Supporting Information

Diversity-Oriented Approach to Pyrrole-imidazole Alkaloid Frameworks

Manojkumar R. Bhandari[†], Muhammed Yousufuddin[‡] and Carl J. Lovely^{†,*}

Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, [†] Center for Nanostructured Materials, The University of Texas at Arlington, Arlington, TX 76019 [‡]

- 1. Experimental procedures for the preparation of compounds **11-18**, **23-29**, S2-S17.
- 2. Plots of X-ray structures for compounds 16, 18, 24, 25, 27 and 28, S18-S23.
- 3. ¹H NMR and ¹³C NMR spectra of compounds **11-18**, **23-29** and precursors, S24-S71

General Considerations: All reagents were purchased from commercial suppliers and were used as received unless otherwise noted. All reactions involving air- or watersensitive compounds were conducted in oven-dried glassware under an atmosphere of dry argon or nitrogen. ¹H and ¹³C NMR (δ in ppm) spectra were recorded in CDCl₃ (unless otherwise noted) at 500 and 125 MHz, respectively; using a JEOL Eclipse+ 500 spectrometer unless otherwise noted using residual CHCl₃ as reference. Infrared spectra were recorded either as solids or films for oil or liquids using Bruker Alpha spectrometer (ATR spectroscopy). High resolution mass spectra (HR-MS) were obtained by Dr. Powell through the mass spectrometry service at the University of Florida, Gainesville, Florida.

4-(3-Hydroxyprop-1-ynyl)-*N*,*N*-dimethyl-1H-imidazole-1-sulfonamide (S1):

N₂ was bubbled through solution of 4-iodoimidazole (8.00 g, 26.4 mmol), propargyl alcohol (2.22 g, 39.6 mmol), Pd(PPh₃)₂Cl₂ (463 mg, 0.66 mmol), Cul (251 mg, 1.32 mmol) in THF/TEA (120 mL/120 mL). The reaction mixture was heated at 60 °C for overnight. The reaction mixture was concentrated, the residue was preabsorbed on silica gel by dissolving it in methanol and purified by chromatography (EtOAc \rightarrow EtOAc/MeOH, 98:2) providing **S1** (4.37 g, 72%) as a white solid; m.p. 129-131 °C; ¹H NMR (300 MHz): δ = 7.84 (s, 1H), 7.37 (s, 1H), 4.48 (d, J = 6.2 Hz, 2H), 2.86 (s, 6H), 2.79 (t, J = 6.2 Hz, 1H); ¹³C NMR (75 MHz): δ = 136.6, 125.6, 120.9, 89.8, 77.3, 51.3, 38.3; IR (neat, cm⁻¹): 3242, 3150, 3122, 2927, 2222, 1685, 1548, 1386, 1266, 1170, 1087, 1030, 958, 843, 722; HR-ESIMS (m/z):

Calcd. for $C_8H_{12}N_3O_3S$ [M+H]⁺ 230.0593, found 230.0591; Calcd. for $C_8H_{11}N_3O_3SNa$ [M+Na]⁺ 252.0413, found 252.0407.

4-(3-Azidoprop-1-ynyl)-N,N-dimethyl-1H-imidazole-1-sulfonamide (S2): To an ice-

cooled solution of the alcohol **S1** (1.50 g, 6.55 mmol) in dry THF (50 mL), diphenyl phosphoryl azide (1.70 mL, 7.86 mmol) followed by DBU (1.17 mL, 7.86 mmol) was added dropwise. The solution was allowed to warm to r.t. and stirred overnight. The reaction mixture was partitioned between NH₄Cl solution and extracted with EtOAc. The organic layer was washed with brine solution, dried (Na₂SO₄), and concentrated to give brown solids. These solids were purified by flash chromatography providing azide **S2** (1.56 g, 94%) as a brown solid; m.p 75-76 °C; ¹H NMR (300 MHz): δ = 7.81 (s, 1H), 7.40 (s, 1H), 4.11 (s, 2H), 2.86 (s, 6H); ¹³C (75 MHz) NMR: δ = 136.7, 125.0, 121.5, 83.4, 79.2, 40.5, 38.3; IR (neat, cm⁻¹): 3132, 3114, 2920, 2114, 2070, 1466, 1392, 1268, 1181, 1088, 963, 854, 719; HR-ESIMS (m/z): Calcd. for C₈H₁₁N₆O₂S [M+H]⁺ 255.0659, found 255.0661; Calcd. for C₈H₁₀N₆O₂SNa [M+Na]⁺ 277.0478, found 277.0490.

4-(3-Aminoprop-1-ynyl)-N,N-dimethyl-1H-imidazole-1-sulfonamide (S3): PPh₃ (1.62)

 $_{NH_2}$ g, 6.19 mmol) was added to the solution of azide **S2** (1.05 g, 4.13 mmol) in dry THF (40 mL) and stirred for 4 h. $_{2}$ O (3 mL) was added to above solution and stirred overnight. The reaction mixture was concentrated purified on silica gel (EtOAc \rightarrow EtOAc/MeOH/Et $_{3}$ N, 70:25:5) to obtain

amine **S3** (819 mg, 87%) as a thick oil. ¹H NMR (300 MHz): δ = 7.79 (d, J = 1.1 Hz, 1H), 7.30 (d, J = 1.1 Hz, 1H), 3.61 (s, 2H), 2.84 (s, 6H), 1.56 (brs, 2H); ¹³C NMR (75 MHz): δ = 136.5, 126.1, 120.2, 92.3, 74.5, 38.3, 32.2; IR (neat, cm⁻¹): 3369, 3303, 3126, 2923, 2233, 1671, 1602, 1541, 1387, 1325, 1170, 1085, 960, 723; HR-ESIMS (m/z): Calcd. for $C_8H_{13}N_4O_2S$ [M+H]⁺ 229.0754, found 229.0747; Calcd. for $C_8H_{12}N_4O_2SNa$ [M+Na]⁺ 251.0573, found 251.0566.

N-(3-(1-(N,N-Dimethylsulfamoyl)-1H-imidazol-4-yl)prop-2-ynyl)-1H-pyrrole-2-

carboxamide (11): A mixture of amine S3 (750 mg, 3.28 mmol), trichloroacetyl pyrrole

derivative (905 mg, 4.26 mmol) and K_2CO_3 (587 mg, 4.26 mmol) in dry DMF (12 mL) was stirred at r.t. overnight. To the resulting mixture was added half saturated NH₄Cl solution and the aqueous layer was repeatedly extracted with EtOAc. The organic extracts were combined, washed with brine solution, dried (Na₂SO₄), concentrated and purified on silica gel (CH₂Cl₂—hexane/EtOAc, 20:80) to give amide 11 (916 mg, 87%) as a white solid; m.p 179-182 °C; ¹H NMR (300 MHz, DMSO-d₆): δ = 11.49 (s, 1H), 8.50 (t, J = 5.6 Hz, 1H), 8.16 (d, J = 1.4 Hz, 1H), 7.91 (d, J = 1.4 Hz, 1H), 6.86-6.83 (m, 1H), 6.79-6.76 (m, 1H), 6.07-6.04 (m, 1H), 4.22 (d, J = 5.6 Hz, 2H), 2.78 (s, 6H); ¹³C NMR (75 MHz): δ = 160.9, 137.8, 126.2, 125.1, 122.3, 122.2, 110.9, 109.2, 89.1, 74.9, 38.3, 28.9; IR (neat, cm⁻¹): 3236, 3140, 3049, 1620, 1563, 1421, 1390, 1261, 1178, 1088, 1037, 964, 837, 769, 725; HR-ESIMS (m/z): Calcd. for C₁₃H₁₆N₅O₃S [M+H]⁺ 322.0968, found 322.0969; Calcd. for C₁₃H₁₅N₅O₃SNa [M+Na]⁺ 344.0788, found 344.0804.

(Z)-4-((2-(1H-Pyrrol-2-yl)oxazol-5(4H)-ylidene)methyl)-N,N-dimethyl-1H-imidazole-

1-sulfonamide (14): Pd(OAc)₂ (1.98 mg, 0.02 mmol) was added to the solution of amide 11 (100 mg, 0.31 mmol) in CH₂Cl₂/TFA (1.5 mL/1 mL) and stirred for 1 h. After the starting material was consumed, the reaction mixture was concentrated and partitioned between half saturated NaHCO₃ solution and EtOAc. The organic layer was dried (Na₂SO₄), concentrated and purified by column chromatography (hexane/EtOAc, 20:80) providing oxazole 14 (87 mg, 87%) as a yellowish powder; m.p 193-195 °C; ¹H NMR (300 MHz, DMSO-d₆): δ = 11.98 (s, 1H), 8.12 (d, J = 1.0 Hz, 1H), 7.59 (s, 1H), 7.05-7.02 (m, 1H), 6.71-6.69 (m, 1H), 6.22-6.19 (m, 1H), 5.73 (t, J = 2.2 Hz, 1H), 4.73 (d, J = 2.2 Hz, 2H), 2.82 (s, 6H); ¹³C NMR (75 MHz): δ = 156.9, 153.0, 137.1, 137.0, 124.2, 118.7, 114.9, 113.4, 109.9, 93.0, 58.2, 38.4; IR (neat, cm⁻¹): 3168, 3143, 2972, 1714, 1667, 1430, 1393, 1153, 1091, 991, 946, 803, 729; HR-ESIMS (m/z): Calcd. for C₁₃H₁₆N₅O₃S [M+H]⁺ 322.0968, found 322.0967; Calcd. for C₁₃H₁₅N₅O₃SNa [M+Na]⁺ 344.0788, found

N-Tritylprop-2-yn-1-amine (S4): To a solution of propargyl amine (14.78 g, 0.269 mol)

Tr in dry CH₂Cl₂ (100 mL), the solution of trityl chloride (35.80 g, 0.128 mol) in CH₂Cl₂ (75 mL) was added dropwise at 0 °C. the solution was stirred at r.t. overnight. The reaction mixture was partitioned with water (50 mL), and the organic layer was washed with brine, dried (Na₂SO₄) and concentrated. The residue was crystallized from hexane to give S4 (34.65 g, 91%) as a white solid; m.p 73-75 °C; ¹H NMR: δ = 7.52-7.50 (m, 6H), 7.32-7.29 (m, 6H), 7.23-7.21 (m, 3H), 2.97 (s, 2H), 2.20 (t,

344.0794.

J = 2.5 Hz, 1H), 2.02 (brs, 1H); ¹³C NMR: $\delta = 145.3$, 128.7, 128.1, 126.7, 82.8, 71.1, 70.8, 33.7; IR (neat, cm⁻¹): 3326, 3289, 3278, 3054, 2840, 2125, 1594, 1487, 1447, 1209, 1097, 1029, 899, 768, 744, 694; HR-ESIMS (m/z): Calcd. for $C_{22}H_{19}NNa$ [M+Na]⁺ 320.1410, found 320.1412; Calcd. for $C_{22}H_{19}NK$ [M+K]⁺ 336.1149, found 336.1153.

N-(Prop-2-ynyl)-N-trityl-1H-pyrrole-2-carboxamide (S5): To the mixture of pyrrole carboxylic acid (10.00 g, 90.09 mmol) in dry CH_2Cl_2 (125 mL), oxalyl chloride (19.65 mL, 225.2 mmol) was added followed by two drops of DMF. The solution was stirred for 3-4 h and then concentrated to obtain crude acid chloride derivative. The amine \$4 (10.72 g, 36.04 mmol) and triethylamine (17.54 mL, 126.1mmol) were dissolved in dry THF (150 mL) and cooled to 0 °C. The solution of crude acid chloride derivative in dry THF (100 mL) was added to above solution over a period of 20-30 min. The solution was warmed to r.t. and stirred overnight. The reaction mixture was worked up by adding NH₄Cl and repeatedly extracting with EtOAc. The combined organic extracts were washed with NaHCO₃ solution, followed by the brine solution, dried (Na₂SO₄) and concentrated. The residue was purified by column chromatography (hexane/EtOAc, 80:20) to obtain product \$5 (12.65 g, 90%) with an estimated 85% purity. This product was used in excess for next reaction. For characterization purpose amide \$5 was purified by repeated recrystallization from CH₂Cl₂; m.p 198-202 °C; ¹H NMR: δ = 9.48 (brs, 1H), 7.38-7.37 (m, 6H), 7.28-7.19 (m, 10H), 6.76-6.75 (m, 1H), 6.27-6.25 (m, 1H), 4.62 (d, J = 2.3 Hz, 2H), 2.17 (t, J = 2.3 Hz, 1H); 13 C NMR: δ = 163.5, 143.1, 130.3, 127.5, 126.8, 126.2, 121.8, 112.8, 109.9, 80.9, 78.2, 72.9, 40.1; IR (neat, cm⁻¹): 3288, 3244, 3058, 3032, 2120, 1604, 1490, 1403,

1342, 1131, 917, 840, 724, 698; HR-ESIMS (m/z): Calcd. for C₂₇H₂₂N₂ONa [M+Na]⁺ 413.1624, found 413.1638; Calcd. for C₂₇H₂₂N₂OK [M+K]⁺ 429.1364, found 429.1360.

N-(3-(1-(*N*,*N*-Dimethylsulfamoyl)-1H-imidazol-4-yl)prop-2-ynyl)-*N*-trityl-1H-pyrrole-2-carboxamide (12): 4-lodoimidazole (1.28 g, 4.25 mmol), alkyne **S5** (2.48 g, 6.37

mmol), K_2CO_3 (1.17 g, 8.52 mmol), CuI (40 mg, 0.21 mmol) and Pd(PPh₃)₂Cl₂ (74 mg, 0.11 mmol) were placed in a reaction flask. To the above reaction mixture dry THF (40 mL) was added and N₂ was bubbled through it for 3-5 min. The heterogeneous mixture was stirred at 55 °C overnight. The reaction mixture was cooled to r.t. and water (15 mL) was added and the layers were separated. The aqueous layer was extracted with EtOAc. The combined organic extracts were dried (Na₂SO₄) and concentrated to provide brown solids. The crude product was purified by chromatography (CH₂Cl₂→hexane/EtOAc, 45:55) to give product **12** (1.46 g. 61%) as a pale vellowish solid: m.p 170-173 °C: 1 H NMR: δ = 9.43 (brs, 1H), 7.78 (d, J = 1.3 Hz, 1H), 7.41-7.39 (m, 6H), 7.29-7.25 (m, 6H), 7.23-7.20 (m, 4H), 7.19-7.18 (m, 1H), 6.80-6.78 (m, 1H), 6.28-6.26 (m, 1H), 4.82 (s, 2H), 2.88 (s, 6H); ¹³C NMR: δ = 163.7, 143.0, 136.4, 130.3, 127.5, 126.8, 126.2, 125.7, 121.8, 121.1, 112.9, 110.2, 88.2, 78.0, 76.4, 40.9, 38.3; IR (neat, cm⁻¹): 3248, 3140, 3055, 1595, 1396, 1344, 1259, 1177, 1132, 1083, 958, 836, 745, 721; HR-ESIMS (m/z): Calcd. for $C_{32}H_{29}N_5O_3SNa [M+Na]^+ 586.1883$, found 586.1899; Calcd. for $C_{32}H_{29}N_5O_3SK [M+K]^+$ 602.1623, found 602.1610.

(Z)-N,N-Dimethyl-4-((1-oxo-2-trityl-2,3-dihydropyrrolo[1,2-a]pyrazin-4(1H)-

ylidene)methyl)-1H-imidazole-1-sulfonamide (15): The alkyne 12 (2.68 g, 4.75 mmol) and Cs₂CO₃ (2.32 g, 7.12 mmol) were dissolved in dry DMF (30 mL) and stirred at r.t. for 30 min. The reaction mixture was quenched with NH₄Cl solution and extracted with EtOAc. The combined organic extracts were washed with brine solution, dried (Na₂SO₄), concentrated, and purified by column chromatography (hexane/EtOAc, 45:55) to give pyrazine 15 (2.17 g, 81%) as a pale yellow solid; m.p 181-184 °C; ¹H NMR: δ = 7.93 (s, 1H), 7.63-7.62 (m, 1H), 7.55-7.54 (m, 6H), 7.34 (s, 1H), 7.29-7.25 (m, 6H), 7.18-7.15 (m, 3H), 6.90-6.89 (m, 1H), 6.22-6.21 (m, 1H), 5.94 (s, 1H), 4.06 (s, 2H), 2.91 (s, 6H); ¹³C NMR: δ = 161.1, 142.9, 137.4, 136.6, 130.3, 128.9, 127.9, 126.7, 126.5, 123.2, 116.9, 115.8, 111.0, 104.8, 76.0, 52.7, 38.4; IR (neat, cm⁻¹): 3148, 3116, 1698, 1663, 1640, 1463, 1382, 1169, 1078, 963, 777, 748, 706; HR-ESIMS (m/z): Calcd. for C₃₂H₂₉N₅O₃SNa [M+Na][†] 586.1883, found 586.1899; Calcd. for C₃₂H₂₉N₅O₃SK [M+K][†] 602.1623, found 602.1611.

3-(1-(N,N-Dimethylsulfamoyl)-1H-imidazol-4-yl)prop-2-ynyl-1H-pyrrole-2-

carboxylate (13): To a mixture of imidazole propargyl alcohol derivative S1 (1.20 g,

5.24 mmol), pyrrole carboxylic acid (640 mg, 5.76 mmol), DMAP (64 mg, 0.52 mmol) and CSA (73 mg, 0.31 mmol) in dry CH₂Cl₂ (120 mL), a solution of DCC (1.62 g, 7.86 mmol) in dry CH₂Cl₂ (10 mL) was added dropwise at -78 °C. The solution was then stirred

at r.t. for 24 h. The mixture was filtered, the filtrate was concentrated and purified by column chromatography (hexane/EtOAc, 40:60) to obtain ester **13** (1.23 g, 73%) as a

white solid; m.p 156-158 °C; ¹H NMR (300 MHz): δ = 9.32 (brs, 1H), 7.83 (d, J = 1.4 Hz, 1H), 7.40 (d, J = 1.4 Hz, 1H), 7.00-6.98 (m, 2H), 6.28-6.26 (m, 1H), 5.07 (s, 2H), 2.86 (s, 6H); ¹³C NMR (75 MHz): δ = 160.2, 136.6, 125.3, 123.6, 121.9, 121.5, 116.3, 110.8, 85.4, 78.6, 52.4, 38.3; IR (neat, cm⁻¹): 3321, 3132, 3070, 2969, 2244, 1713, 1392, 1317, 1266, 1163, 1080, 960, 857, 748, 724; HR-ESIMS (m/z): Calcd. for C₁₃H₁₅N₄O₄S [M+H]⁺ 323.0809, found 323.0805; Calcd. for C₁₃H₁₄N₄O₄SNa [M+Na]⁺ 345.0628, found 345.0646.

(*Z*)-*N*,*N*-Dimethyl-4-((1-oxo-1H-pyrrolo[2,1-c][1,4]oxazin-4(3H)-ylidene)methyl)-1H-imidazole-1-sulfonamide (16): The mixture of ester 13 (100 mg, 0.31 mmol) and $^{\circ}$ Cs₂CO₃ (131 mg, 0.40 mmol) in dry DMF (2.5 mL) was heated at 80 $^{\circ}$ C for 1.5 h. Then the reaction mixture was neutralized with 1N HCl at 0 $^{\circ}$ C and the resulting aqueous layer was repeatedly extracted with EtOAc. The organic layers were combined, washed with the brine solution, dried with Na₂SO₄ and purified on column (hexane/EtOAc, 30:70) to give morpholine 16 (65 mg, 65%) as a pale yellowish powder; m.p 156-157 $^{\circ}$ C; 1 H NMR: $^{\circ}$ = 8.04-8.03 (m, 1H), 7.90 (s, 1H), 7.30 (s, 1H), 7.18-7.17 (m, 1H), 6.38 (t, $^{\circ}$ J = 3.4 Hz, 1H), 6.13 (s, 1H), 4.92 (s, 2H), 2.88 (s, 6H); 13 C NMR (75 MHz): $^{\circ}$ D = 158.7, 136.7, 136.6, 126.7, 126.6, 119.7, 118.9, 118.1, 111.6, 107.5, 71.7, 38.3; IR (neat, cm⁻¹): 3142, 3127, 2927, 1700, 1519, 1462, 1391, 1291, 1241, 1173, 1078, 1016, 884, 755, 718; HR-ESIMS (m/z): Calcd. for C₁₃H₁₅N₄O₄S [M+H]⁺ 323.0809, found 323.0801; Calcd. for C₁₃H₁₄N₄O₄SNa [M+Na]⁺ 345.0628, found 345.0634.

1-Methyl-N-(prop-2-ynyl)-N-trityl-1H-pyrrole-2-carboxamide (S6): To an ice-cold solution of a pyrrole derivative S5 (≈85%, 1.10 g, 2.81 mmol) in dry THF (25 mL), NaH (60%, 146 mg, 3.65 mmol) was added and the solution was allowed to warm to 20 °C over a period of 10-15 min. The solution was cooled back to 0 °C and MeI (0.88 mL, 14.1 mmol) was added dropwise and stirring was continued for 1 h at r.t. The resulting mixture was guenched with NH₄Cl solution and extracted repeatedly with EtOAc. The organic extracts were combined, washed with brine solution, dried (Na₂SO₄) and concentrated to give a brown solid. The crude material was purified on silica gel (hexane/EtOAc, 70:30) to obtain methyl protected derivative **S6** (795 mg, 70%) as a white solid; m.p 200-202 °C; ¹H NMR: δ = 7.51-7.49 (m, 6H), 7.29-7.25 (m, 6H), 7.22-7.19 (m, 3H), 6.98 (dd, <math>J = 4.0, 2.2 Hz, 1H), 6.68 (t, J)= 2.1 Hz, 1H), 6.14 (dd, J = 4.0, 2.5 Hz, 1H), 4.47 (d, J = 2.3 Hz, 2H), 3.58 (s, 3H), 1.76 (t, J = 2.3 Hz, 1H); ¹³C NMR: $\delta = 166.5$, 143.3, 129.7, 127.9, 127.7, 127.0, 126.6, 112.7, 107.1, 80.7, 76.8, 70.6, 41.5, 35.8; IR (neat, cm⁻¹): 3311, 3128, 3056, 1620, 1414, 1337, 1249, 1116, 967, 904, 742, 697; HR-ESIMS (m/z): Calcd. for C₂₈H₂₄N₂ONa [M+Na]⁺ 427.1718, found 427.1798; Calcd. for C₂₈H₂₄N₂OK [M+K]⁺ 443.1520, found 443.1520.

N-(3-(1-(N,N-Dimethylsulfamoyl)-1H-imidazol-4-yl)prop-2-ynyl)-1-methyl-N-trityl
1H-pyrrole-2-carboxamide (17): 4-lodoimidazole (462 mg, 1.53 mmol), alkyne S6 (926 mg, 2.29 mmol), K₂CO₃ (422 mg, 3.06 mmol), Cul (15 mg, 0.08 mmol) and Pd(PPh₃)₂Cl₂ (27 mg, 0.04 mmol) were placed in a reaction flask. To the above reaction mixture dry THF (25 mL) was

added and N₂ was bubbled through it for 3-5 min. The heterogeneous mixture was

stirred at 55 °C overnight. The reaction mixture was cooled to r.t. and water (15 mL) was added and the layers separated. The aqueous layer was extracted with EtOAc. The combined organic extracts were dried (Na₂SO₄) and concentrated to brown solids. The crude product was purified by flash chromatography (CH₂Cl₂→hexane/EtOAc, 50:50) to give product 17 (566 mg, 64%) as a yellowish solid; m.p 189-191 °C; 1 H NMR: δ = 7.70 (d, J = 1.1 Hz, 1H), 7.54-7.52 (m, 6H), 7.29-7.26 (m, 6H), 7.20-7.18 (m, 3H), 6.99-6.98(m, 2H), 6.67 (t, J = 2.1 Hz, 1H), 6.14 (dd, J = 4.0, 2.5 Hz, 1H), 4.67 (s, 2H), 3.58 (s, 3H), 2.85 (s, 6H); 13 C NMR: δ = 166.8, 143.3, 136.2, 129.7, 127.9, 127.7, 127.3, 126.6, 125.6, 121.1, 113.0, 107.3, 88.2, 76.6, 74.6, 42.3, 38.3, 35.7; IR (neat, cm⁻¹): 3148, 3085, 2980, 2239, 1736, 1659, 1437, 1392, 1175, 1087, 960, 828, 777, 704; HR-ESIMS (m/z): Calcd. for $C_{33}H_{31}N_5O_3SNa$ $[M+Na]^+$ 600.2040, found 600.2057; Calcd. for $C_{33}H_{31}N_5O_3SK [M+K]^+616.1779$, found 616.1775.

(Z)-N,N-Dimethyl-4-((1-methyl-4-oxo-5-trityl-5,6-dihydro-1H-pyrrolo[3,2-c]pyridin-7(4H)-ylidene)methyl)-1H-imidazole-1-sulfonamide (18): The alkyne 17 (150 mg,

Ņ Me

DMF (3 mL) and stirred at 80 °C for 24 h. The reaction mixture was partitioned between H₂O and EtOAc. The organic extract was washed solution, dried (Na₂SO₄), concentrated, and purified by column chromatography (hexane/EtOAc, 40:60) to give pyridine derivative 18 (79 mg, 52%) as a pale yellow solid; m.p 172-176 °C; ¹H NMR: $\delta = 7.92$ (d, J = 1.1 Hz, 1H), 7.55 7.5 Hz, 6H), 7.23 (t, J = 7.6Hz, 6H), 7.18 (s, 1H), 7.14-7.12 (m, 3H), 6.56 (d, J = 2.9 Hz,

0.26 mmol) and Pd(OAc)₂ (9.0 mg, 0.013 mmol) were dissolved in dry

6H), 6.52 (d, J = 2.9 Hz, 1H), 6.40 (s, 1H), 4.05 (s, 2H), 3.15 (s, 3H), 2.93 (s, 6H); 13 C

NMR: δ = 165.9, 143.8, 140.2, 136.9, 134.2, 129.0, 127.6, 126.6, 126.1, 126.0, 120.0, 116.4, 116.3, 109.0, 76.0, 57.1, 38.4, 36.4; IR (neat, cm⁻¹): 3111, 3022, 2921, 1650, 1595, 1448, 1389, 1262, 1170, 1074, 961, 800, 721; HR-ESIMS (m/z): Calcd. for $C_{33}H_{32}N_5O_3S$ [M+H]⁺ 578.2220, found 578.2199; Calcd. for $C_{33}H_{31}N_5O_3SNa$ [M+Na]⁺ 600.2040, found 600.2051.

N,N-Dimethyl-4-(5-(methylamino)-3-oxo-2-tritylisoindolin-4-yl)-1H-imidazole-1-

sulfonamide (S7): N₂ was bubbled through solution of the alkyne 17 (150 mg, 0.259

mmol), AuCl(PPh₃) (13 mg, 0.025 mmol) in dry dioxane (15 mL) for 2-3 min and then the solution was heated to 115 °C in sealed tube for 24 h. The reaction mixture was concentrated and purified by column chromatography (hexane/EtOAc, 30:70) providing pale yellowish solid of aniline derivative **S7** (60 mg, 40%); ¹H NMR: δ = 7.94-7.92 (m, 2H), 7.66 (d, J = 8.6 Hz, 1H), 7.30-7.25 (m, 15H), 6.84 (s, 1H), 6.76 (d, J = 8.6 Hz, 1H), 4.27 (s, 2H), 2.96 (d, J = 4.6 Hz, 3H), 2.72 (s, 6H); ¹³C NMR: δ = 169.7, 151.2, 143.4, 140.4, 140.2, 134.9, 130.1, 127.7, 127.1, 125.5, 121.2, 114.1, 110.8, 108.4, 73.8, 54.9, 38.4, 30.4; IR (neat, cm⁻¹): 3307, 3254, 3126, 2923, 2234, 1673, 1601, 1444, 1372, 1278, 1170, 1084, 961, 907,

N,N-Dimethyl-4-(5-(methylamino)-3-oxoisoindolin-4-yl)-1H-imidazole-1-

Calcd. for $C_{33}H_{31}N_5O_3SNa [M+Na]^+600.2040$, found 600.2055.

sulfonamide (24): A solution of aniline derivative S7 (55.0 mg, 0.095 mmol) in

751, 723; HR-ESIMS (m/z): Calcd. for $C_{33}H_{32}N_5O_3S$ [M+H]⁺ 578.2220, found 578.2215;

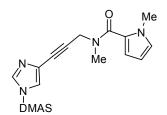
MeHN O NH O DMAS

TFA/CH₂Cl₂ (1 mL/2 mL) was stirred at r.t. for 3 h. Then the reaction mixture was concentrated, dissolved in EtOAc and partitioned with half saturated solution of NaHCO₃. The organic layer was dried (Na₂SO₄),

concentrated and purified on silica gel (EtOAc/MeOH, 98:2) obtaining amide **24** (30 mg, 94%) as a white solid; m.p 226-227 °C; ¹H NMR: δ = 7.96 (s, 1H), 7.64 (d, J = 8.6 Hz, 1H), 7.27 (s, 1H), 6.73 (d, J = 8.6 Hz, 1H), 4.35 (s, 2H), 2.90 (s, 3H), 2.87 (s, 6H); ¹³C NMR: δ = 151.3, 143.1, 139.7, 135.4, 125.1, 119.4, 114.7, 110.8, 109.6, 46.6, 38.3, 30.3, 29.7; IR (neat, cm⁻¹): 3305, 3175, 3066, 2920, 2439, 2320, 1668, 1597, 1487, 1383, 1279, 1164, 966, 822, 730; HR-ESIMS (m/z): Calcd. for C₁₄H₁₈N₅O₃S [M+H]⁺ 336.1125, found 336.1118; Calcd. for C₁₄H₁₇N₅O₃SNa [M+Na]⁺ 358.0944, found 358.0948.

N,N-Dimethyl-4-(1-methyl-4-oxo-5-trityl-1,4,5,6-tetrahydropyrrolo[3,2-c]azepin-8-

yl)-1H-imidazole-1-sulfonamide (25): A solution of alkyne 17 (100 mg, 0.173 mmol)



and AuCl₃ (5.24 mg, 0.017mmol) in dry dioxane (10 mL) was heated to 60 °C in sealed tube for overnight. The reaction mixture was concentrated purified by flash chromatography (hexane/EtOAc, 25:75)

providing azepin **25** in 43% yield; m.p 225-228 °C; ¹H NMR: δ = 7.97 (s, 1H), 7.39-7.38 (m, 6H), 7.25-7.21 (m, 6H), 7.17-7.13 (m, 4H), 6.61 (s, 2H), 6.52 (t, J = 7.5 Hz, 1H), 4.07-4.04 (m, 1H), 3.71-3.66 (m, 1H), 3.32 (s, 3H), 2.97 (s, 6H); ¹³C NMR: δ = 166.4, 144.2, 141.7, 136.9, 130.2, 129.5, 128.5, 127.6, 127.5, 126.3, 125.1, 124.8, 115.2, 111.4, 77.6, 45.6, 38.4, 36.9; IR (neat, cm⁻¹): 3133, 3122, 2915, 1637, 1593, 1492, 1454, 1393, 1260, 1171, 1081, 955, 914, 837, 729; HR-ESIMS (m/z): Calcd. for

 $C_{33}H_{32}N_5O_3S$ [M+H]⁺ 578.2220, found 578.2207; Calcd. for $C_{33}H_{31}N_5O_3SNa$ [M+Na]⁺ 600.2040, found 600.2058.

N-(3-(1-(*N*,*N*-Dimethylsulfamoyl)-1H-imidazol-4-yl)prop-2-ynyl)-*N*-1-dimethyl-1H-pyrrole-2-carboxamide (23): 4-lodoimidazole (343 mg, 1.14 mmol), alkyne (260 mg,

1.48 mmol), CuI (10.7 mg, 0.057 mmol) and Pd(PPh₃)₂Cl₂ (20.0 mg, 0.028 mmol) were placed in a reaction flask. To the above reaction mixture 1:1 mixture of dry THF (5 mL) and triethyl amine (5 mL) was added and N_2 was bubbled through it for 3-5 min.

The solution was stirred at 60 °C for 15 h. The reaction mixture was concentrated and purified by flash chromatography (hexane/EtOAc, $30:70\rightarrow$ EtOAc) to give product **23** (338 mg, 85%) as a pale yellowish solid; m.p 135-137 °C; ¹H NMR: δ = 7.83 (s, 1H), 7.34 (s, 1H), 6.70 (s, 1H), 6.57(s, 1H), 6.08 (t, J = 3.1 Hz, 1H), 4.54 (s, 2H), 3.79 (s, 3H), 3.23 (s, 3H), 2.87 (s, 6H); ¹³C NMR (75 MHz): δ = 163.8, 136.6, 126.9, 125.7, 124.5, 121.0, 113.8, 107.1, 86.5, 38.3, 36.0; IR (neat, cm⁻¹): 3132, 3117, 2961, 1618, 1532, 1456, 1380, 1324, 1243, 1171, 1085, 958, 841, 722; HR-ESIMS (m/z): Calcd. for $C_{15}H_{20}N_5O_3S$ [M+H]⁺ 350.1281, found 350.1283; Calcd. for $C_{15}H_{19}N_5O_3SNa$ [M+Na]⁺ 372.1101, found 372.1119.

4-(1,5-Dimethyl-4-oxo-1,4,5,6-tetrahydropyrrolo[3,2-c]azepin-8-yl)-*N*,*N*-dimethyl-1H-imidazole-1-sulfonamide (26) and 4-(1,7-Dimethyl-8-oxo-1,6,7,8-tetrahydropyrrolo[2,3-c]azepin-4-yl)-*N*,*N*-dimethyl-1H-imidazole-1-sulfonamide (27): A solution of alkyne 23 (200 mg, 0.57 mmol) and AuCl₃ (17.3 mg, 0.057mmol) in

dry dioxane (15 mL) was heated to 65 °C in sealed tube for overnight. The reaction mixture was concentrated purified by flash chromatography (hexane/EtOAc, 30:70→ EtOAc) providing two azepins **26** and **27**.

Azepine 26 (70 mg, 35%, pale yellowish solid): m.p 229-232 °C; ¹H NMR: δ = 7.89 (s, 1H), 7.00 (s, 1H), 6.74 (d, J = 2.9 Hz, 1H), 6.69 (d, J = 2.9 Hz, 1H), 6.58 (t, J = 7.6 Hz, 1H), 3.74 (d, J = 7.6 Hz, 1H), 3.35 (s, 3H), 3.16 (s, 3H), 2.85 (s, 6H); ¹³C NMR: δ = 166.0, 141.3, 136.8, 130.6, 128.6, 125.3, 125.2, 123.8, 115.1, 109.9, 47.3, 38.3, 36.7, 35.4; IR (neat, cm⁻¹): 3131, 3088, 2955, 1603, 1556, 1496, 1379, 1262, 1169, 1087, 959, 861, 727; HR-ESIMS (m/z): Calcd. for $C_{15}H_{20}N_5O_3S$ [M+H]⁺ 350.1281, found 350.1283; Calcd. for $C_{15}H_{19}N_5O_3SNa$ [M+Na]⁺ 372.1101, found 372.1115.

Azepine 27 (82 mg, 41%, pale yellowish solid): m.p 212-215 °C; ¹H NMR: δ = 7.89 (d, *J* = 1.3 Hz, 1H), 7.25 (s, 1H), 6.77 (d, *J* = 2.9 Hz, 1H), 6.70 (t, *J* = 7.0 Hz, 1H), 6.31(d, *J* = 2.9 Hz, 1H), 3.97 (s, 3H), 3.78 (d, *J* = 7.0 Hz, 1H), 3.15 (s, 3H), 2.84 (s, 6H); ¹³C NMR: δ = 162.2, 142.1, 136.7, 132.7, 127.3, 127.1, 124.5, 120.1, 115.3, 106.7, 47.3, 38.3, 36.7, 34.7; IR (neat, cm⁻¹): 3137, 3041, 2924, 1727, 1619, 1481, 1386, 1262, 1174, 1099, 959, 821, 721; HR-ESIMS (m/z): Calcd. for C₁₅H₂₀N₅O₃S [M+H]⁺ 350.1281, found 350.1286; Calcd. for C₁₅H₁₉N₅O₃SNa [M+Na]⁺ 372.1101, found 372.1118.

(*Z*)-*N*,*N*-Dimethyl-4-((1-oxo-2,3-dihydropyrrolo[1,2-a]pyrazin-4(1H)-ylidene)methyl)-1H-imidazole-1-sulfonamide (28): The pyrazine derivative 15 (800 mg, 1.42 mmol)

was dissolved in mixture of CH₂Cl₂ (5 mL), TFA (7 mL) and H₂O (2.5 mL) and stirred for 1.5 h and then it was concentrated. The residue was dissolved in CH₂Cl₂ and neutralized with NaHCO₃ solution. The organic layer was washed with brine solution, dried (Na₂SO₄)and purified on column (EtOAc→EtOAc/MeOH, 90:10) to give amide 28 (355 mg, 78%) as a white solid; m.p. 172-175 °C; ¹H NMR: δ = 7.87 (s, 1H), 7.59 (s, 1H), 7.47-7.46 (m, 1H), 7.18 (s, 1H), 6.97-6.96 (m, 1H), 6.26 (t, J = 3.2 Hz, 1H), 5.99 (s, 1H), 4.19 (s, 2H), 2.84 (s, 6H); ¹³C NMR: $\delta = 161.3$, 137.2, 136.5, 129.4, 124.6, 124.1, 116.6, 114.6, 110.8, 106.3, 47.6, 38.3; IR (neat, cm⁻¹): 3294, 3191, 3127, 3059, 2928, 1659, 1556, 1431, 1387, 1230, 1173, 1081, 999, 843, 725, 668; HR-ESIMS (m/z): Calcd. for C₁₃H₁₆N₅O₃S [M+H]⁺ 322.0968, found 322.0963; Calcd. for $C_{13}H_{15}N_5O_3SNa$ [M+Na]⁺ 344.0788, found 344.0794.

N,N-Dimethyl-4-((1-oxo-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazin-4-yl)methyl)-1H-

imidazole-1-sulfonamide (29): The olefin 28 (100 mg, 0.31 mmol) was subjected to

reduction by dissolving it in ethanol (4 mL) in presence of 10% Pd/C

(30 mg, 0.03 mmol) with stirring at r.t. under 1 atm H_2 (balloon) for 5 h.

The reaction mixture was filtered through a pad of Celite and the

filtrate was concentrated. The residue was purified on silica gel (EtOAc/MeOH, 90:10) to

provide pyrazine derivative **29** (75 mg, 75%) as a white powder; 1 H NMR: δ = 7.86 (s,

1H), 6.91 (dd, J = 4.0, 1.4 Hz, 1H), 6.76 (s 1H), 6.55-6.54 (m, 1H), 6.11-6.10 (s, 1H),

5.84 (brs, 1H), 4.64-4.62 (m, 1H), 3.92 (dd, J = 12.6, 4.6 Hz, 1H), 3.53-3.50 (m, 1H), 3.11-3.07 (m, 1H), 3.04-3.00 (m, 1H), 2.81 (s, 6H); ¹³C NMR: δ = 161.2, 139.1, 136.9, 123.3, 123.2, 115.6, 113.9, 109.4, 53.6, 44.2, 38.2, 32.3.

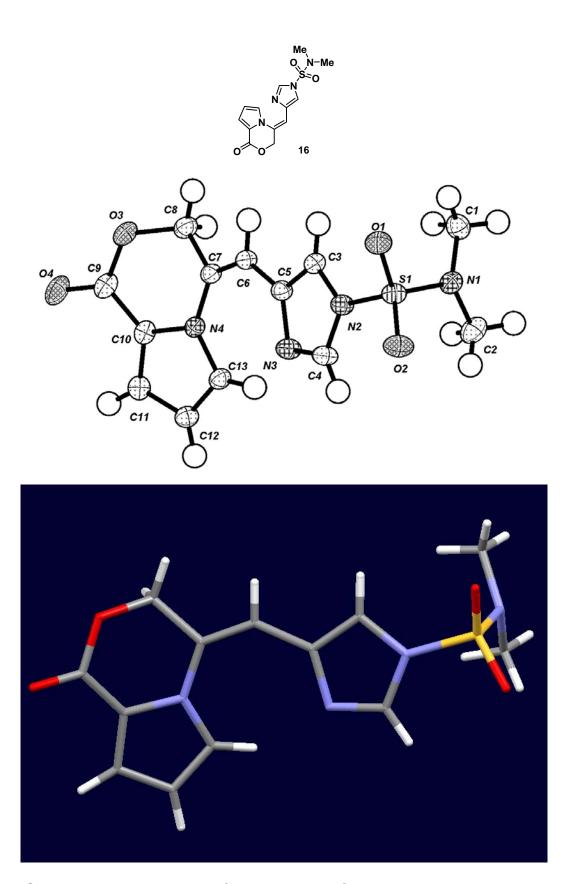
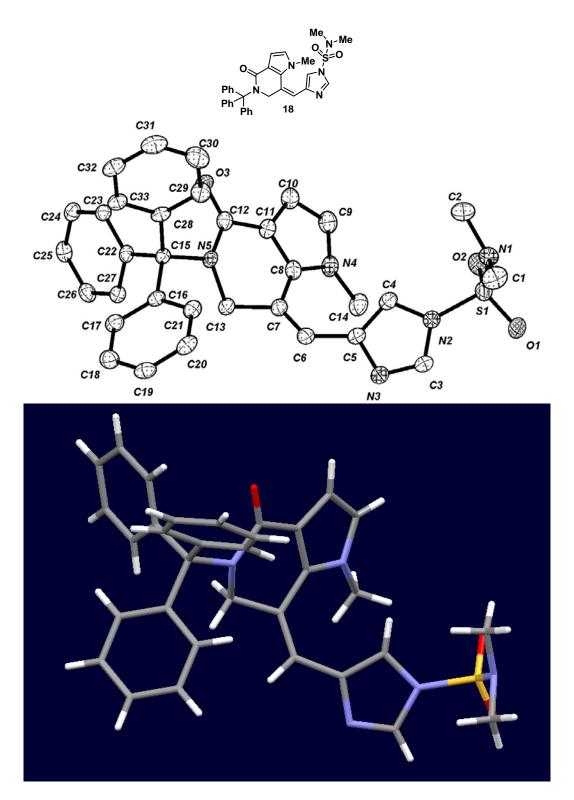
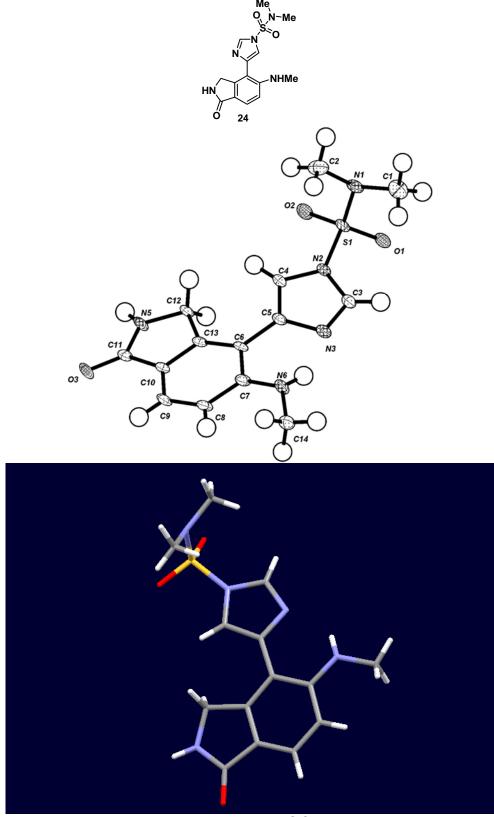
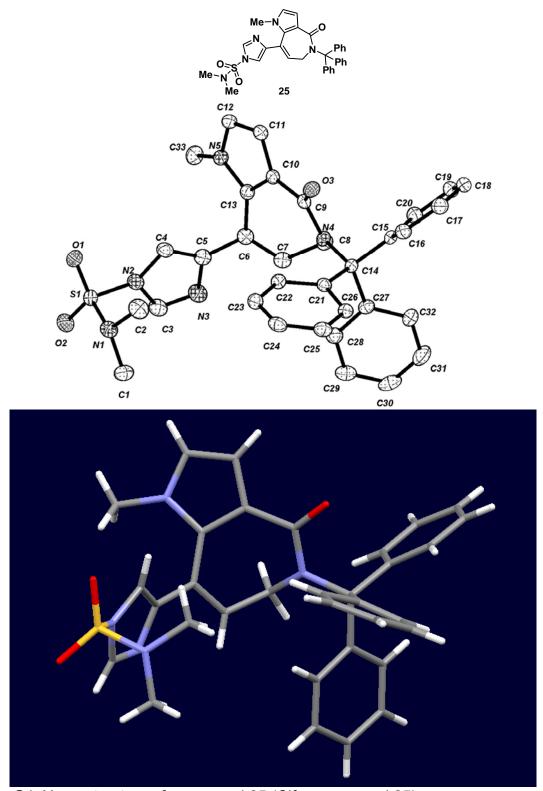
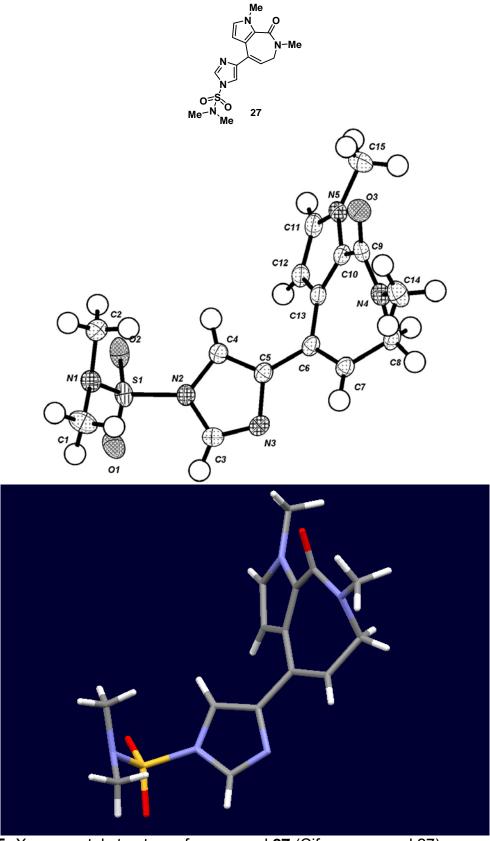
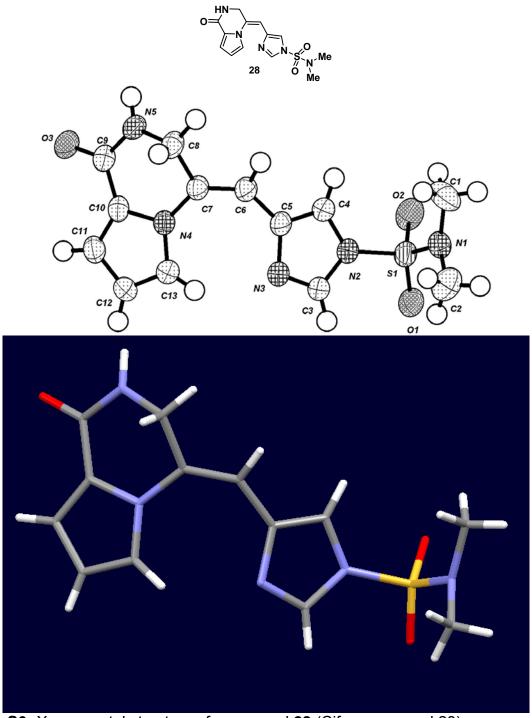
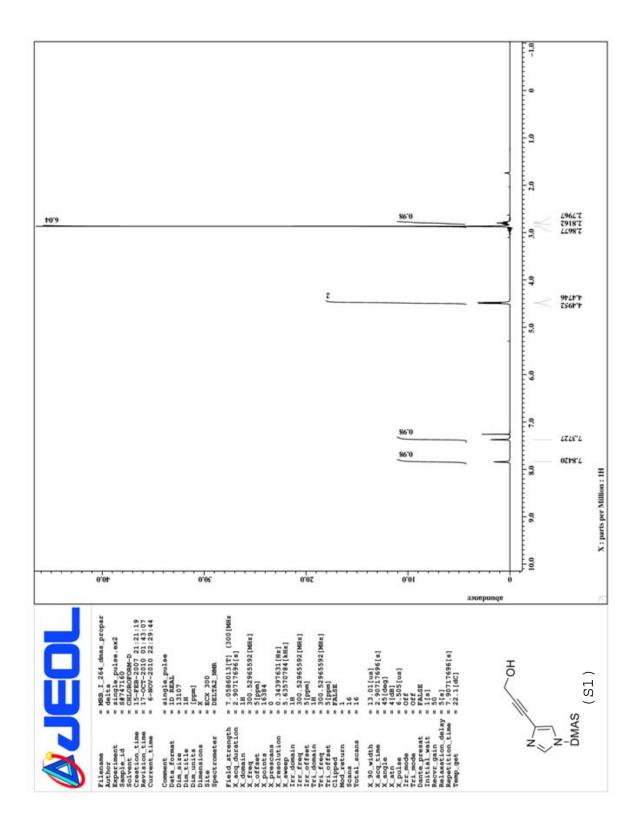


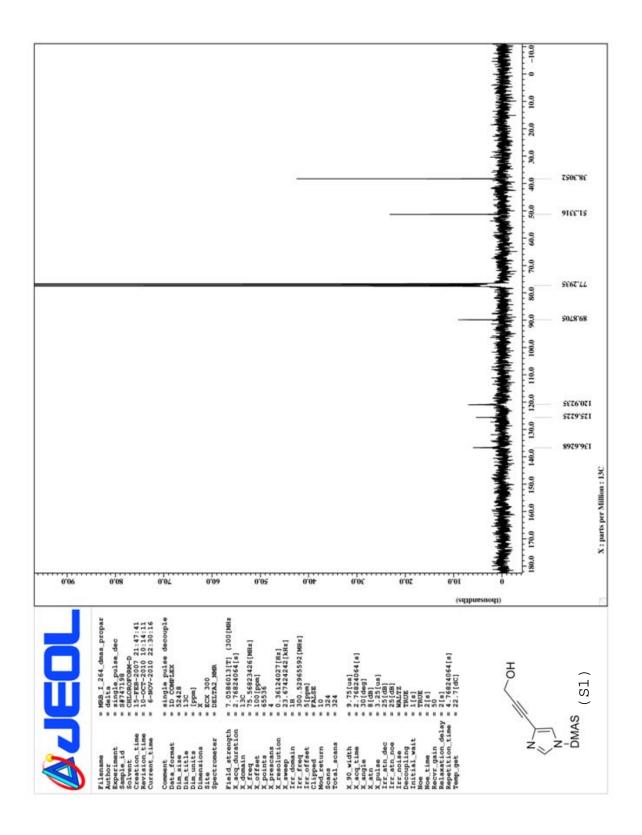
Figure S1: X-ray crystal structure of compound 16 (CIF = compound 16)

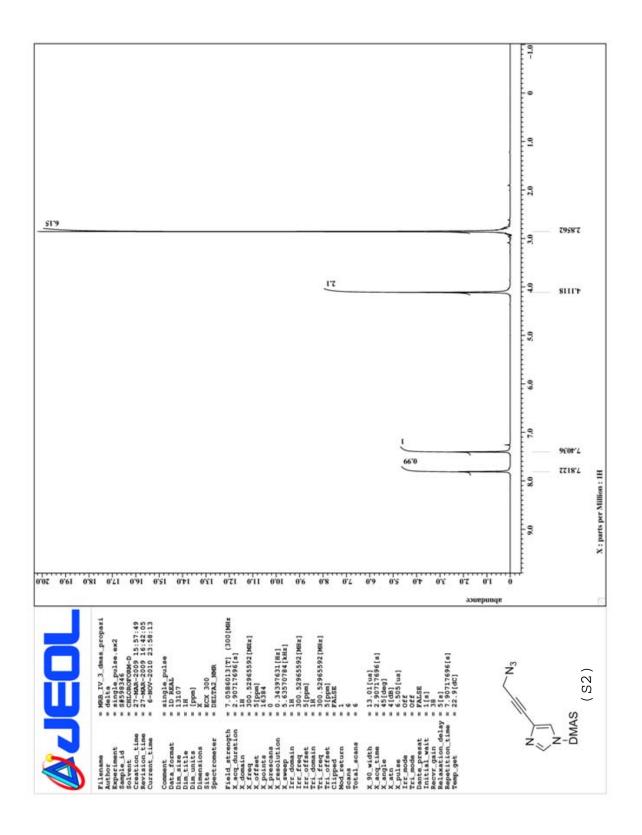




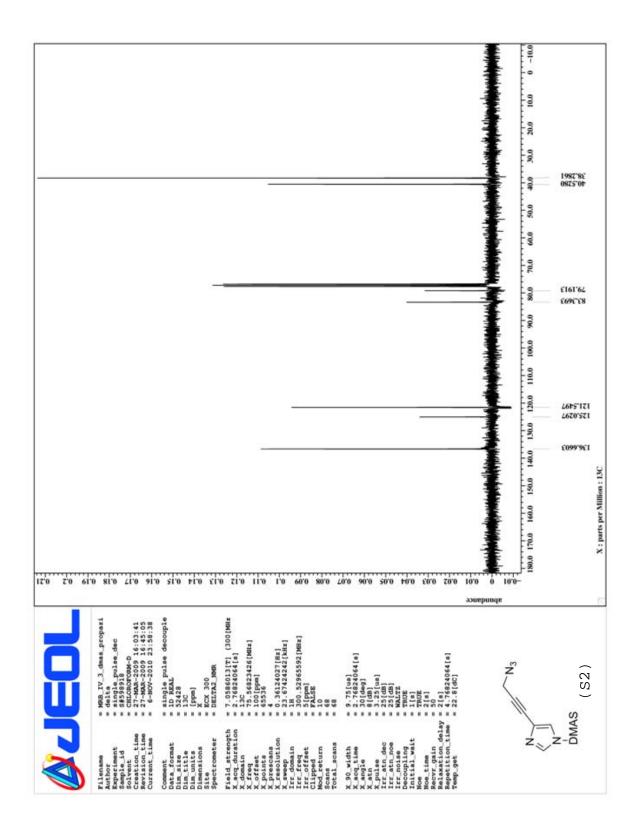

Figure S2: X-ray crystal structure of compound **18** (Cif = compound 18)

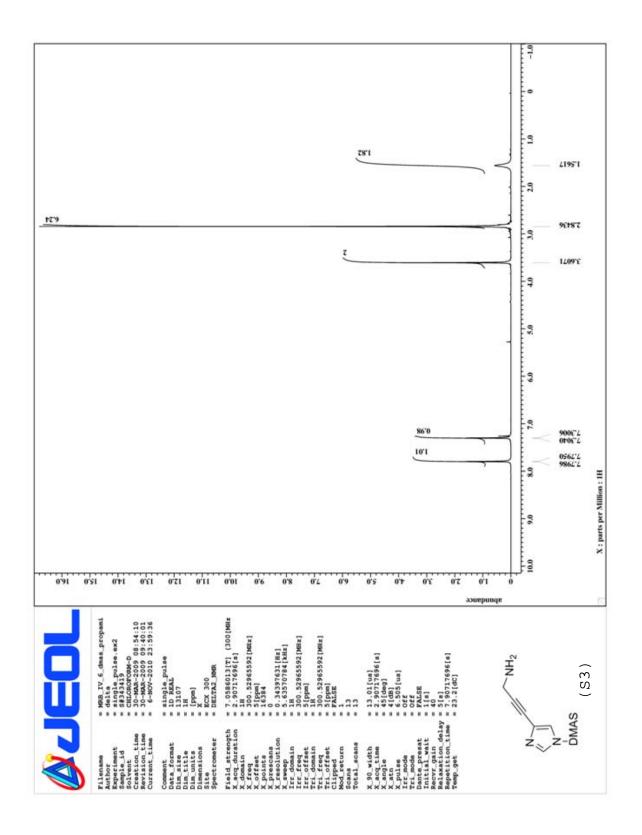

Figure S3: X-ray crystal structure compound **24** (Cif = compound 24)


Figure S4: X-ray structure of compound 25 (Cif = compound 25)




Figure S5: X-ray crystal structure of compound **27** (Cif = compound 27)




Figure S6: X-ray crystal structure of compound **28** (Cif = compound 28)

