution of 2,2'-bipyridyl ($10.008 \mathrm{~g}, 64.1 \mathrm{mmol}$) in glacial acetic acid $(50 \mathrm{~mL}), 20 \%$ hydroperoxide $(\mathrm{aq})(8 \mathrm{~mL})$ was added and the reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 18 h . After cooled down to r.t., the solvent was evaporated under vacuo. To the yellow residue, aqueous potassium carbonate (100 mL) was added and extracted with chloroform ($500 \mathrm{~mL} \times 3$ times). The solvent of the collected organic phase was evaporated and the residue was purified with column chromatography on silica gel eluted with 5% methanol-chloroform. A pale yellow solid of $\mathbf{S 7}(6.790 \mathrm{~g}, 39.4 \mathrm{mmol})$ was obtained in 61% yield. The obtained compound was used for next reactions without the characterization.

6-Cyano-2,2'-bipyridine (S8). ${ }^{5}$ To the solution of $\mathbf{S} 7(1.684 \mathrm{~g}, 9.78 \mathrm{mmol})$ in dry dichloromethane $(20 \mathrm{~mL})$ was added trimethylsilyl cyanide $(1.4 \mathrm{~mL}, 10.5 \mathrm{mmol})$ and the reaction mixture was stirred for 30 min at r.t. To the solution, dimethylcabamyl-chloride ($0.9 \mathrm{~mL}, 9.77$ mmol) was added and stirred for 12 h at r.t. Aqueous potassium carbonate (3.08 g in 25 mL) was added and stirred for 15 min . The mixture was extracted with dichloromethane ($25 \mathrm{~mL} \times 3$ times) and the combined organic phase was dried over magnesium sulfate. The column purification of the obtained mixture on silica gel eluted with ethyl acetate-hexane 1:5 mixed solvent afforded a white solid of $\mathbf{S 8}(1.082 \mathrm{~g}, 5.97 \mathrm{mmol})$ in 61% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 8.7-8.66(\mathrm{~m}, 2 \mathrm{H}), 8.47\left(\mathrm{dt}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 4{ }^{\prime}-\mathrm{Py} H\right), 7.95(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{Py} H)$, $7.86\left(\mathrm{td}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{Py} H\right), 7.70(\mathrm{dd}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{Py} H), 7.38(\mathrm{ddd}, J=7.5$, 4.8, 1.1 Hz, 1H, 3'-РyH).

2-(2,2'-Bipyridin-6-yl)-carabaimidazone (S9). ${ }^{6}$ To the suspension of $\mathbf{S 8}(4.526 \mathrm{~g}, 25.0$ $\mathrm{ml})$ in ethanol $(25 \mathrm{~mL})$, hydrazine monohydrate $(16 \mathrm{~mL}, 0.33 \mathrm{~mol})$ was added and the reaction mixture was stirred at r.t. for 3 h . Water $(250 \mathrm{~mL})$ was added and the resulting white precipitate was filtered and dried under vacuum. The white solid was recrystallized from benzene, giving pale yellow crystals of $\mathbf{S 9}(2.925 \mathrm{~g}, 13.7 \mathrm{mmol})$ in 55% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\delta 8.69\left(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{Py} H\right), 8.42(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{Py} H), 8.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 3-$ $\operatorname{Py} H), 7.84\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{Py} H\right), 7.33\left(\mathrm{td}, J=7.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{Py} H\right)$.

3-(2,2'-Bipyridin-6-yl)-1,2,4-triazine (S10). ${ }^{7}$ To the solution of $\mathbf{S 9}(2.90 \mathrm{~g}, 13.6 \mathrm{mmol})$ in methanol (150 mL) was added the solution of 2,3-dihydroxy-1,4-dioxane ($2.45 \mathrm{~g}, 20.4 \mathrm{mmol}$) in methanol (50 mL) with a cannula and the reaction mixture was stirred for 5 min at r.t., and then refluxed for 3 h . The reaction mixture was cooled to r.t. and the solvent was removed under vacuo. The resulting yellow solid was purified with sublimation at $150^{\circ} \mathrm{C}$ under reduced pressure (ca. 0.15 mmHg) and the yellow solid of $\mathbf{S 1 0}(2.88 \mathrm{~g}, 12.2 \mathrm{mmol})$ was obtained in 90% yield. The obtained compound was used for next reactions without the characterization.

4-Tributylstannyl-2,2';6, 2"-terpyridine (S11). ${ }^{\mathbf{7}}$ To the solution of $\mathbf{S 1 0}$ (1.001 g, 4.26 mmol) in 1,2-dichlorobenzene (10 mL), ethynyltributylstannane ($2.25 \mathrm{ml}, 7.8 \mathrm{mmol}$) was added and the reaction mixture was stirred at $180^{\circ} \mathrm{C}$ for 20 h , and then cooled to r.t. The solvent was evaporated under vacuo and the residue was purified with column chromatography on silica gel eluted with petroleum ether and ethyl acetate 9:1 mixed solvent. A colorless oil of S11 (952.1 $\mathrm{mg}, 1.82 \mathrm{mmol})$ was obtained in 43% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.81(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{Py} H)$, $8.70(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{Py} H), 8.63-8.56(\mathrm{~m}, 2 \mathrm{H}), 8.45\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 4^{\prime}-\mathrm{Py} H\right), 7.95(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}, 4 "-\mathrm{Py} H), 7.83(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}, 3 "-\mathrm{Py} H), 7.42(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{Py} H)$, 7.32 (ddd, $J=7.5,4.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}, 5 "-\mathrm{Py} H), 1.65-1.60\left(\mathrm{~m}, 6 \mathrm{H},-\mathrm{SnCH}_{2}-\right), 1.42-1.35(\mathrm{~m}, 6 \mathrm{H},-$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}-\right)$, 1.21-1.15 (m, 6H, $\left.-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 0.92\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 9 \mathrm{H},-\mathrm{CH}_{3}\right)$.

4-Bromo-2,2';6',2"-terpyridine (S5). ${ }^{7}$ To the solution of $\mathbf{S 1 1}(997 \mathrm{mg}, 1.91 \mathrm{mmol})$ in dry chloroform (25 mL), the solution of bromine ($0.2 \mathrm{ml}, 3.9 \mathrm{mmol}$) in dry chloroform (25 mL) was added at $-50^{\circ} \mathrm{C}$, and then, the ice bath was removed and the reaction mixture was allowed to warm to r.t. The reaction mixture was poured into aqueous solution of sodium thiosulfate and extracted with chloroform ($200 \mathrm{~mL} \times 3$ times). The combined organic phase was washed with
water and dried over magnesium sulfate. The volatiles were removed under vacuo and the residue was purified with column chromatography on silica gel eluted with petroleum ether and ethyl acetate 95:5 mixed solvent. A white solid of $\mathbf{S 5}(542.8 \mathrm{mg}, 1.74 \mathrm{mmol})$ was obtained in 91% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.78(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{Py} H), 8.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{Py} H)$, 8.65-8.40 (m, 4H), $7.96(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 4 "-\mathrm{Py} H), 7.88(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 3 "-\mathrm{Py} H), 7.49(\mathrm{~d}, J$ $=5.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{Py} H), 7.34(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, 5$ "-Py $H)$.
(b) 4,4"-Dibromo-2, $2^{\prime} ; 6^{\prime}, 2^{\prime \prime}$-terpyridine (S6) was synthesized from a literature method (Scheme S2). ${ }^{7}$

2,6-Pyridinedicarboxamide dihydrazone (S12). ${ }^{8}$ Pyridine-2,6-dicarbonitrile (1.502 g , $11.6 \mathrm{mmol})$ was dissolved in hydrazine monohydrate $(10 \mathrm{~mL}, 0.21 \mathrm{~mol})$ and the solution was stirred for 16 h . The resulting white precipitate was filtered and the obtained white solid was recrystallized from water. White crystals of S12 ($1.563 \mathrm{~g}, 8.09 \mathrm{mmol}$) were obtained in 70% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 7.91(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{Py} H), 7.69(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$, $p-\mathrm{Py} H), 5.40(\mathrm{bs}, 4 \mathrm{H}), 4.62(\mathrm{bs}, 4 \mathrm{H})$.

2,6-Bis(1,2,4-triazin-3-yl)-pyridine (S13). ${ }^{7}$ To the solution of $\mathbf{S 1 2}$ ($924.0 \mathrm{mg}, 4.78$ $\mathrm{mmol})$ in methanol (50 mL), the solution of 2,3-dihydroxy-1,4-dioxane $(2.276 \mathrm{~g}, 18.9 \mathrm{mmol})$ in methanol (25 mL) was added and the reaction mixture was stirred at r.t. for 3 h and then refluxed for 2 h . The reaction mixture was allowed to cool to r.t. and the resulting yellow precipitate was filtered. The obtained yellow solid was extracted with dichloromethane by a Soxhlet extractor for 12 h . The solvent was evaporated and a yellow powder of S13 ($640.8 \mathrm{mg}, 2.70 \mathrm{mmol}$) was obtained in 57% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.34(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}, 6-\mathrm{Tr} H), 8.91(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{Tr} H), 8.87(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, m-\mathrm{Py} H), 8.21(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, p-\mathrm{Py} H)$.

4,4"-Bis(tributylstannyl)-2,2'; $\mathbf{6}^{\prime}, \mathbf{2}{ }^{\prime \prime}-$ terpyridine (S14). ${ }^{7}$ To the solution of S13 (186.8 $\mathrm{mg}, 0.787 \mathrm{mmol})$ in 1,2-dichlorobenzene (2.6 mL), ethynyltributylstannane ($0.93 \mathrm{~mL}, 3.2 \mathrm{mmol}$)
was added and the reaction mixture was heated to $180^{\circ} \mathrm{C}$ and stirred for 18 h . Then, the reaction mixture was allowed to cool to r.t. and the solvent was removed under vacuo. The residue was purified with column chromatography on silica gel eluted with petroleum ether and ethyl acetate 95:5 mixed solvent. The yellow oil of $\mathbf{S 1 4}(336.7 \mathrm{mg}, 0.415 \mathrm{mmol})$ was obtained in 53% yield.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.70(\mathrm{~s}, 2 \mathrm{H}, 3 \& 3$ '-PyH), $8.59(\mathrm{dd}, J=4.5,1.0 \mathrm{~Hz}, 2 \mathrm{H}, 5 \& 5$ '$\mathrm{Py} H), 8.43\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, 6 \& 6^{\prime}-\mathrm{Py} H\right), 7.94\left(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 4{ }^{\prime}-\mathrm{Py} H\right), 7.43(\mathrm{dd}, J=7.5$, $\left.0.6 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime} \& 5^{\prime}-\mathrm{Py} H\right)$.

4,4"-Dibromo-2,2';6',2"-terpyridine (S6). ${ }^{\mathbf{7}}$ To the solution of $\mathbf{S 1 4} \mathbf{(5 3 6 . 7 \mathrm { mg } , 0 . 6 6 1}$ mmol) in chloroform (13 mL), the solution of bromine ($0.12 \mathrm{~mL}, 2.3 \mathrm{mmol}$) in chloroform (13 mL) was added dropwise $\mathrm{at}-50^{\circ} \mathrm{C}$ and then allowed to warm up to r.t. The reaction mixture was poured into aqueous sodium thiosulfate solution (50 mL) and extracted with chloroform (200 mL x 2 times). The combined organic phase was washed with water and dried over magnesium sulfate. The solvent was evaporated under vacuum and the residue was chromatographed on silica gel eluted with petroleum ether and ethyl acetate 9:1 mixed solvent. A white powder of $\mathbf{S 6}$ ($260 \mathrm{mg}, 0.66 \mathrm{mmol}$) was obtained quantitatively. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.76(\mathrm{~s}, 2 \mathrm{H}$, $5-\mathrm{Py} H), 8.51\left(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}, 6 \& 6^{\prime}-\mathrm{Py} H\right), 8.47\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime} \& 5^{\prime}-\mathrm{Py} H\right), 7.97(\mathrm{t}, J=$ $\left.7.9 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{Py} H\right), 7.52\left(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}, 5 \& 5^{\prime}-\mathrm{Py} H\right)$.
C. Ruthenium bis(terpyridine) Complexes. As illustrated in Scheme S3, one terpyridine ligand was added to the commercially available ruthenium $\left(\mathrm{RuCl}_{3}\right)$ starting materials first, followed by addition of the other terpyridine ligands second.

Ruthenium(III) (4'-bromo-2,2';6',2"-terpyridine) trichloride (S16). Ruthenium trichloride hydrate ($950 \mathrm{mg}, 4.2 \mathrm{mmol}$) and 4-bromo-2, ${ }^{\prime} ; 6^{\prime}, 2$ " -terpyridine ($\mathbf{S 4}$) ($1.38 \mathrm{~g}, 4.42$ mmol) were brought together in a 1 L round bottom flask with condenser and stirbar and refluxed in ethanol (250 mL) under air for 3 h . The mixture was cooled in an ice bath and
filtered. The brown solid was washed with ethanol and ether, leaving a brown powder that was used without further purification $(1.6 \mathrm{~g}, 73 \%)$. Due to the paramagnetic nature of this product and its poor solubility in most common organic solvents, this compound was not further characterized.
$\mathbf{R u}(4-B r-t p y)(t p y)\left(\mathbf{P F}_{6}\right)_{\mathbf{2}} \mathbf{(1 0)}$. 4-Bromo-2, $2^{\prime} ; 6^{\prime}, 2^{\prime \prime}$-terpyridine ($52.7 \mathrm{mg}, 0.169 \mathrm{mmol}$) and $\mathrm{RuCl}_{3}(\mathrm{tpy})(73.8 \mathrm{mg}, 0.167 \mathrm{mmol})$ were suspended in $\mathrm{MeOH}(20 \mathrm{~mL})$. N-ethyl-morpholine $(0.020 \mathrm{~mL})$ was added into the suspension and the reaction mixture was refluxed for 2 h . The reaction mixture was cooled to r.t. and the solvent was removed under reduced pressure. The residual black solid was chromatographed on silica gel eluted with a mixed solvent of $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}: \mathrm{KNO}_{3}(\mathrm{aq})=90: 9: 1$. The second orange fraction was collected and the solvent evaporated. The residual red solid was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$ and excess ammonium hexafluorophosphate and $\mathrm{H}_{2} \mathrm{O}$ were added. Orange crystals of $\mathbf{1 0}(48.0 \mathrm{mg}, 0.0513 \mathrm{mmol})$ were collected by filtration in 31% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.74(\mathrm{~m}, 5 \mathrm{H}), 8.47(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, 6\&6"-PyH for tpy), 8.41 (m, 3H), $7.92(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~m} \mathrm{5H})$. MS (MALDI-TOF) $m / z: 646$ (calcd for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{BrN}_{6} \mathrm{Ru}\left(\mathrm{M}-2 \mathrm{PF}_{6}\right)^{+}$646) and 792 (calcd for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{BrN}_{6} \mathrm{PRu}$ (M$\mathrm{PF}_{6}{ }^{+}$791).
$\mathbf{R u}\left(\mathbf{4}^{\prime}-\mathbf{B r}-\mathbf{t p y}\right)_{\mathbf{2}}\left(\mathbf{P F}_{\mathbf{6}} \mathbf{)}_{\mathbf{2}} \mathbf{(1 1) .} \mathbf{4}^{\prime}\right.$-Bromo-2, $2^{\prime} ; 6^{\prime}, 2^{\prime \prime}$ '-terpyridine ($80.6 \mathrm{mg}, 0.258 \mathrm{mmol}$) and $\mathrm{RuCl}_{3}(4$ '-Br-tpy) ($130 \mathrm{mg}, 0.250 \mathrm{mmol}$) were suspended in $\mathrm{MeOH}(33 \mathrm{~mL})$. N-ethylmorpholine $(0.033 \mathrm{~mL})$ was added into the suspension and the reaction mixture was refluxed for 2 h . The reaction mixture was cooled to r.t. and the solvent was removed under reduced pressure. The residual black solid was chromatographed on silica gel eluted with a mixed solvent of $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}: \mathrm{KNO}_{3}(\mathrm{aq})=90: 9: 1$. The orange fraction was collected and the solvent of the collected fraction was evaporated. To the solution of the residual red solid in $\mathrm{CH}_{3} \mathrm{CN}$ were added excess ammonium hexafluorophosphate and $\mathrm{H}_{2} \mathrm{O}$ were added. Orange crystals of $\mathbf{1 1}$
($115.4 \mathrm{mg}, 0.114 \mathrm{mmol}, 46 \%$ yield) were collected by filtration. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.98$ (s, $\left.4 \mathrm{H}, 3^{\prime} \& 5 ’-\mathrm{Py} H\right), 8.47$ (ddd, $\left.J=8.1,1.2,0.9 \mathrm{~Hz}, 4 \mathrm{H}, 4 \& 4 "-\mathrm{Py} H\right), 7.93(\mathrm{td}, J=7.8,1.5 \mathrm{~Hz}, 4 \mathrm{H}$, $6 \& 6 "-\mathrm{Py} H), 7.38(\mathrm{ddd}, J=7.7,1.3,0.6 \mathrm{~Hz}, 4 \mathrm{H}, 5 \& 5 "-\mathrm{Py} H), 7.18(\mathrm{td}, J=7.8,1.5 \mathrm{~Hz}, 4 \mathrm{H}, 3 \& 3 "-$ $\mathrm{Py} H$). MS (MALDI-TOF) m / z : 724 (calcd for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{~N}_{6} \mathrm{Ru}\left(\mathrm{M}-2 \mathrm{PF}_{6}\right)^{+} 724$) and 870 (calcd for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{PRu}\left(\mathrm{M}-\mathrm{PF}_{6}\right)^{+}$869).
$\mathbf{R u}\left(\mathbf{4}^{\prime}-\mathbf{B r}-\mathbf{t p y}\right)(4-\mathbf{B r}-\mathbf{t p y})\left(\mathbf{P F}_{6}\right)_{2} \mathbf{(1 2)}$. 4-Bromo-2, $2^{\prime} ; 6^{\prime}, 2^{\prime \prime}$-terpyridine $(47.6 \mathrm{mg}, 0.152$
$\mathrm{mmol})$ and $\mathrm{RuCl}_{3}\left(4^{\prime}\right.$-Br-tpy) $(77.5 \mathrm{mg}, 0.149 \mathrm{mmol})$ were suspended in $\mathrm{MeOH}(19 \mathrm{~mL})$. $\mathrm{N}-$ ethyl-morpholine $(0.019 \mathrm{~mL})$ was added into the suspension and the reaction mixture was refluxed for 2 h . After cooling to r.t., the solvent was removed under reduced pressure and the residual black solid was chromatographed on silica gel eluted with a mixed solvent of $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}: \mathrm{KNO}_{3}(\mathrm{aq})=90: 9: 1$. The second orange fraction was collected and the solvent was evaporated. To the solution of the residual red solid in $\mathrm{CH}_{3} \mathrm{CN}$ were added excess ammonium hexafluorophosphate and $\mathrm{H}_{2} \mathrm{O}$. Orange crystals of $\mathbf{1 2}(35.3 \mathrm{mg}, 0.0348 \mathrm{mmol})$ were collected by filtration in 23% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.97(\mathrm{~s}, 2 \mathrm{H}), 8.74(\mathrm{~m}, 4 \mathrm{H}), 8.44(\mathrm{~m}, 4 \mathrm{H}), 7.93(\mathrm{~m}$, $2 \mathrm{H}), 7.34(\mathrm{~m}, 4 \mathrm{H}), 7.18(\mathrm{~m}, 4 \mathrm{H})$. MS (MALDI-TOF) m/z: 726 (calcd for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{~N}_{6} \mathrm{Ru}(\mathrm{M}-$ $\left.2 \mathrm{PF}_{6}\right)^{+} 724$) and $870\left(\right.$ calcd for $\left.\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{PRu}\left(\mathrm{M}-\mathrm{PF}_{6}\right)^{+} 869\right)$.
$\mathbf{R u}(4-\mathbf{B r}-\mathrm{tpy})_{\mathbf{2}}\left(\mathbf{P F}_{6}\right)_{\mathbf{2}} \mathbf{(1 3)}$. 4-Bromo-2, $2^{\prime} ; 6^{\prime}, 2^{\prime \prime}$-terpyridine ($51.4 \mathrm{mg}, 0.165 \mathrm{mmol}$) and RuCl_{3} (4-Br-tpy) ($80.3 \mathrm{mg}, 0.155 \mathrm{mmol}$) were suspended in $\mathrm{MeOH}(20 \mathrm{~mL})$. N-ethylmorpholine $(0.020 \mathrm{~mL})$ was added into the suspension and the reaction mixture was refluxed for 2h. After cooling to r.t., the solvent was removed under reduced pressure and the residual black solid was chromatographed on silica gel eluted with a mixed solvent of $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}: \mathrm{KNO}_{3}$ (aq) $=90: 9: 1$. The orange fraction was collected and the solvent was evaporated. To the solution of the residual red solid in $\mathrm{CH}_{3} \mathrm{CN}$ were added excess ammonium hexafluorophosphate and $\mathrm{H}_{2} \mathrm{O}$. Orange crystals of $\mathbf{1 3}(66.0 \mathrm{mg}, 0.065 \mathrm{mmol})$ were collected by filtration in 42% yield. ${ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.73(\mathrm{~m}, 6 \mathrm{H}), 8.47\left(\mathrm{dt}, J=7.5,1.0 \mathrm{~Hz}, 2 \mathrm{H}, 4{ }^{\prime}-\mathrm{Py} H\right), 8.41(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 5$ 'Py H), 7.92 (td, $J=7.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}, 5 "-\mathrm{Py} H), 7.35(\mathrm{dd}, J=6.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}, 3 ’-\mathrm{Py} H), 7.29(\mathrm{dt}, J=$ $5.5,1.0 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{Py} H), 7.16(\mathrm{~m}, 4 \mathrm{H})$. MS (MALDI-TOF) m/z: 723 (calcd for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{~N}_{6} \mathrm{Ru}$ $\left.\left(\mathrm{M}-2 \mathrm{PF}_{6}\right)^{+} 724\right)$ and $870\left(\right.$ calcd for $\left.\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{PRu}\left(\mathrm{M}-\mathrm{PF}_{6}\right)^{+} 869\right)$.
$\mathbf{R u}(\mathbf{t p y})\left(\mathbf{4 , 4} \mathbf{4}^{\prime}-\mathbf{B r}_{2} \text {-tpy)(} \mathbf{P F}_{6}\right)_{\mathbf{2}} \mathbf{(1 4)}$. 4,4"-Dibromo-2, $2^{\prime} ; 6^{\prime}, 2^{\prime}$ "-terpyridine ($52.1 \mathrm{mg}, 0.133$ mmol) and $\mathrm{RuCl}_{3}($ tpy $)(58.9 \mathrm{mg}, 0.134 \mathrm{mmol})$ were suspended in $\mathrm{MeOH}(15 \mathrm{~mL})$. N-ethylmorpholine $(0.020 \mathrm{~mL})$ was added into the suspension and the reaction mixture was refluxed for $2 h$. After cooling to r.t., the solvent was removed under reduced pressure and the residual black solid was chromatographed on silica gel eluted with a mixed solvent of $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}: \mathrm{KNO}_{3}$ (aq) $=90: 9: 1$. The first and second orange fractions were collected and the solvent was evaporated. To the solution of the residual red solids in $\mathrm{CH}_{3} \mathrm{CN}$ were added excess ammonium hexafluorophosphate and $\mathrm{H}_{2} \mathrm{O}$. The first fraction afforded a red crystal of $\mathrm{Ru}\left(4,4^{\prime}{ }^{\prime}-\mathrm{Br}_{2}{ }^{-}\right.$ tpy $)_{2}\left(\mathrm{PF}_{6}\right)_{2}(\mathbf{1 7})(15.0 \mathrm{mg}, 0.0128 \mathrm{mmol})$ in 19% yield. The resulting orange crystal of $\mathbf{1 4}$ from the second fraction ($53.2 \mathrm{mg}, 0.0524 \mathrm{mmol}$) was collected by filtration in 39% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ of 14: $\delta 8.74(\mathrm{~m}, 6 \mathrm{H}), 8.43(\mathrm{~m}, 4 \mathrm{H}), 7.92(\mathrm{td}, J=7.8,1.5 \mathrm{~Hz}, 2 \mathrm{H}, 4 \& 4$ "-PyH for tpy), 7.35 (dd, $J=6.0,2.1 \mathrm{~Hz}, 2 \mathrm{H}, 3 \& 3 "-\mathrm{Py} H$ for tpy), $7.28(\mathrm{dt}, J=5.7,0.9 \mathrm{~Hz}, 2 \mathrm{H}, 5 \& 5 "-\mathrm{Py} H$ for tpy), $7.16(\mathrm{~m}, 4 \mathrm{H})$. MS of 14 (MALDI-TOF) m / z : 726 (calcd for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{~N}_{6} \mathrm{Ru}\left(\mathrm{M}-2 \mathrm{PF}_{6}\right)^{+}$ 724) and 870 (calcd for $\left.\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{~F}_{6} \mathrm{PRu}\left(\mathrm{M}-\mathrm{PF}_{6}\right)^{+} 869\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ of 17: $\delta 8.74$ (d, $J=8.1 \mathrm{~Hz}, 4 \mathrm{H}, 6 \& 6$ "-PyH), $8.71(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 4 \mathrm{H}, 3 \& 3 "-\mathrm{Py} H), 8.43(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 4$ 'Py H), $7.37\left(\mathrm{dd}, J=6.0,2.0 \mathrm{~Hz}, 4 \mathrm{H}, 5 \& 5^{\prime}-\mathrm{Py} H\right), 7.11\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}, 3^{\prime} \& 5^{\prime}-\mathrm{Py} H\right)$. MS of 17 (MALDI-TOF) m/z: 881 (calcd for $\mathrm{C}_{30} \mathrm{H}_{18} \mathrm{Br}_{4} \mathrm{~N}_{6} \mathrm{Ru}\left(\mathrm{M}-2 \mathrm{PF}_{6}\right)^{+}$880) and 1026 (calcd for $\mathrm{C}_{30} \mathrm{H}_{18} \mathrm{Br}_{4} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{PRu}\left(\mathrm{M}-\mathrm{PF}_{6}\right)^{+}$1025).
 $0.131 \mathrm{mmol})$ and $\mathrm{RuCl}_{3}(4$ '-Br-tpy) ($69.3 \mathrm{mg}, 0.133 \mathrm{mmol}$) were suspended in $\mathrm{MeOH}(15 \mathrm{~mL})$. N -ethylmorpholine $(0.020 \mathrm{~mL})$ was added into the suspension and the reaction mixture was refluxed for 2 h . After cooling to r.t., the solvent was removed under reduced pressure and the residual black solid was chromatographed on silica gel eluted with a mixed solvent of $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}: \mathrm{KNO}_{3}(\mathrm{aq})=90: 9: 1$. The second orange fraction was collected and the solvent was evaporated. To the solution of the residual red solids in $\mathrm{CH}_{3} \mathrm{CN}$ were added excess ammonium hexafluorophosphate and $\mathrm{H}_{2} \mathrm{O}$. Orange crystals of $\mathbf{1 5}$ from the second fraction ($39.2 \mathrm{mg}, 0.0358$ $\mathrm{mmol})$ were collected by filtration in 27% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.97\left(\mathrm{~s}, 2 \mathrm{H}, 3^{\prime} \& 55^{\prime}-\mathrm{Py} H\right.$ for 4'-Br-tpy), 8.76 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 6 \& 6 "-\mathrm{Py} H$ for $4,4 "-\mathrm{Br}_{2}$-tpy), $8.72(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}$, $3 \& 3 "-\mathrm{Py} H$ for $4,4 "-\mathrm{Br}_{2}$-tpy), $8.44(\mathrm{~m}, 3 \mathrm{H}), 7.94\left(\mathrm{td}, J=8.1,1.2 \mathrm{~Hz}, 2 \mathrm{H}, 4 \& 4 "-\mathrm{Py} H\right.$ for $4{ }^{\prime}-\mathrm{Br}-$ tpy), 7.36 (dd, $J=6.0,2.1 \mathrm{~Hz}, 2 \mathrm{H}, 5 \& 5 "-\mathrm{Py} H$ for $\left.4,4 "-\mathrm{Br}_{2}-\mathrm{tpy}\right), 7.30\left(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime} \& 5^{\prime}-\right.$ $\operatorname{Py} H$ for $4,4 "-\mathrm{Br}_{2}$-tpy), 7.19 (m, 4H). MS (MALDI-TOF) m / z : 802 (calcd for $\mathrm{C}_{30} \mathrm{H}_{19} \mathrm{Br}_{3} \mathrm{~N}_{6} \mathrm{Ru}$ $\left.\left(\mathrm{M}-2 \mathrm{PF}_{6}\right)^{+} 802\right)$ and 947 (calcd for $\mathrm{C}_{30} \mathrm{H}_{19} \mathrm{Br}_{3} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{PRu}\left(\mathrm{M}-\mathrm{PF}_{6}\right)^{+} 947$).
 $0.0898 \mathrm{mmol})$ and $\mathrm{RuCl}_{3}(4-\mathrm{Br}-\mathrm{tpy})(43.1 \mathrm{mg}, 0.0830 \mathrm{mmol})$ were suspended in $\mathrm{MeOH}(10 \mathrm{~mL})$. N -ethylmorpholine $(0.020 \mathrm{~mL})$ was added into the suspension and the reaction mixture was refluxed for 2 h . After cooling to r.t, the solvent was removed under reduced pressure and the residual black solid was chromatographed on silica gel eluted with a mixed solvent of $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}: \mathrm{KNO}_{3}(\mathrm{aq})=90: 9: 1$. The second orange fraction was collected and the solvent was evaporated. To the solution of the residual red solids in $\mathrm{CH}_{3} \mathrm{CN}$ were added excess ammonium hexafluorophosphate and $\mathrm{H}_{2} \mathrm{O}$. Orange crystals of $\mathbf{1 6}$ from the second fraction ($18.5 \mathrm{mg}, 0.0169$ $\mathrm{mmol})$ were collected by filtration in 20% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 8.73(\mathrm{~m}, 7 \mathrm{H}), 8.44(\mathrm{~m}$, $3 \mathrm{H}), 7.93$ (td, $J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 4$ "-PyH for 4-Br-tpy), $7.36(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}$,

5'-PyH for 4-Br-tpy), $7.12(\mathrm{~m}, 4 \mathrm{H})$. MS (MALDI-TOF) $m / z: 802$ (calcd for $\mathrm{C}_{30} \mathrm{H}_{19} \mathrm{Br}_{3} \mathrm{~N}_{6} \mathrm{Ru}$ (M$\left.2 \mathrm{PF}_{6}\right)^{+} 802$) and 947 (calcd for $\mathrm{C}_{30} \mathrm{H}_{19} \mathrm{Br}_{3} \mathrm{~F}_{6} \mathrm{~N}_{6} \mathrm{PRu}\left(\mathrm{M}-\mathrm{PF}_{6}\right)^{+} 947$).
$\mathbf{R u} \mathbf{[4}$ '-(Zn-porphyrin)ethynyl-tpy $\mathbf{2}_{\mathbf{2}} \mathbf{(P F}_{\mathbf{6}} \mathbf{)}_{\mathbf{2}} \mathbf{(3)}$. The synthesis of $\mathbf{3}$ was accomplished using methods similar to that described for 2. Zinc(II) 5-ethynyl-10,20-bis[2', $\mathbf{6}^{\prime}$-bis(3,3-dimethyl-1-butyloxy)phenyl]porphyrinate $(96.1 \mathrm{mg}, 0.101 \mathrm{mmol})$ and 11 (Scheme $1,52.2 \mathrm{mg}$, $0.0514 \mathrm{mmol})$ were placed into a 25 mL Schlenk tube with a stir bar.

Bis(triphenylphosphine)palladium dichloride ($30 \mathrm{mg}, 0.043 \mathrm{mmol}$) and $\mathrm{CuI}(10 \mathrm{mg}, 0.053$ $\mathrm{mmol})$ were added, followed by dry THF $(10 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ and $\mathrm{iPr}_{2} \mathrm{NH}(4 \mathrm{~mL})$; this mixture was completely degassed by repeated freeze-pump-thaw cycles. The Schlenk tube was refilled with Ar gas and the reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was cooled to r.t. and the solvent evaporated. The residue was purified by column chromatography on silica gel eluted with a mixed solvent system $\left[\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}: \mathrm{KNO}_{3}(\mathrm{aq})=\right.$ 90:9:1]. The second green-brown fraction was collected and the solvent evaporated. The residual dark brown solid was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$, and excess ammonium hexafluorophosphate and $\mathrm{H}_{2} \mathrm{O}$ were added. Dark brown crystals of $\mathbf{3}(50.7 \mathrm{mg}, 0.0184 \mathrm{mmol}, 36 \%$ yield) were collected by filtration. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 10.17(\mathrm{~s}, 2 \mathrm{H}$, meso-H), $10.03(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 4 \mathrm{H}, \beta$ H), $9.42(\mathrm{~s}, 4 \mathrm{H}), 9.30(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 4 \mathrm{H}, \beta-\mathrm{H}), 9.03(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 4 \mathrm{H}, \beta-\mathrm{H}), 8.83(\mathrm{~m}, 8 \mathrm{H}), 8.08$ $(\mathrm{td}, J=6.3,2.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.83(\mathrm{t}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H},-p-\mathrm{Ph}), 7.65(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.31(\mathrm{t}, J=6.5$ $\mathrm{Hz}, 4 \mathrm{H}), 7.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 8 \mathrm{H},-m-\mathrm{Ph}), 4.01\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 16 \mathrm{H},-\mathrm{OCH}_{2}-\right), 0.81(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $\left.16 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 0.19\left(\mathrm{~s}, 72 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR (CD3CN): $\delta-71.67(\mathrm{~d}, J=752 \mathrm{~Hz})$. UV-vis $\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda_{\text {max }}[\mathrm{nm}]\left(\varepsilon\left[\mathrm{x} 10^{-5} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right) 313$ (0.75), 426 (1.95), 521 (0.89), 565 (0.32), 648 (1.13). MS (MALDI-TOF) $m / z: 2462$ (calcd for $\left.\mathrm{C}_{146} \mathrm{H}_{154} \mathrm{~N}_{14} \mathrm{O}_{8} \mathrm{RuZn}_{2}\left(\mathrm{M}-2 \mathrm{PF}_{6}\right)^{+} 2461\right)$ and 2609 (calcd for $\mathrm{C}_{146} \mathrm{H}_{154} \mathrm{~N}_{14} \mathrm{O}_{8} \mathrm{~F}_{6} \mathrm{PRuZn}_{2}\left(\mathrm{M}-\mathrm{PF}_{6}\right)^{+}$2606).
$\mathbf{R u}\left[4-(\mathbf{Z n}-\text { porphyrin }) \text { ethynyl-tpy][4'-(Zn-porphyrin)ethynyl-tpy] } \mathbf{P F}_{6}\right)_{2}$ (4). The synthesis of $\mathbf{4}$ was accomplished using methods similar to that described for 2. Zinc(II) 5-ethynyl-10,20-bis[2', $\mathbf{6}^{\prime}$-bis(3,3-dimethyl-1-butyloxy)phenyl]porphyrinate ($28.1 \mathrm{mg}, 0.0296$ mmol) and 12 (Scheme $1,12.1 \mathrm{mg}, 0.0119 \mathrm{mmol}$) were placed into a 25 mL Schlenk tube with a stir bar. Trisdibenzylideneacetone dipalladium(0) (4.3 mg, $4.7 \mu \mathrm{~mol})$ and triphenylarsine (24 $\mathrm{mg}, 0.078 \mathrm{mmol})$ were added, followed by dry THF $(3.75 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{CN}(7.5 \mathrm{~mL})$ and $\mathrm{iPr}_{2} \mathrm{NH}$; this mixture was completely degassed by repeated freeze-pump-thaw cycles. The Schlenk tube was refilled with Ar gas and the reaction mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was cooled to r.t. and the solvent evaporated. The residue was purified by column chromatography on silica gel eluted with a mixed solvent of $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}: \mathrm{KNO}_{3}(\mathrm{aq})=$ 95:4.5:0.5. The second green-brown fraction was collected and the solvent evaporated. The residual dark brown solid was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$, and excess ammonium hexafluorophosphate and $\mathrm{H}_{2} \mathrm{O}$ were added. Dark brown crystals of $4(25.4 \mathrm{mg}, 9.22 \mu \mathrm{~mol}, 77 \%$ yield) were collected by filtration. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 10.16(\mathrm{~s}, 2 \mathrm{H}$, meso- H$), 10.04(\mathrm{~m}, 4 \mathrm{H}, \beta-\mathrm{H}), 9.42(\mathrm{~s}, 4 \mathrm{H})$, $9.30(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 4 \mathrm{H}, \beta-\mathrm{H}), 9.04(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 4 \mathrm{H}, \beta-\mathrm{H}), 8.83(\mathrm{~m}, 5 \mathrm{H}), 8.59(\mathrm{~m}, 4 \mathrm{H}), 8.02$ $(\mathrm{m}, 3 \mathrm{H}), 7.80(\mathrm{~m}, 4 \mathrm{H},-p-\mathrm{Ph}), 7.51(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{~m}, 8 \mathrm{H},-\mathrm{m}-\mathrm{Ph}), 4.01(\mathrm{t}, J=7.0$ $\left.\mathrm{Hz}, 8 \mathrm{H},-\mathrm{OCH}_{2}-\right), 3.93\left(\mathrm{~m}, 8 \mathrm{H},-\mathrm{OCH}_{2}-\right), 0.83\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 8 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 0.73(\mathrm{~m}, 8 \mathrm{H},-$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 0.10\left(\mathrm{~s} 36 \mathrm{H},-\mathrm{CH}_{3}\right), 0.07\left(\mathrm{~s}, 36 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR (CD3CN): $\delta-71.67(\mathrm{~d}, J=752$ Hz). UV-vis $\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda_{\max }[\mathrm{nm}]\left(\varepsilon\left[\mathrm{x} 10^{-5} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right) 316(0.79), 445(2.44), 509(0.65), 567$ (0.32), 642 (0.95). MS (MALDI-TOF) $m / z: 2466$ (calcd for $\mathrm{C}_{146} \mathrm{H}_{154} \mathrm{~N}_{14} \mathrm{O}_{8} \mathrm{RuZn}_{2}\left(\mathrm{M}-2 \mathrm{PF}_{6}\right)^{+}$ 2461) and 2609 (calcd for $\mathrm{C}_{146} \mathrm{H}_{154} \mathrm{~N}_{14} \mathrm{O}_{8} \mathrm{~F}_{6} \mathrm{PRuZn}_{2}\left(\mathrm{M}-\mathrm{PF}_{6}\right)^{+}$2606).
$\mathbf{R u}[4-(\mathbf{Z n}-\text { porphyrin }) \text { ethynyl-tpy }]_{2}\left(\mathbf{P F}_{6}\right)_{2}$ (5). The synthesis of 5 was accomplished using methods similar to that described for 2. Zinc(II) 5-ethynyl-10,20-bis[2',6'-bis(3,3-
dimethyl-1-butyloxy)phenyl]porphyrinate ($29.0 \mathrm{mg}, 0.0305 \mathrm{mmol}$) and $\mathbf{1 3}$ (Scheme $1,15.1 \mathrm{mg}$, 0.0149 mmol) were placed into a 25 mL Schlenk tube with a stir bar. Trisdibenzylideneacetone dipalladium(0) ($5.0 \mathrm{mg}, 5.5 \mu \mathrm{~mol})$ and triphenylarsine $(10 \mathrm{mg}, 0.033 \mathrm{mmol})$ were added, followed by dry THF (3.75 mL), $\mathrm{CH}_{3} \mathrm{CN}(7.5 \mathrm{~mL})$, and $\mathrm{iPr}_{2} \mathrm{NH}(1.25 \mathrm{~mL})$; this mixture was completely degassed by repeated freeze-pump-thaw cycles. The Schlenk tube was refilled with Ar gas and the reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was cooled to r.t. and the solvent evaporated. The residue was purified by column chromatography on silica gel eluted using a mixed solvent system $\left[\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}: \mathrm{KNO}_{3}(\mathrm{aq})=95: 4.5: 0.5\right]$. The second green-brown fraction was collected and the solvent evaporated. The residual dark brown solid was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$, and excess ammonium hexafluorophosphate and $\mathrm{H}_{2} \mathrm{O}$ were added. Dark brown crystals of $\mathbf{5}(33.1 \mathrm{mg}, 12.0 \mu \mathrm{~mol}, 81 \%$ yield $)$ were collected by filtration. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 10.00(\mathrm{~s}, 2 \mathrm{H}$, meso-H), $9.19(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 4 \mathrm{H}, \beta-\mathrm{H}), 9.04(\mathrm{~m}, 2 \mathrm{H}), 8.89(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 4 \mathrm{H}, 6-\mathrm{Py} H), 8.83(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 4 \mathrm{H}, \beta-\mathrm{H}), 8.75(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 8 \mathrm{H}, \beta-\mathrm{H}), 8.60(\mathrm{~m}, 4 \mathrm{H}), 8.00$ $\left(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 4^{\prime}-\mathrm{Py} H\right), 7.76(\mathrm{t}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H},-p-\mathrm{Ph}), 7.49(\mathrm{~m}, 4 \mathrm{H}), 7.28(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~m}$, 10H), 3.91 (m 16H, $-\mathrm{OCH}_{2}-$), $0.72\left(\mathrm{~m}, 16 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 0.10\left(\mathrm{~m}, 72 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR (CD3CN): $\delta-71.67(\mathrm{~d}, J=752 \mathrm{~Hz})$. UV-vis $\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda_{\max }[\mathrm{nm}]\left(\varepsilon\left[\mathrm{x} 10^{-5} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right) 317(0.66)$, 446 (2.23), 566 (0.27), 639 (0.75). MS (MALDI-TOF) $m / z: 2464$ (calcd for $\left.\mathrm{C}_{146} \mathrm{H}_{154} \mathrm{~N}_{14} \mathrm{O}_{8} \mathrm{RuZn}_{2}\left(\mathrm{M}-2 \mathrm{PF}_{6}\right)^{+} 2461\right)$ and 2609 (calcd for $\mathrm{C}_{146} \mathrm{H}_{154} \mathrm{~N}_{14} \mathrm{O}_{8} \mathrm{~F}_{6} \mathrm{PRuZn}_{2}\left(\mathrm{M}-\mathrm{PF}_{6}\right)^{+}$ 2606).
$\mathbf{R u}($ tpy $)\left[4,4\right.$ ''-bis(Zn-porphyrin) ethynyl-tpy] $\left(\mathbf{P F}_{6}\right)_{2}$ (6). The synthesis of $\mathbf{6}$ was accomplished using methods similar to that described for 2. Zinc(II) 5-ethynyl-10,20-bis[2', $\mathbf{6}^{\prime}$ -$\operatorname{bis}(3,3$-dimethyl-1-butyloxy)phenyl]porphyrinate ($20.0 \mathrm{mg}, 0.0210 \mathrm{mmol}$) and $\mathbf{1 4}$ (Scheme 1, $11.4 \mathrm{mg}, 0.0112 \mathrm{mmol}$) were placed into a 25 mL Schlenk tube with a stir bar.

Trisdibenzylidebeacetone dipalladium(0) ($5.8 \mathrm{mg}, 6.3 \mu \mathrm{~mol}$) and triphenylarsine ($4.3 \mathrm{mg}, 0.014$ $\mathrm{mmol})$ were added, followed by dry THF (1.8 mL), $\mathrm{CH}_{3} \mathrm{CN}(3.75 \mathrm{~mL})$, and $\mathrm{iPr}_{2} \mathrm{NH}(0.6 \mathrm{~mL})$; this mixture was completely degassed by repeated freeze-pump-thaw cycles. The Schlenk tube was refilled with Ar gas and the reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was cooled to r.t. and the solvent evaporated. The residue was purified by column chromatography on silica gel eluted with a mixed solvent system $\left[\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}: \mathrm{KNO}_{3}(\mathrm{aq})=\right.$ 95:4.5:0.5]. The second green-brown fraction was collected and the solvent evaporated. The residual dark brown solid was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$, and excess ammonium hexafluorophosphate and $\mathrm{H}_{2} \mathrm{O}$ were added. Dark brown crystals of $\mathbf{6}(16.1 \mathrm{mg}, 5.8 \mu \mathrm{~mol}, 56 \%$ yield $)$ were collected by filtration. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 10.10(\mathrm{~s}, 2 \mathrm{H}$, meso-H), $9.68(\mathrm{~m}, 4 \mathrm{H}, \beta-\mathrm{H}), 9.24(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}, 6,6 "-\mathrm{PyH}$ for 4,4-PZn 2 -tpy), $9.12(\mathrm{~m}, 4 \mathrm{H}), 8.88(\mathrm{~m}, 8 \mathrm{H}), 8.78(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 4 \mathrm{H}, \beta-\mathrm{H})$, $8.60(\mathrm{~m}, 4 \mathrm{H}), 8.78(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 4 \mathrm{H}, \beta-\mathrm{H}), 8.60(\mathrm{~m}, 6 \mathrm{H}), 8.01(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 4,4$ "-PyH for tpy), $7.76(\mathrm{~m}, 6 \mathrm{H}), 7.53(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~m}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, 5,5$ "-PyH for tpy), 7.15 $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 8 \mathrm{H},-m-\mathrm{Ph}), 3.95\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 16 \mathrm{H},-\mathrm{OCH}_{2}-\right), 0.74(\mathrm{t}, J=6.9 \mathrm{~Hz}, 16 \mathrm{H},-$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 0.14\left(\mathrm{~s}, 72 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR (CD3CN): $\delta-71.67(\mathrm{~d}, J=752 \mathrm{~Hz})$. UV-vis $\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda_{\max }[\mathrm{nm}]\left(\varepsilon\left[\mathrm{x} 10^{-5} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right) 313$ (0.79), 447 (2.17), 564 (0.30), 644 (0.87). MS (MALDI-TOF) $m / z: 2610$ (calcd for $\mathrm{C}_{146} \mathrm{H}_{154} \mathrm{~N}_{14} \mathrm{O}_{8} \mathrm{~F}_{6} \mathrm{PRuZn}_{2}\left(\mathrm{M}-\mathrm{PF}_{6}\right)^{+}$2606).

Ru[4'-(Zn-porphyrin)ethynyl-tpy][4,4'’-bis(Zn-porphyrin)ethynyl-tpy](PF $\mathbf{6}_{\mathbf{2}}$ (7).

The synthesis of $\mathbf{7}$ was accomplished using methods similar to that described for 2. Zinc(II) 5-ethynyl-10,20-bis[2’,6'-bis(3,3-dimethyl-1-butyloxy)phenyl]porphyrinate ($20.8 \mathrm{mg}, 0.0219$ mmol) and $\mathbf{1 5}$ (Scheme $1,5.0 \mathrm{mg}, 4.6 \mu \mathrm{~mol}$) were placed into a 25 mL Schlenk tube with a stir bar. Trisdibenzylidebeacetone dipalladium(0) ($6.1 \mathrm{mg}, 6.7 \mu \mathrm{~mol}$) and triphenylarsine (11.0 mg , $0.036 \mathrm{mmol})$ were added, followed by dry THF (1.8 mL), $\mathrm{CH}_{3} \mathrm{CN}(3.75 \mathrm{~mL})$, and $\mathrm{iPr}_{2} \mathrm{NH}(0.6$
mL); this mixture was completely degassed by repeated freeze-pump-thaw cycles. The Schlenk tube was refilled with Ar gas and the reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 48 h . The reaction mixture was cooled to r.t. and the solvent evaporated. The residue was purified by column chromatography on silica gel eluted with a mixed solvent system $\left[\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}: \mathrm{KNO}_{3}(\mathrm{aq})=\right.$ 95:4.5:0.5]. The second green-brown fraction was collected and the solvent evaporated. The residual dark brown solid was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$, and excess ammonium hexafluorophosphate and $\mathrm{H}_{2} \mathrm{O}$ were added. Dark brown crystals of $7(11.8 \mathrm{mg}, 3.2 \mu \mathrm{~mol}, 70 \%$ yield $)$ were collected by filtration. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 10.19(\mathrm{~s}, 1 \mathrm{H}$, meso- H$), 10.08(\mathrm{~m}, 2 \mathrm{H}$, meso- H$), 9.67(\mathrm{bs}$, $3 \mathrm{H}), 9.50\left(\mathrm{~s}, 2 \mathrm{H}, 3^{\prime}, 5^{\prime}\right.$ '-PyH for 4'-PZn-tpy), $9.32(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H}), 9.23(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, $2 \mathrm{H}, \beta-\mathrm{H}), 9.16\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 6,6 "-\mathrm{PyH}\right.$ for $\left.4,4-\mathrm{PZn}_{2}-\mathrm{tpy}\right), 9.07(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{H})$, $8.89(\mathrm{~m}, 6 \mathrm{H}), 8.77(\mathrm{t}, J=4.5 \mathrm{~Hz}, 4 \mathrm{H}, \beta-\mathrm{H}), 8.71(\mathrm{~m}, 12 \mathrm{H}),, 8.11(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 4,4$ "-PyH for 4'-PZn-tpy), $7.81(\mathrm{~m}, 6 \mathrm{H}), 7.55\left(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}, 5,5\right.$ "-PyH for 4,4-PZn ${ }_{2}$-tpy), $7.36(\mathrm{t}, J=7.8$ Hz, 2H, 5,5"-PyH for 4’-PZn-tpy), 7.21 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 3,3 "-\mathrm{PyH}$ for 4’-PZn-tpy), 7.13 (d, J $=8.4 \mathrm{~Hz}, 12 \mathrm{H},-m-\mathrm{Ph}), 4.03\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 8 \mathrm{H},-\mathrm{OCH}_{2^{-}}\right), 3.94\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 16 \mathrm{H},-\mathrm{OCH}_{2}-\right), 0.84$ $\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 8 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 0.74\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 16 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 0.12\left(\mathrm{bs}, 108 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR (CD3CN): $\delta-71.67(\mathrm{~d}, J=752 \mathrm{~Hz})$. UV-vis $\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda_{\max }[\mathrm{nm}]\left(\varepsilon\left[\mathrm{x} 10^{-5} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right) 317$ (0.79), 445 (2.89), 517 (0.80), 565 (0.42), 646 (1.43). MS (MALDI-TOF) $m / z: 3414$ (calcd for $\left.\mathrm{C}_{204} \mathrm{H}_{220} \mathrm{~N}_{18} \mathrm{O}_{12} \mathrm{Zn}_{3} \mathrm{Ru}\left(\mathrm{M}-2 \mathrm{PF}_{6}\right)^{+} 3413\right)$ and 3556 (calcd for $\mathrm{C}_{204} \mathrm{H}_{220} \mathrm{~N}_{18} \mathrm{O}_{12} \mathrm{~F}_{6} \mathrm{PZn}_{3} \mathrm{Ru}\left(\mathrm{M}-\mathrm{PF}_{6}\right)^{+}$ 3552).

Ru[4-(Zn-porphyrin)ethynyl-tpy][4,4',-bis(Zn-porphyrin)ethynyl-tpy] $\left(\mathbf{P F}_{6}\right)_{2}$ (8). The synthesis of $\mathbf{8}$ was accomplished using methods similar to that described for 2. Zinc(II) 5-ethynyl-10,20-bis[2', $\mathbf{6}^{\prime}$ '-bis(3,3-dimethyl-1-butyloxy)phenyl]porphyrinate ($20.7 \mathrm{mg}, 0.0218$ $\mathrm{mmol})$ and $\mathbf{1 6}(7.8 \mathrm{mg}, 7.1 \mu \mathrm{~mol})$ were placed into a 25 mL Schlenk tube with a stir bar.

Trisdibenzylideneacetone dipalladium(0) $(3.6 \mathrm{mg}, 3.9 \mu \mathrm{~mol})$ and triphenylarsine $(8.8 \mathrm{mg}, 0.029$ $\mathrm{mmol})$ were added, followed by dry THF (1.8 mL), $\mathrm{CH}_{3} \mathrm{CN}(3.75 \mathrm{~mL})$, and $\mathrm{iPr}_{2} \mathrm{NH}(0.6 \mathrm{~mL})$; this mixture was completely degassed by repeated freeze-pump-thaw cycles. The Schlenk tube was refilled with Ar gas and the reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 48 h . The reaction mixture was cooled to r.t. and the solvent evaporated. The residue was purified by column chromatography on silica gel eluted with a mixed solvent system $\left[\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}: \mathrm{KNO}_{3}(\mathrm{aq})=\right.$ 95:4.5:0.5]. The second green-brown fraction was collected and the solvent evaporated. The residual dark brown solid was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$, and excess ammonium hexafluorophosphate and $\mathrm{H}_{2} \mathrm{O}$ were added. Dark brown crystals of $\mathbf{8}(14.2 \mathrm{mg}, 3.8 \mu \mathrm{~mol}, 54 \%$ yield $)$ were collected by filtration. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 10.03(\mathrm{~s}, 2 \mathrm{H}$, meso- H$), 9.97(\mathrm{~s}, 1 \mathrm{H}$, meso- H$), 9.57(\mathrm{bs}, 4 \mathrm{H})$, 9.45 (bs, 2H), 9.20 (bs, 4H), 9.14 (bs, 2H), 9.05 (bs, 8H), 8.85 (d, $J=4.2 \mathrm{~Hz}, 4 \mathrm{H}, \beta-\mathrm{H}), 8.75$ (m, $8 \mathrm{H}), 8.63(\mathrm{bs}, 3 \mathrm{H}), 8.03(\mathrm{bs}, 1 \mathrm{H}), 7.77(\mathrm{~m}, 12 \mathrm{H}), 7.58(\mathrm{bs}, 1 \mathrm{H}), 7.50(\mathrm{bs}, 1 \mathrm{H}), 7.34(\mathrm{bs}, 1 \mathrm{H}), 7.11$ $(\mathrm{m}, 12 \mathrm{H}), 3.94\left(\mathrm{~m}, 24 \mathrm{H},-\mathrm{OCH}_{2}-\right), 0.72\left(\mathrm{~m}, 24 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right), 0.08\left(\mathrm{~m}, 108 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR (CD3CN): $\delta-71.67(\mathrm{~d}, J=752 \mathrm{~Hz})$. UV-vis $\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda_{\max }[\mathrm{nm}]\left(\varepsilon\left[\mathrm{x} 10^{-5} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right) 324(0.75)$, 446 (2.96), 565 (0.39), 644 (1.16). MS (MALDI-TOF) $m / z: 3410$ (calcd for $\left.\mathrm{C}_{204} \mathrm{H}_{220} \mathrm{~N}_{18} \mathrm{O}_{12} \mathrm{Zn}_{3} \mathrm{Ru}\left(\mathrm{M}-2 \mathrm{PF}_{6}\right)^{+} 3413\right)$ and 3553 (calcd for $\mathrm{C}_{204} \mathrm{H}_{220} \mathrm{~N}_{18} \mathrm{O}_{12} \mathrm{~F}_{6} \mathrm{PZn}_{3} \mathrm{Ru}\left(\mathrm{M}-\mathrm{PF}_{6}\right)^{+}$ 3552).

Ru[4,4'-bis(Zn-porphyrin)ethynyl-tpy $]_{2}\left(\mathbf{P F}_{6}\right)_{\mathbf{2}} \mathbf{(9)}$. The synthesis of $\mathbf{9}$ was

accomplished using methods similar to that described for 2. Zinc(II) 5-ethynyl-10,20-bis[2', $\mathbf{6}^{\prime}$ -$\operatorname{bis}(3,3$-dimethyl-1-butyloxy)phenyl]porphyrinate ($30.6 \mathrm{mg}, 0.0322 \mathrm{mmol}$) and $\mathbf{1 7}$ (Scheme 1, $11.6 \mathrm{mg}, 10.6 \mu \mathrm{~mol})$ were placed into a 25 mL Schlenk tube with a stir bar.

Trisdibenzylidebeacetone dipalladium(0) ($7.3 \mathrm{mg}, 8.0 \mu \mathrm{~mol}$) and triphenylarsine ($14.3 \mathrm{mg}, 0.047$ $\mathrm{mmol})$ were added, followed by dry THF $(1.8 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{CN}(3.75 \mathrm{~mL})$ and $\mathrm{iPr}_{2} \mathrm{NH}(0.6 \mathrm{~mL})$; this
mixture was completely degassed by repeated freeze-pump-thaw cycles. The Schlenk tube was refilled with Ar gas and the reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 48 h . The reaction mixture was cooled to r.t. and the solvent evaporated. The residue was purified by column chromatography on silica gel eluted with a mixed solvent system $\left[\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}: \mathrm{KNO}_{3}(\mathrm{aq})=\right.$ 95:4.5:0.5]. The second green-brown fraction was collected and the solvent evaporated. The residual dark brown solid was dissolved in $\mathrm{CH}_{3} \mathrm{CN}$, and excess ammonium hexafluorophosphate and $\mathrm{H}_{2} \mathrm{O}$ were added. Dark brown crystals of $9(28.7 \mathrm{mg}, 6.2 \mu \mathrm{~mol}, 63 \%$ yield $)$ were collected by filtration. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}\right): \delta 10.04(\mathrm{~s}, 4 \mathrm{H}$, meso-H), $9.58(\mathrm{bs}, 8 \mathrm{H}), 9.20(\mathrm{~d}, J=4.2 \mathrm{~Hz}$, $8 \mathrm{H}, \beta-\mathrm{H}), 9.13(\mathrm{bs}, 8 \mathrm{H}), 8.80(\mathrm{~m}, 18 \mathrm{H}), 7.75(\mathrm{t}, J=8.1 \mathrm{~Hz}, 8 \mathrm{H},-p-\mathrm{Ph} H), 7.53(\mathrm{bs}, 8 \mathrm{H}), 7.10(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 16 \mathrm{H},-m-\mathrm{Ph} H), 3.89\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 32 \mathrm{H},-\mathrm{OCH}_{2}-\right), 0.70\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 32 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2}-\right)$, $0.07\left(\mathrm{~s}, 144 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{19} \mathrm{~F}$ NMR (CD3CN$): \delta-71.67(\mathrm{~d}, J=752 \mathrm{~Hz})$. UV-vis $\left(\mathrm{CH}_{3} \mathrm{CN}\right): \lambda_{\max }$ $[\mathrm{nm}]\left(\varepsilon\left[\mathrm{x} 10^{-5} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]\right) 322(0.80), 446$ (3.54), 566 (0.49), 647 (1.48). MS (MALDI-TOF) m / z : 4363 (calcd for $\mathrm{C}_{262} \mathrm{H}_{286} \mathrm{~N}_{22} \mathrm{O}_{16} \mathrm{Zn}_{4} \mathrm{Ru}\left(\mathrm{M}-2 \mathrm{PF}_{6}\right)^{+} 4354$) and 4509 (calcd for $\left.\mathrm{C}_{262} \mathrm{H}_{286} \mathrm{~N}_{22} \mathrm{O}_{16} \mathrm{~F}_{6} \mathrm{PZn}_{4} \mathrm{Ru}\left(\mathrm{M}-\mathrm{PF}_{6}\right)^{+} 4499\right)$.

Supplemental Schemes and Figures.

Scheme S1.

a)

b)

Scheme S2

a)

b)

c)

d)

e)
S15

f)
S16

g)

Scheme S3.

Additional Spectroscopic Data:

Table S1. Time constants from fs-ns transient dynamical experiments.

	τ_{1}	τ_{2}	τ_{3}
PZn-(4Ru) (2)		1.7	18.9
PZn-(4'Ru4')-PZn (3)		3.6	
PZn-(4Ru4')-PZn (4)		4.3	
PZn-(4Ru4)-PZn (5)		1.3	12.3
$\mathrm{PZn}_{2}-\left(4,4{ }^{\prime} \mathrm{Ru}\right)(6)$	0.5	4.4	
PZn -(4'Ru4,4') $-\mathrm{PZn}_{2}$ (7)		1.6	14
PZn-(4Ru4,4' $)$ - PZn_{2} (8)	0.3	2.3	
$\mathrm{PZn}_{2}-\left(4,4{ }^{\prime} \mathrm{Ru} 4,4^{\prime}{ }^{\prime}\right)-\mathrm{PZn}_{2}(\mathbf{9})$		1.3	

Compounds 2 and 7

Figure S1. Transient absorption spectra (ns- μ s time domain) of 2 (left) and 7 (right) at multiple time delays after photoexcitation. Experimental conditions: solvent = aceonitrile, $\lambda_{\text {exc }}=532 \mathrm{~nm}$, ambient temperature, degassed. See main text for fs-ns spectra of these compounds.

PZn-(4'Ru4')-PZn (3)

Figure S2. Transient absorption spectra of 3 in (degassed) acetonitrile at multiple time delays after photoexcitation, $\lambda_{\text {exc }}=630 \mathrm{~nm}$. Left: magic angle femtosecond transient absorption spectra. Right: ns- μ s timescale transient absorption, $\lambda_{\text {exc }}=532 \mathrm{~nm}$.

PZn-(4Ru4)-PZn (4)

Figure S3. Transient spectra of 4 in (degassed) acetonitrile at multiple time delays after photoexcitation, $\lambda_{\text {exc }}=620 \mathrm{~nm}$. Left: magic angle femtosecond transient absorption spectra. Right: ns- μ s timescale transient absorption, $\lambda_{\text {exc }}=532 \mathrm{~nm}$.

PZn-(4Ru4)-PZn (5)

Figure S4. Transient spectra of 5 in (degassed) acetonitrile at multiple time delays after photoexcitation, $\lambda_{\text {exc }}=630 \mathrm{~nm}$. Left: magic angle femtosecond transient absorption spectra. Right: ns- μ s timescale transient absorption, $\lambda_{\text {exc }}=532 \mathrm{~nm}$.
$\mathbf{P Z n}_{2-(4,4, ' R u)(6)}$

Figure S5. Transient spectra of 6 in (degassed) acetonitrile at multiple time delays after photoexcitation, $\lambda_{\text {exc }}=630 \mathrm{~nm}$. Left: magic angle femtosecond transient absorption spectra. Right: ns- μ s timescale transient absorption, $\lambda_{\text {exc }}=532 \mathrm{~nm}$.

PZn-(4Ru4,4')-PZn $\mathbf{I N}_{2}$ (8)

Figure S6. Transient spectra of 8 in (degassed) acetonitrile at multiple time delays after photoexcitation, $\lambda_{\text {exc }}=630 \mathrm{~nm}$. Left: magic angle femtosecond transient absorption spectra. Right: ns- μ s timescale transient absorption, $\lambda_{\text {exc }}=532 \mathrm{~nm}$.

PZn $_{2}-\left(4,4^{\prime \prime} \mathrm{Ru}^{\left.4,4,{ }^{\prime}\right)-\mathrm{PZn}_{2}(9)}\right.$

Figure S7. Transient spectra of $\mathbf{9}$ in (degassed) acetonitrile at multiple time delays after photoexcitation, $\lambda_{\text {exc }}=630 \mathrm{~nm}$. Left: magic angle femtosecond transient absorption spectra. Right: ns- μ s timescale transient absorption, $\lambda_{\text {exc }}=532 \mathrm{~nm}$.

Figure S8. ${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{2}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at r.t.

Figure S9. Aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ demonstrating assignments of all peaks corresponding to the protons present in the compound.

Figure S10. ${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{4}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at r.t.

Figure S11. ${ }^{1} \mathrm{H}$ NMR Spectra of $\mathbf{5}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at r.t.

Figure S12. Aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6}$ demonstrating identity and acceptable purity of the desired compound.

Figure S13. Aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum of 7 demonstrating identity and acceptable purity of the desired compound.

Figure 14. Aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}$ demonstrating identity and acceptable purity of the desired compound.

Figure S15. Aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{9}$ demonstrating identity and acceptable purity of the desired compound.

Figure S16. Representative ${ }^{19} \mathrm{~F}$ NMR spectra of $\mathbf{5}, \mathbf{6}, \mathbf{8}$ and $\mathbf{9}$ showing acceptable compound purity.

References:

(1) Uyeda, H. T.; Zhao, Y. X.; Wostyn, K.; Asselberghs, I.; Clays, K.; Persoons, A.; Therien, M. J. J. Am. Chem. Soc. 2002, 124, 13806-13813.
(2) Holbrey, J. D.; Tiddy, G. J. T.; Bruce, D. W. J. Chem. Soc., Dalton Trans. 1995, 1769-1774.
(3) Potts, K. T.; Konwar, D. J. Org. Chem. 1991, 56, 4815-4816.
(4) Moran, D. B.; Mortan, G. O.; Albright, J. D. J. Heterocycl. Chem. 1986, 23, 1071-1077.
(5) Masood, M. A.; Sullivan, B. P.; Hodgson, D. J. Inorg. Chem. 1999, 38, 5425-5430.
(6) Case, F. H. J. Org. Chem. 1966, 31, 2398-2400.
(7) Sauer, J.; Heldmann, D. K.; Pabst, G. R. Eur. J. Org. Chem. 1999, 313-321.
(8) Case, F. H. J. Heterocyclic. Chem. 1971, 8, 1043-1046.

Full author list for manuscript references 58 and 59:
(58) Robinson, B. H.; Dalton, L. R.; Harper, A. W.; Ren, A.; Wang, F.; Zhang, C.; Todorova, G.; Lee, M.; Aniszfeld, R.; Garner, S.; Chen, A.; Steier, W. H.; Houbrecht, S.; Persoons, A.; Ledoux, I.; Zyss, J.; Jen, A. K. Y. Chem. Phys. 1999, 245, 35-50.
(59) Steier, W. H.; Chen, A.; Lee, S. S.; Garner, S.; Zhang, H.; Chuyanov, V.; Dalton, L. R.;

Wang, F.; Ren, A. S.; Zhang, C.; Todorova, G.; Harper, A.; Fetterman, H. R.; Chen, D. T.; Udupa, A.; Bhattacharya, D.; Tsap, B. Chem. Phys. 1999, 245, 487-506.

