Carbon-Sulfur Bond Formation via Iridium-Catalyzed Asymmetric Allylation of

Aliphatic Thiols

Ning Gao, Shengcai Zheng, Weikang Yang, and Xiaoming Zhao*
Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai 200092
P.R. China and Key Laboratory of Fluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032 P.R. China xmzhao08@mail.tongji.edu.cn

Supporting Information

Table of Contents

General Experimental Details: 1
General Procedure for the Synthesis of Allylic Sulfane 4 and 6, 7: 1
NMR Spectra of the compounds 4 and 6, 7: 7
HPLC Chromatograms of the Chiral Compounds: 29
Reference: 40

General Experimental Details:

All air-sensitive manipulations were conducted under an argon atmosphere by standard Schlenk techniques. All glassware was dried by oven or flame immediately prior to use. All solvents were purified and dried according to standard methods prior to use, unless stated otherwise. All reagents were purchased from commercial sources and used without further purification. Sodium cyclohexanethiolate and sodium allylthiolate were prepared by reaction of cyclohexyl mercaptan or allyl mercaptan with NaH (80% in liquid paraffin) in THF at room temperature. After stirring overnight at $0{ }^{\circ} \mathrm{C}$ to room temperature, the solvent was evaporated and the residual was washed with petroleum ether 3 times to afford sodium cyclohexanethiolate as a white powder or sodium allylthiolate as a light brown powder. ${ }^{1}$ The phosphoramidite ligands ${ }^{2}$ and substituted allylic carbonates ${ }^{3}$ were prepared according to known procedures.
${ }^{1} \mathrm{H}$ NMR spectra were obtained at 300 MHz or 400 MHz and recorded relative to the tetramethylsilane signal (0 ppm) or residual protio-solvent. ${ }^{13} \mathrm{C}$ NMR spectra were obtained at 75 MHz or 100 MHz , and chemical shifts were recorded relative to the solvent resonance $\left(\mathrm{CDCl}_{3}\right.$, 77.0 ppm). Data for ${ }^{1} \mathrm{H}$ NMR are recorded as follows: chemical shift (δ, ppm), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet or unresolved, $\mathrm{br}=$ broad singlet, coupling constant (s) in Hz , integration). Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift (δ, ppm).
HPLC analyses were carried out on a Waters chromatography system or Agilent 1100 HPLC system or SHIMADZU LC-15 system. IR analyses were obtained on Nicolet FT-IR spectrometers. Flash column chromatography was performed on silica gel. Products were visualized on TLC plates by UV or by staining with KMnO_{4} or iodine vapor.

General Procedure for the Synthesis of Allylic Sulfane 4 and 6, 7:

$[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}(0.0020 \mathrm{mmol}, 1.0 \mathrm{~mol} \%)$, phosphoramidite ligand $\mathbf{L 3}$ [O,O'-(S)-(1,1'-dinaphthyl-2,2'-diyl)-N, N^{\prime}-di-(S, S)-[phenylethylphosphoramidite] ($0.0040 \mathrm{mmol}, 2.0 \mathrm{~mol} \%$) were dissolved in THF $(0.5 \mathrm{~mL})$ and propylamine $(0.2 \mathrm{~mL})$ in a dry Schlenk tube filled with argon. The reaction mixture was heated at $50{ }^{\circ} \mathrm{C}$ for 30 min and then the volatile solvents were removed under vacuum to give a yellow solid. After that, allylic carbonate $2(0.40 \mathrm{mmol}, 200 \mathrm{~mol} \%)$, sodium cyclohexanethiolate or sodium allylthiolate 3 (0.20 mmol), cesium fluoride ($0.60 \mathrm{mmol}, 300 \mathrm{~mol}$ $\%)$ or without the cesium fluoride, and dichloromethylene $(2.0 \mathrm{~mL})$ were added. The reaction mixture was stirred at room temperature overnight. Then the crude reaction mixture was filtered through celite and the solvent was removed under reduced pressure. The crude residue was purified by flash column chromatography to give the desired products. The ratio of regionisomers (branched to linear) was determined by ${ }^{1} \mathrm{H}$ NMR or GC-MS of the crude reaction mixture.

4a
(S)-cyclohexyl(1-phenylallyl)sulfane (4a): ${ }^{1} \mathrm{H}$ NMR spectroscopy showed a 91:9 branched:linear ratio. The mixture was purified by flash column chromatography (100% petroleum ether) to give $\mathbf{4 a}$ as a colorless liquid in 72% yield. The enantiomeric excess of the product was determined by HPLC analysis ($214 \mathrm{~nm}, 25^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}}=17.80 \mathrm{~min}$ (major); 32.10 min (minor) [Diacel CHIRALPAK OJ-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$); hexane/2-propanol, 90/10, 0.7 $\mathrm{mL} / \mathrm{min}]$ to be 96%. $[\alpha]_{\mathrm{D}}{ }^{20}=-66.0^{\circ}\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.37-7.29(\mathrm{~m}$, 4 H), 7.23 (dddd, $J=7.2,7.2,1.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.05$ (ddd, $J=16.8,10.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=16.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.10(\mathrm{ddd}, J=10.0,0.8,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{tt}, J=10.4,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, 1.94-1.91 (m, 2H), 1.75-1.72 (m, 2H), 1.60-1.59 (m, 1H), 1.41-1.33 (m, 2H), 1.29-1.21 (m, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=140.9,138.6,128.5,127.7,127.1,115.2,51.1,43.0,33.5,33.3,26.0$, 25.83, 25.80. MS (EI, m / z, rel. intensity) 117 (100), 232 (M+); HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~S}\left(\mathrm{M}^{+}\right)$: 232.1286, Found: 232.1291. IR (KBr): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3081,3061,3028,2927,2851,1633,1600,1490$, 1448, 1414, 1262, 1072, 1028, 998, 915, 887, 804, 739, 697, 664.

(S)-cyclohexyl(1-(3-methoxyphenyl)allyl)sulfane (4b): ${ }^{1} \mathrm{H} \quad$ NMR spectroscopy showed a $84: 16$ ($91: 9$ in the presence of CsF) branched:linear ratio. The mixture was purified by flash column chromatography (petroleum ether/DCM $=20: 1$) to give $\mathbf{4 b}$ as a colorless liquid in 78% yield. The enantiomeric excess of the product was determined by HPLC analysis (254 $\mathrm{nm}, 25^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}}=9.65 \mathrm{~min}$ (major); 16.52 min (minor) [Diacel CHIRALPAK OJ-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$); hexane/2-propanol, $100 / 10,0.7 \mathrm{~mL} / \mathrm{min}]$ to be 96%.
$[\alpha]_{\mathrm{D}}{ }^{20}=-65.2^{\circ}\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.22(\mathrm{dd}, J=8.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=2.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{ddd}, J=8.0,2.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{ddd}, J=16.8$, $9.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ (ddd, $J=16.8,1.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{ddd}, J=10.0,1.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{tt}, J=10.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.70(\mathrm{~m}, 2 \mathrm{H})$, 1.59-1.54 (m, 1H), 1.40-1.32 (m, 2H), 1.29-1.21 (m, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=159.7$, $142.5,138.5,129.5,120.1,115.2,113.3,112.6,55.2,51.1,43.0,33.5,33.3,26.0,25.82,25.78$. MS (EI, m / z, rel. intensity) 147 (100), $262\left(\mathrm{M}^{+}\right)$; HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{OS}\left(\mathrm{M}^{+}\right): 262.1391$, Found: 262.1393. IR $(\mathrm{KBr}): v_{\max }\left(\mathrm{cm}^{-1}\right)=2928,2851,1599,1585,1490,1449,1436,1316,1263,1149,1048$, 998, 916, 886, 771, 695.

(S)-cyclohexyl(1-(4-methoxyphenyl)allyl)sulfane (4c): ${ }^{1} \mathrm{H} \quad$ NMR spectroscopy showed a $94: 6$ branched:linear ratio. The mixture was purified by flash column chromatography (petroleum ether/DCM $=$ $7 / 1$) to give $\mathbf{4 c}$ as a colorless liquid in 71% yield. The enantiomeric excess of the product was determined by HPLC analysis ($214 \mathrm{~nm}, 25$ ${ }^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}}=20.48 \mathrm{~min}$ (major); 28.82 min (minor) [Diacel CHIRALPAK OJ-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$); hexane/2-propanol, $100 / 10,0.7 \mathrm{~mL} / \mathrm{min}]$ to be $98 \% .[\alpha]_{\mathrm{D}}{ }^{20}=-51.6^{\circ}$ (c $\left.0.6, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.27(\mathrm{ddd}, J=8.8,2.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.85$ (ddd, $J=8.8$, $2.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.02$ (ddd, $J=16.8,10.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.08$ (ddd, $J=9.2$, $0.8,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.54(\mathrm{tt}, J=10.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.90(\mathrm{~m}$, $2 \mathrm{H}), 1.74-1.71(\mathrm{~m}, 2 \mathrm{H}) 1.59-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.21(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=158.6,138.8,132.9,128.7,114.9,113.9,55.2,50.4,42.9,33.5,33.3,26.0,25.83,25.80$. MS (EI, m / z, rel. intensity) 147 (100), $262\left(\mathrm{M}^{+}\right)$; HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{OS}\left(\mathrm{M}^{+}\right): 262.1391$, Found: 262.1387. IR $(\mathrm{KBr}): v_{\text {max }}\left(\mathrm{cm}^{-1}\right)=3000,2928,2851,1632,1609,1510,1448,1303,1247,1177$, 1036, 998, 915, 830, 781, 762, 740, 643, 535.

(S)-cyclohexyl(1-p-tolylallyl)sulfane (4d): ${ }^{1} \mathrm{H}$ NMR spectroscopy showed a $93: 7$ branched:linear ratio. The mixture was purified by flash column chromatography (100% petroleum ether) to give $\mathbf{4 d}$ as a colorless liquid in 74% yield. The enantiomeric excess of the product was determined by HPLC analysis $\left(214 \mathrm{~nm}, 25^{\circ} \mathrm{C}\right) \mathrm{t}_{\mathrm{R}}=15.17 \mathrm{~min}$ (major); 20.84 min (minor) [Diacel CHIRALPAK OJ-H (0.46 cm x 25 cm); hexane/2-propanol, 100/10, $0.7 \mathrm{~mL} / \mathrm{min}]$ to be $97 \% .[\alpha]_{\mathrm{D}}{ }^{20}=-56^{\circ}\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.03$ (ddd, $J=16.8,10.0,8.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.11 (ddd, $J=16.8,1.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{ddd}, J=16.8,1.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.55(\mathrm{tt}, J=10.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.54(\mathrm{~m}$, $1 \mathrm{H}), 1.38-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.21(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=138.8,137.9,136.8$, 129.2, 127.6, 115.0, 50.8, 43.0, 33.5, 33.3, 26.0, 25.9, 25.8, 21.0. MS (EI, m / z, rel. intensity) 131 (100), $246\left(\mathrm{M}^{+}\right)$; HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~S}\left(\mathrm{M}^{+}\right): 246.1442$, Found: 246.1445. IR $(\mathrm{KBr}): v_{\max }\left(\mathrm{cm}^{-1}\right)=$ 2927, 2851, 2361, 1635, 1541, 1509, 1448, 1262, 998, 913, 818, 779.

(S)-(1-(4-chlorophenyl)allyl)(cyclohexyl)sulfane (4e): ${ }^{1} \mathrm{H} \quad$ NMR spectroscopy showed a $88: 12$ (92:8 in the presence of CsF) branched:linear ratio. The mixture was purified by flash column chromatography (petroleum ether/ethyl acetate $=40 / 1$) to give $\mathbf{4 e}$ as a colorless liquid in 71% yield. The enantiomeric excess of the product was determined by HPLC analysis $\left(214 \mathrm{~nm}, 25{ }^{\circ} \mathrm{C}\right) \mathrm{t}_{\mathrm{R}}=7.25 \mathrm{~min}$ (major); 7.92 min (minor) [Diacel CHIRALPAK OJ-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$); hexane/2-propanol, $90 / 10,0.7 \mathrm{~mL} / \mathrm{min}]$ to be $95 \% .[\alpha]_{\mathrm{D}}{ }^{20}=-70.3^{\circ}\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.28$ $(\mathrm{m}, 4 \mathrm{H}), 5.99(\mathrm{dt}, J=17.6,8.8 \mathrm{~Hz} 1 \mathrm{H}), 5.12(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 1 \mathrm{H})$, 1.37-1.32 (m, 1H), 1.29-1.19 (m, 3H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=139.5,138.1,132.8,129.2$, 128.6, 115.7, 50.3, 43.1, 33.4, 33.2, 26.0, 25.8. MS (EI, m / z, rel. intensity) 151 (100), 266 (M ${ }^{+}$); HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{ClS}\left(\mathrm{M}^{+}\right): 266.0896$, Found: 266.0902. IR $(\mathrm{KBr}): v_{\max }\left(\mathrm{cm}^{-1}\right)=2928,2852,1633$,

(S)-(1-(4-bromophenyl)allyl)(cyclohexyl)sulfane (4f): ${ }^{1} \mathrm{H} \quad$ NMR spectroscopy showed a $86: 14$ (90:10 in the presence of CsF) branched:linear ratio. The mixture was purified by flash column chromatography (petroleum ether/ethyl acetate $=40 / 1$) to give $\mathbf{4 f}$ as a colorless liquid in 80% yield. The enantiomeric excess of the product was determined by HPLC analysis ($214 \mathrm{~nm}, 25{ }^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}}=4.96 \mathrm{~min}$ (minor); 5.16 min (major) [Diacel CHIRALPAK AD-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$); hexane/2-propanol, $100 / 10,0.7 \mathrm{~mL} / \mathrm{min}]$ to be 98%. $[\alpha]_{\mathrm{D}}{ }^{20}=-54.8^{\circ}\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ 7.43 (ddd, $J=8.8,2.4,2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.24 (ddd, $J=8.4,2.4,2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 5.98 (ddddd, $J=16.8,9.6,8.4$, $1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{ddd}, J=10.0,1.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{ddd}, J=17.2,1.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J$ $=10.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{tt}, J=10.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.54(\mathrm{~m}$, $1 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.21(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=140.0,138.0,131.6$, $129.5,120.9,115.7,50.4,43.1,33.4,33.2,25.9,25.8$. MS (EI, m / z, rel. intensity) $116(100), 310\left(\mathrm{M}^{+}\right)$; HRMS (EI) calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{BrS}\left(\mathrm{M}^{+}\right): 310.0391$, Found: 310.0394. IR $(\mathrm{KBr}): v_{\max }\left(\mathrm{cm}^{-1}\right)=2928,2851$, 1634, 1486, 1448, 1399, 1263, 1073, 1010, 998, 918, 817, 759, 593, 517.

(S)-2-(1-(cyclohexylthio)allyl)thiophene (4g): ${ }^{1} \mathrm{H}$ NMR spectroscopy showed a 86:14 branched:linear ratio. The mixture was purified by flash column chromatography (petroleum ether) to give $\mathbf{4 g}$ as a colorless liquid in 74% yield. The enantiomeric excess of the product was determined by HPLC analysis ($214 \mathrm{~nm}, 25^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}}=9.12 \mathrm{~min}$ (major); 15.19 min (minor) [Diacel CHIRALPAK OJ-H (0.46 cm x 25 cm); hexane/2-propanol, 90/10, 0.7 $\mathrm{mL} / \mathrm{min}$] to be $98 \% .[\alpha]_{\mathrm{D}}{ }^{20}=-128.2^{\circ}\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.21$ (dd, $J=$ $5.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{dd}, J=5.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{ddd}, J=16.8,10.0,8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{tt}, J=10.4$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.22(\mathrm{~m}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=144.8,138.4,126.6,124.8,124.6,115.5,46.2,43.4,33.5,33.2$, 26.0, 25.8. MS (EI, m / z, rel. intensity) 123 (100), $238\left(\mathrm{M}^{+}\right)$; HRMS (EI) calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~S}_{2}\left(\mathrm{M}^{+}\right)$: 238.0850, Found: 238.0856. IR $(\mathrm{KBr}): v_{\max }\left(\mathrm{cm}^{-1}\right)=2928,2854,1635,1447,1413,1262,1232,988$, 914, 850, 804, 696.

(R)-cyclohexyl(5-phenylpent-1-en-3-yl)sulfane (4h): GC-MS showed a 71:29 branched:linear ratio. The mixture was purified by flash column chromatography (petroleum ether/DCM $=35 / 1$) to give $\mathbf{4 h}$ as a colorless liquid in 56% yield. The enantiomeric excess of the product was determined by HPLC analysis $\left(214 \mathrm{~nm}, 25{ }^{\circ} \mathrm{C}\right) \mathrm{t}_{\mathrm{R}}=11.56 \mathrm{~min}$ (minor); 12.12 min (major) [Diacel CHIRALPAK AD-H ($0.46 \mathrm{~cm} \times 25$ cm); hexane/2-propanol, $98 / 2,0.3 \mathrm{~mL} / \mathrm{min}]$ to be $95 \% .[\alpha]_{\mathrm{D}}{ }^{20}=-8.6^{\circ}\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.27-7.17(\mathrm{~m}, 5 \mathrm{H}), 5.65(\mathrm{ddd}, J=18.4,9.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.99(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.23(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.52(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.80(\mathrm{~m}, 4 \mathrm{H})$, $1.77-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.6-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.20(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=141.6$, 140.0 , 128.4, 128.3, 125.8, 114.8, 46.4, 42.0, 36.0, 34.1, 33.4, 33.3, 26.2, 25.85, 25.81. MS (EI, m / z, rel.
intensity) 129 (100), $260\left(\mathrm{M}^{+}\right)$; HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~S}\left(\mathrm{M}^{+}\right): 260.1599$, Found: 260.1587. IR $(\mathrm{KBr}): v_{\max }\left(\mathrm{cm}^{-1}\right)=3026,2928,2852,1630,1604,1496,1448,1384,1263,997,911,747,698$.

(S)-allyl(1-(4-bromophenyl)allyl)sulfane (4i): ${ }^{1} \mathrm{H}$ NMR spectroscopy showed a $94: 6$ branched:linear ratio. The mixture was purified by flash column chromatography (petroleum ether) to give $\mathbf{4 i}$ as a colorless liquid in 60% yield. The enantiomeric excess of the product was determined by HPLC analysis ($214 \mathrm{~nm}, 25^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}}=7.30 \mathrm{~min}$ (major); 7.92 min (minor) [Diacel CHIRALPAK OJ-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$); hexane/2-propanol, 90/10, $0.7 \mathrm{~mL} / \mathrm{min}]$ to be $94 \% .[\alpha]_{\mathrm{D}}{ }^{20}=-24.5^{\circ}\left(\mathrm{c} 0.4, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.45(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.23 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 5.96 (ddd, $J=16.8,8.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{ddt}, J=14.8,7.6$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-5.05(\mathrm{~m}, 4 \mathrm{H}), 4.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-2.99(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=139.4,137.2,134.1,131.7,129.7,121.1,117.4,116.6,50.6,34.4 . \mathrm{MS}$ (EI, m / z, rel. intensity) 116 (100), 268 and $270\left(\mathrm{M}^{+}\right)$; HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrS}\left(\mathrm{M}^{+}\right): 267.9921$, Found: 267.9929. IR (KBr): $v_{\max }\left(\mathrm{cm}^{-1}\right)=3853,3080,2978,2912,2360,2341,1634,1486,1399,1423,1073$, 1010, 987, 917, 843, 816, 756, 740, 599, 515.

(\boldsymbol{R})-allyl(5-phenylpent-1-en-3-yl)sulfane (4j): GC-MS showed a 77:23 branched:linear ratio. The mixture was purified by flash column chromatography (petroleum ether/DCM $=35 / 1$) to give $\mathbf{4 j}$ as a colorless liquid in 34% yield. The enantiomeric excess of the product was determined by HPLC analysis ($214 \mathrm{~nm}, 25^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}}=7.98 \mathrm{~min}$ (major); 8.49 min (minor) [Diacel CHIRALPAK OJ-H (0.46 cm x 25 cm); hexane/2-propanol, $98 / 2,0.7 \mathrm{~mL} / \mathrm{min}]$ to be $95 \% .[\alpha]_{\mathrm{D}}{ }^{20}=-35.0^{\circ}\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.14(\mathrm{~m}, 3 \mathrm{H}), 5.77(\mathrm{ddd}, J=16.4,7.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{ddt}$, $J=17.6,9.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.99(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.77-2.65(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.81(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=141.5,139.0,134.7,128.4,128.3,125.9,116.8,115.7,46.9,35.7$, 33.35, 33.32.

(\boldsymbol{R})-(3-(allylsulfonyl)pent-4-enyl)benzene (6): $\mathbf{4 j}^{\mathbf{4}}$ ($22.3 \mathrm{mg}, 0.10 \mathrm{mmol}$) was oxidized with m-CPBA (75%) $(85.6 \mathrm{mg}, 0.35 \mathrm{mmol})$ in DCM (4 mL) and the reaction mixture was purified by flash column chromatography (DCM) to give 6 as a thick yellow oil in 92% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=7.29(\mathrm{dd}, J=7.6,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.90-5.80(\mathrm{~m}, 2 \mathrm{H}), 5.58(\mathrm{~d}, 10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~d}, J=$ $16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=23.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=14.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3,63$ $(\mathrm{dd}, J=14.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dt}, J=10.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{ddd}, J=13.9,9.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.56$ (ddd, $J=14.0,8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.99(\mathrm{~m}, 1 \mathrm{H})$.

(R)-Cyclic Sulfone (7) ${ }^{4}$: To a solution of $6(23.2 \mathrm{mg}, 0.093 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL}, 0.02 \mathrm{M})$ was added Grubbs catalyst I $(1.5 \mathrm{mg}, 2.0 \mathrm{~mol} \%)$ and the reaction mixture was heated to reflux under an argon atmosphere
overnight. The reaction was cooled to rt and concentrated to dryness under vacuum. Flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ gave $7(17.0 \mathrm{mg}, 83 \%$ yield) as a colorless thick oil. The enantiomeric excess of the product was determined by HPLC analysis ($214 \mathrm{~nm}, 25{ }^{\circ} \mathrm{C}$) $\mathrm{t}_{\mathrm{R}}=16.83$ \min (major); 17.60 min (minor) [Diacel CHIRALPAK AD-H ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$); hexane/2-propanol, $90 / 10,1.0 \mathrm{~mL} / \mathrm{min}$] to be 97%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.33-7.29(\mathrm{~m}$, $2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.05-6.01(\mathrm{~m}, 1 \mathrm{H}), 5.98-5.94(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.72(\mathrm{~m}, 2 \mathrm{H}), 3.70-3.65(\mathrm{~m}, 1 \mathrm{H})$, 2.93-2.78 (m, 2H), 2.35-2.26 (m, 1H), 1.99-1.90 (m, 1H).

NMR Spectra of the compounds 4 and 6, 7:

HPLC Chromatograms of the Chiral Compounds:

No. PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
1	1	9.685	146106.9	2294107.6	50.3093
2	2		16.185	69413.2	2265899.1

No. PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent
1	1	9.652	302958.3	5569541.4	97.9739
2	2		16.518	4118.1	115176.7
2					

Peak \#	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {[\mathrm{mAU} \mathrm{~s}]} \end{gathered}$	Height [mAU]	Area \%
1	15.170	BB	0.3067	3871.83179	195.81642	98.5424
2	20.840	BP	0.3349	57.26894	2.06915	1.4576

No. PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent	
1	1		7.285	113454.5	1308841.2	50.2532
2	2		7.918	99300.5	1295649.5	49.7468

No. PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent	
1	1		7.252	139760.0	1684332.7	97.4390
2	2		7.918	2956.3	44269.7	2.5610

Peak \#	$\begin{aligned} & \text { RetTime } \\ & {[\text { min] }} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU} \mathrm{~A}^{2}\right]} \end{gathered}$	Height [mAU]	Area 8
1	4.955	BV	0.0865	1470.88281	257.90927	47.7945
2	5.166	VB	0.0950	1606.63098	256.79333	52.2055

\[

\]

No. PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent	
1	1		9.085	114961.5	1635119.7	51.5851
2	2		14.952	65635.7	1534633.9	48.4149

No. PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent	
1	1		9.118	1980425.0	31781197.2	99.0905
2	2		15.185	12471.8	291703.3	0.9095

mV

PeakNo R.Time PeakArea PeakHeight PerCent

1	11.530	29693621	1411720	46.738
2	12.093	33838967	1597282	53.262

mV

No. PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent	
1	1		7.218	1010925.3	10779489.0	50.2139
2	2		7.818	931415.3	10687643.6	49.7861

No. PeakNo	ID. Name	R.Time	PeakHeight	PeakArea	PerCent	
1	1		7.295	226205.4	2410964.3	99.2247
2	2		7.918	1904.0	18838.8	0.7753

No. PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent	
1	1		7.877	265974.7	3231881.8	50.3784
2	2	8.377	242060.2	3183326.8	49.6216	

No. PeakNo	ID. Name	R. Time	PeakHeight	PeakArea	PerCent	
1	1		7.982	398441.9	4789883.9	97.5541
2	2		8.490	9270.7	120094.3	2.4459

$m \vee$

Reference:

1. L. C. Liang, P. S. Chien, P. Y. Lee, J. M. Lin and Y. L. Huang. Dalton Trans 2008, 3320.
2. a) A. Alexakis, S. Rosset, J. Allamand, S. March, F. Guillen, C. Benhaim. Synlett 2001, 9,1375 ; b) R. Naasz, L. A. Arnold, A. J. Minnaard, B. L. Feringa. Angew. Chem. Int. Ed. 2001, 40, 927; c) D. Polet, A. Alexakis. Synthesis 2004, 15, 2586.
3. P. G. M. Wuts, S. W. Ashford, A. M. Anderson, J. R. Atkins. Org. Lett. 2003, 5, 1483.
4. Qingwei Yao. Org. Lett. 2002, 3, 427.
