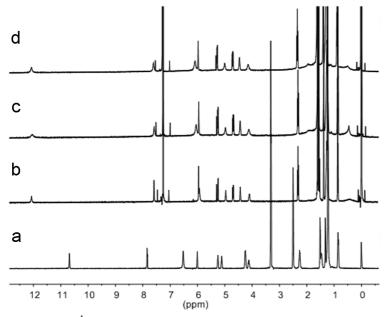
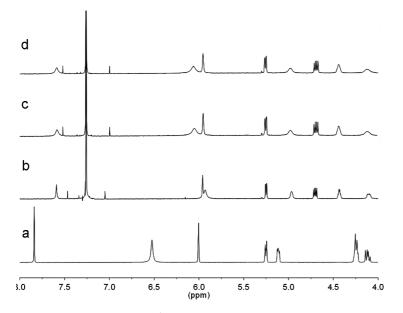
# Ordered Honeycomb Microporous Films from Self-assembly of Alkylated Guanosine Derivatives

## **Supporting Information**


Yu-Feng Gao, Yan-Jun Huang, Su-Ying Xu, Wen-Juan Ouyang, and Yun-Bao Jiang\*

Department of Chemistry, College of Chemistry and Chemical Engineering, and the MOE Key Laboratory of Analytical Sciences, Xiamen University, Xiamen 361005, China


ybjiang@xmu.edu.cn

### CONTENTS

| 2 |
|---|
| 3 |
| 4 |
| 5 |
| 6 |
| 7 |
| 8 |
| 9 |
| 0 |
| 1 |
| 2 |
| 3 |
| 4 |
|   |



**Figure S1.** <sup>1</sup>H NMR spectra of **1** at 298 K of (a) 10 mM in DMSO- $d_6$  and (b) 1.0, (c) 2.5, and (d) 10 mM in CDCl<sub>3</sub>.



**Figure S2.** Portion of <sup>1</sup>H NMR spectra of **1** over 4.0-8.0 ppm at concentration of (a) 10 mM in DMSO- $d_6$  and (b) 1.0, (c) 2.5, and (d) 10 mM in CDCl<sub>3</sub> at 298 K.

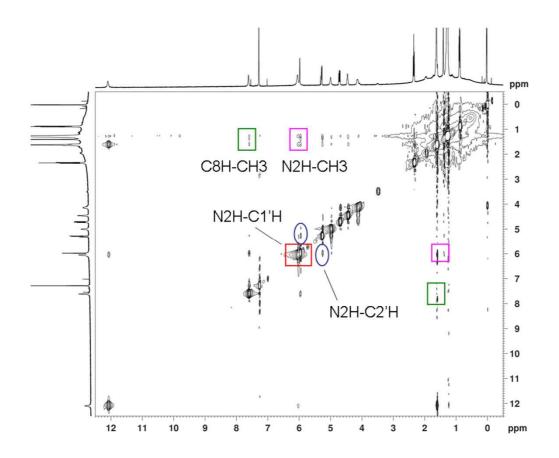



Figure S3. NOESY spectrum of 10 mM 1 in CDCl<sub>3</sub> at 298 K.

#### **Diffusion NMR experiments**

Diffusion experiments were carried out with a Bruker AV400 spectrometer, the temperature was actively controlled at  $25.0 \pm 0.5$  °C. Diffusion coefficients were derived using integration of the desired peaks to a single exponential decay, using the T1/T2 Relaxation (Bruker TopSpin v 2.0), according to the equation:

$$\mathbf{I} = \mathbf{I}_0 \cdot \exp\left(-\mathbf{D} \cdot (2\pi \cdot \gamma \cdot \mathbf{g} \cdot \delta)^2 \cdot (\Delta \cdot \delta/3)\right)$$

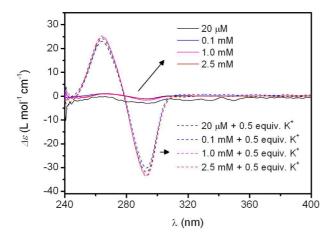
where I denotes the NMR signal intensity, g is the gradient strength,  $\delta$  is the gradient pulse duration,  $\Delta$  is the gradient separation time,  $\gamma$  is the gyromagnetic ration of the nucleus being observed.<sup>1</sup> Experiments consisted 16 points, and each point comprised 256 scans with  $\delta$  value of 3.6 ms,  $\Delta$  value of 99.9 ms, and  $\gamma$  value of 4258 Hz per G.

Calculation of the hydrodynamic radii in DMSO- $d_6$  was performed using the viscosity value ( $\eta = 2.0 \times 10^{-3}$  Kg m<sup>-1</sup> s<sup>-1</sup>, 298.15 K) provided by the solvent supplier,

in CDCl<sub>3</sub> the viscosity value used was ( $\eta = 0.54 \times 10^{-3}$  Kg m<sup>-1</sup> s<sup>-1</sup>, 298.15 K). The hydrodynamic radii ( $r_{\rm H}$ ) were calculated according to the spherical approximation using the Einstein-Stokes equation:

 $D = k_B \cdot T / (6\pi \cdot \eta \cdot r_{\rm H})$ 

where T denotes the temperature,  $\eta$  is the viscosity of the solvent at the given temperature and  $k_B$  is the Boltzmann-Constant.<sup>1</sup> All the measurements were performed in triplicate and the uncertainty is given by the standard deviation.


| assembles formed by 1, 2, and 5 determined by 11 G. Hunt in Diviso u <sub>6</sub> and eDer3. |                                                  |                 |                 |                  |  |
|----------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------|-----------------|------------------|--|
|                                                                                              |                                                  | 1               | 2               | 3                |  |
| DMSO- $d_6^a$<br>2.5 mM                                                                      | $\frac{D_{\rm s}}{(10^{-10}{\rm m}^2/{\rm s})}$  | $1.92 \pm 0.01$ | $2.04 \pm 0.03$ | $1.70 \pm 0.02$  |  |
|                                                                                              | $r_{ m H}({ m \AA})$                             | $5.68 \pm 0.03$ | $5.35 \pm 0.08$ | $6.42 \pm 0.08$  |  |
| CDCl <sub>3</sub> <sup>b</sup><br>1.0 mM                                                     | $\frac{D_{\rm s}}{(10^{-10}~{\rm m}^2/{\rm s})}$ | $4.73 \pm 0.02$ |                 |                  |  |
|                                                                                              | $r_{ m H}({ m \AA})$                             | $8.54 \pm 0.04$ |                 |                  |  |
| CDCl <sub>3</sub> <sup>c</sup><br>10 mM                                                      | $\frac{D_{\rm s}}{(10^{-10}{\rm m}^2/{\rm s})}$  | $4.29 \pm 0.03$ | $4.33 \pm 0.03$ | $3.64 \pm 0.05$  |  |
|                                                                                              | $r_{ m H}({ m \AA})$                             | $9.42 \pm 0.07$ | $9.33 \pm 0.06$ | $11.10 \pm 0.15$ |  |

**Table S1** Diffusion coefficients ( $D_s$ ) and hydrodynamic radii ( $r_H$ ) of the monomer and assemblies formed by **1**, **2**, and **3** determined by PFG–NMR in DMSO- $d_6$  and CDCl<sub>3</sub>.

(a)  $D_s$  values were obtained by the analysis of N2-H signals of **1**, **2**, and **3** at 6.53, 6.54, and 6.54 ppm, respectively. (b)  $D_s$  value was obtained by the analysis of C1'-H signals of **1** at 5.96 ppm. (c)  $D_s$  values were obtained by the analysis of C1'-H signals of **1**, **2**, and **3** at 5.96, 5.95, and 5.95 ppm, respectively

#### **Reference:**

[1] (a) Y. Cohen, L. Avram, L. Frish, *Angew. Chem. Int. Ed.* 2005, 44, 520–554; (b)
M. S. Kaucher, Y. F. Lam, S. Pieraccini, G. Gottarelli, J. T. Davis, *Chem. Eur. J.* 2004, 11, 164–173.



**Figure S4.** CD spectra of **1** in CHCl<sub>3</sub> (solid lines) at 20  $\mu$ M, 0.1 mM, 1.0 mM and 2.5 mM, respectively in the absence (solid lines) and presence (dashed line) of 0.5 equiv K<sup>+</sup>.

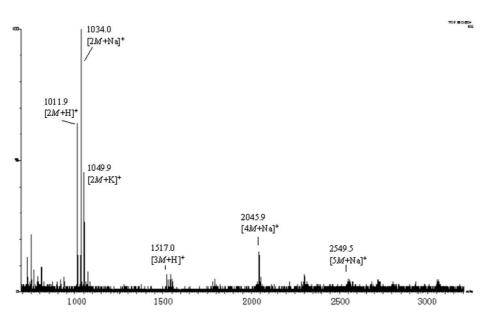
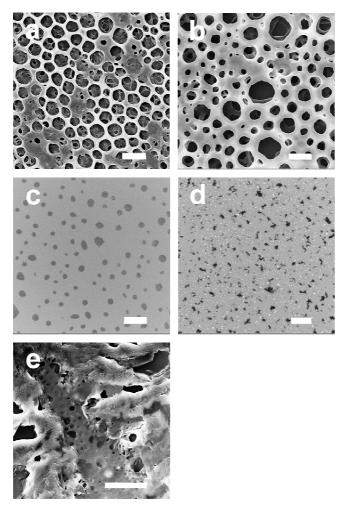
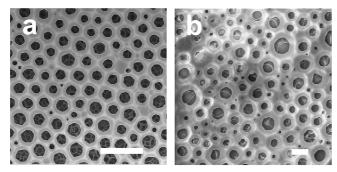
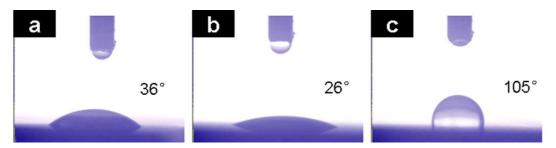





Figure S5. ESI-MS of 1 in CHCl<sub>3</sub>.



**Figure S6.** SEM images of films made from different molecules in CHCl<sub>3</sub> at 80 °C: (a) **2** (1.0 mM), (b) **3** (1.0 mM), (c) **4** (1.0 mM), (d) the mixture of **1** (0.5 mM) and **4** (0.5 mM), (e) **1** (0.5 mM) and 0.25 equiv KSCN. The scale bars are 2  $\mu$ m (a, b), 20  $\mu$ m (c, e), 10  $\mu$ m (d), respectively.

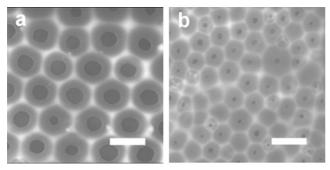



**Figure S7.** SEM images of honeycomb films made from 0.5 mM **1** in CHCl<sub>3</sub> at 80 °C on (a) gold-coated silicon and (b) glass. The scale bars are 10 (a) and 2  $\mu$ m (b), respectively.

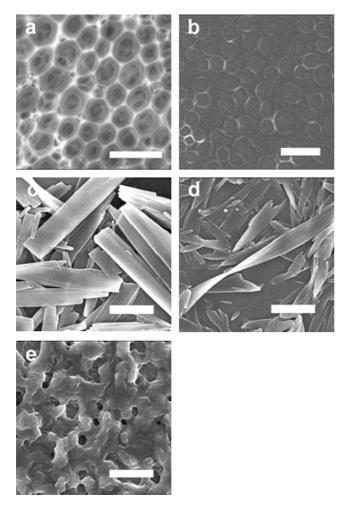
## Modification of silicon surface

Modification of silicon surface was accorded to reference 2, 3. The used n-type Si (100) wafers were cleaned previously using acetone, ethanol, and deionized water three times, respectively. The cleaned Si wafers were oxidized by O<sub>2</sub>-plasma to make the surface more hydrophilic.<sup>2,3</sup> Then the oxidized Si wafers were coating with fluoroalkylsilane compound (**F**<sub>13</sub>-**OMCS**, Figure S8, Aldrich product) by chemical vapour deposition (CVD) method to make the surface hydrophobic.<sup>2,3</sup> The contact angles of the modified silicon surface were showed in Figure S9.




Figure S8. Molecular structure of F<sub>13</sub>-OMCS.




**Figure S9.** Photographs of water droplets on the different silicon surface: (a) cleaned Si wafer, (b) O<sub>2</sub>-plasma treated Si wafer, (c) fluoroalkylsilane coated Si wafer.

#### **References:**

[2] A. Hozumi, K. Ushiyama, H. Sugimura, O. Takai, *Langmuir* 1999, 15, 7600-7604.
[3] H. Schift, S. Saxer, S. Park, C. Padeste, J. Gobrecht, *Nanotechnology* 2005, 16, S171-S175.



**Figure S10.** SEM images of honeycomb films made from 0.5 mM **1** in CHCl<sub>3</sub> at 80 °C on (a) O<sub>2</sub>-plasma treated silicon and (b) fluoroalkylsilane coated silicon. The scale bars are 2 (a) and 5  $\mu$ m (b), respectively.



**Figure S11.** SEM images of microstructures made from 0.5 mM **1** at 80 °C in various solvents: (a)  $CH_2Cl_2$ , (b) ethyl acetate, (c) benzene, (d) toluene, and (e) 1,4-dioxane. The scan bars are 5  $\mu$ m (a, c-d), and 15  $\mu$ m (b), respectively.

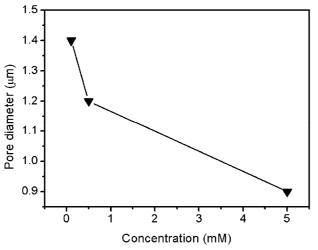



Figure S12. Plot of pore diameter versus concentration of 1 in CHCl<sub>3</sub>.

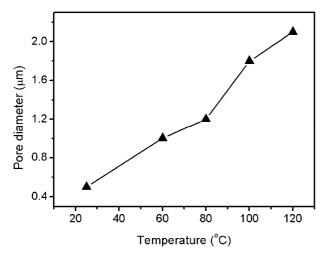
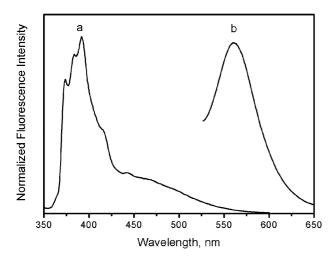
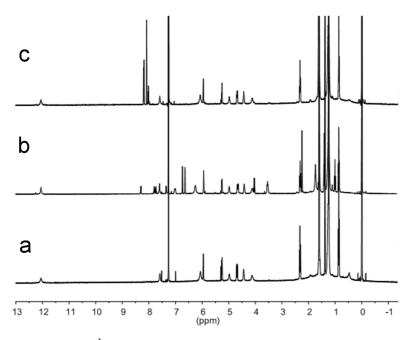
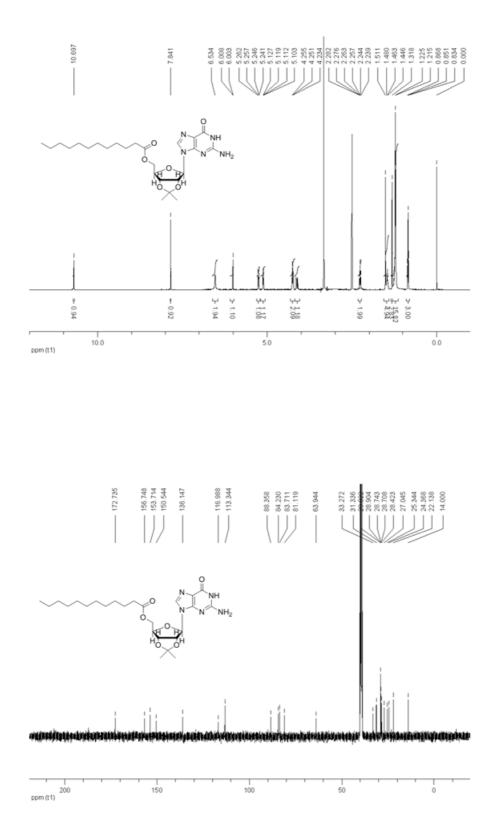




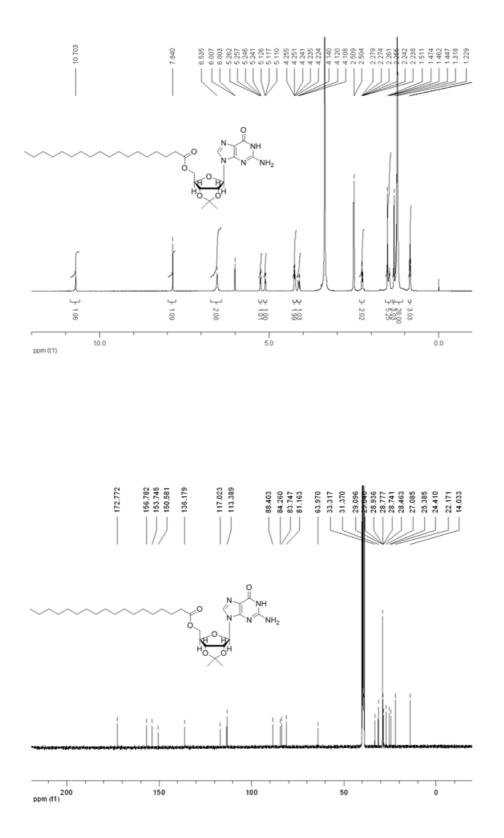

Figure S13. Plot of pore diameter versus temperature.

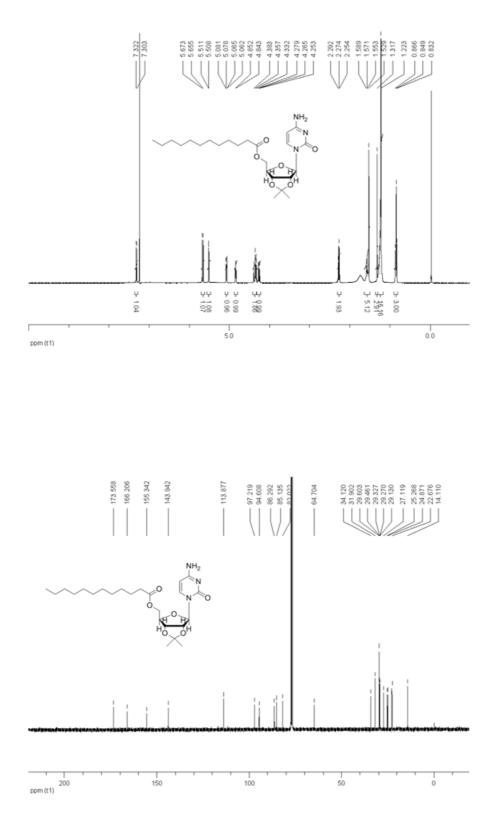



**Figure S14.** Fluorescence spectra of the honeycomb films made from 0.5 mM **1** at 80 °C, containing 0.01 equivalents of pyrene (a) and rhodamine 6G (b). Excitation wavelengths were 345 nm (a) and 490 nm (b), respectively.



**Figure S15.** <sup>1</sup>H NMR spectra of **1** at 298 K of 10 mM in  $CDCl_3$  (a) and in  $CDCl_3$  containing 0.2 equivalents of rhodamine 6G (b) or pyrene (c).


<sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of 1, 2, 3 and 4.




S11



S12



