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Conformational analysis: 
 

Solvent titration studies, when upto 33% (v/v) of DMSO-d6 was added to the CDCl3 

solution, showed that for the monomer (1), the change in the amide proton chemical shift  

(∆δNH) is 0.67ppm. This does not provide clear cut picture about its involvement in H-

bonding. From the studies on the dimer (2), on the other hand, a clearer picture emerges. 

The value of δNH(2)  > 7.07 ppm  supports its likely participation in H-bonding. Solvent 

titration studies  (Figure S1), where both the amide protons showed ∆δNH < 0.20 ppm, 

emphatically support the participation of both theamide protons in H-bonding. The  

couplings, 3
JNH-CβH, are quite distinctive, with one large value (> 8.0 Hz) and another 

rather small (< 2 Hz), thus providing strong evidence for an anti-periplanar arrangement 

of NH and CβH, corresponding to a value of ~ ± 120° for the torsion angle φ (C(O)-N-

Cβ-Cα). Because of the absence of protons at the Cβ, the information on torsion angle θ 

(N-Cβ-Cα-CO) had to be obtained through the nOe correlations only. Intra-residue nOe 

cross peaks, NH/C3H and C3H/CβH(pro-R) for both the residues, provided adequate support 

for θ ~ - 60°. Additionally, NH(1)/C3H(1) and NH(2)/C1H(1) enabled us to deduce that 
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ψ (Cβ-Cα-CO-N) is constrained to ~ ± 180°. These observations indicating presence of a 

rigid backbone in 2, were the basis to extend the studies to the larger oligomers 3 and 4. 

 

Resonance Assignments 

The resonance assignment in oligomers with one type of residue is difficult due to the 

likely overlap. However in the present scenario, we were able to achieve the task without 

much difficulty. The assignments were carried out with the help of TOCSY and 

HSQC/HMBC experiments. It is straight forward to assign Boc-NH, as it resonates at 

higher field ~ 5 - 6 ppm. Using Boc-NH to begin with, TOCSY experiment was used to 

assign protons at Cβ (we have stereo-specific assignments for both these protons and the 

rational has been included in the text already). HSQC experiment in turn assigns the Cβ, 

which shows a cross peak in the HMBC experiment with C3H in the sugar side chain. 

C3H shows a weak correlation with the C2H in the TOCSY spectrum (due to very small, 

not measurable 3
JC2H-C3H). The C1H proton was further assigned from the TOCSY 

correlation with the C2H proton. This thus completes the assignments within a residue, 

the first residue in this case. The HSQC experiment provides complete 13C assignments 

(excluding the carbonyl carbon). Intra residue carbonyl carbon was assigned from their 

HMBC correlation with CβHs. Sequential resonance assignments were achieved utilizing 

the correlation between C(O) of the preceding residue with HN of the following residue. 

Thus having assigned the amide proton of the second residue, we can follow the 

assignment right through the peptide chain. 
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Figure S1. Solvent Titration Plots for 1-4 (X-axis shows the amount of DMSO added to 

600 µL of CDCl3 solution). 
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Figure S2. 

1H NMR Spectrum of 6 (300 MHz, CDCl3, 295K). 
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Figure S3. 

13C NMR Spectrum of 6 (75 MHz, CDCl3, 295K).  
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Figure S4. 

1H NMR Spectrum of 7 (400 MHz, CDCl3, 295K). 
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Figure S5. 

13C NMR Spectrum of 7 (75 MHz, CDCl3, 295K) 
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Figure S6. 

1H NMR Spectrum of 8 (300 MHz, CDCl3, 295K). 
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Figure S7. 

13C NMR Spectrum of 8 (75 MHz, CDCl3, 295K). 
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Figure S8. 

1H NMR Spectrum of 9 (500 MHz, CDCl3, 295K). 
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             Figure S9. 
13C NMR Spectrum of 9 (75 MHz, CDCl3, 295K). 
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Figure S10. 
1H NMR Spectrum of 12 (500 MHz, CDCl3, 295K). 
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Figure S11. 

13C NMR Spectrum of 12 (75 MHz, CDCl3, 295K). 
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Figure S12. 
1H NMR Spectrum of 13 (500 MHz, CDCl3, 295K). 
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Figure S13. 
13C NMR Spectrum of 13 (75 MHz, CDCl3, 295K). 
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Figure S14. 
1H NMR Spectrum of 14 (400 MHz, CDCl3, 295K). 
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Figure S15. 

13C NMR Spectrum of 14 (75 MHz, CDCl3, 295K). 
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Figure S16. 

1H NMR Spectrum of 1 (300 MHz, CDCl3, 295K). 
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Figure S17. 

13C NMR Spectrum of 1 (75 MHz, CDCl3, 295K). 
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Figure S18. 
1H NMR Spectrum of 16 (300 MHz, CDCl3, 295K). 
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Figure S19. 
13C NMR Spectrum of 16 (75 MHz, CDCl3, 295K). 
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  Figure S20. 

1H NMR Spectrum of 17 (300 MHz, CDCl3, 295K). 
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  Figure S21. 

13C NMR Spectrum of 17 (75 MHz, CDCl3, 295K). 
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 Figure S22. 

1H NMR Spectrum of 18 (300 MHz, CDCl3, 295K). 
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  Figure S23. 

13C NMR Spectrum of 18 (75 MHz, CDCl3, 295 K). 
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Figure S24. 
1H NMR Spectrum of peptide 2 (600 MHz, CDCl3, 288K). 
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Figure S25. 

13C NMR Spectrum of peptide 2 (150 MHz, CDCl3, 288K). 
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Figure S26. 
1H NMR Spectrum of peptide 3 (600 MHz, CDCl3, 278K). 
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Figure S27. 
13C NMR Spectrum of peptide 3 (150 MHz, CDCl3, 278K). 
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Figure S28. TOCSY Spectrum of peptide 3 (600 MHz, CDCl3, 278K). 
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Figure S29. ROESY Spectrum of peptide 3 (600 MHz, CDCl3, 278K). 
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Figure S30. HSQC Spectrum of peptide 3 (600 MHz, CDCl3, 278K). 
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Figure S31. (A) HMBC Spectrum and (B) expansion of peptide 3 (600 MHz, CDCl3, 
278K). 
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Figure S32. 
1H NMR Spectrum of peptide 4 (600 MHz, CDCl3, 278K). 
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Figure S33. 
13C NMR Spectrum of peptide 4 (150 MHz, CDCl3, 278K). 
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Figure S34. TOCSY Spectrum of peptide 4 (600 MHz, CDCl3, 278K). 
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Figure S35. ROESY Spectrum of peptide 4 (600 MHz, CDCl3, 278K). 
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Figure S36. HSQC Spectrum of peptide 4 (600 MHz, CDCl3, 278K). 
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Figure S37. HMBC Spectrum of peptide 4 (600 MHz, CDCl3, 278K). 
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Figure S38. 
1H NMR Spectrum of peptide 4 (600 MHz, CD3OD, 288K) as a function of 

time: a) 0 h; b) 1 h; c) 2 h; d) 8 h; e) 21 h; f) 45 h; g) 69 h; h) 117 h. 
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Figure S39. NMR spectra of peptide 4 in CDCl3 as a function of temperature. 
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Figure S40.  NMR spectra of peptide 4 as a function of concentration 
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Molecular Dynamics (MD): Model building and Restrained Molecular dynamics 

simulations on 3 and 4 were carried out using the Insight-II (97.0)/Discover program on a 

Silicon Graphics O2 workstation. The CVFF force field with default parameters was used 

throughout the simulations using a distance dependent dielectric constant with ε = 4.7 

(dielectric constant of deuterated chloroform).The distance constraints were derived from 

the volume integrals obtained from the ROESY spectra using a two-spin approximation 

and a reference distance of 1.8 Å for the geminal proton’s CβH and Cβ’H in backbone. 

The upper and lower bound of the distance constraints have been obtained by enhancing 

and reducing the derived distance by 10% (See Tables S2 for peptide 3 and Table S3 for 

peptide 4). The dihedral angle constraints used for both peptides 3 and 4 are listed in the 

Table S1. Backbone dihedral angles for the last residue were not constrained, as there 

was inadequate support from the NMR data. Distance and the dihedral angle constraints 

were applied with a force constant of 15 kcal/ Å and 5 kcal/ radian in the form of flat 

bottom potential. First, minimizations were done with steepest descent, followed by 

conjugate gradient methods for a maximum of 1000 iterations each or RMS deviation of 

0.001 kcal/ mol, whichever was earlier. The energy-minimized structures were then 

subjected to MD simulations at a temperature of 300 K. The molecules were initially 

equilibrated for 1 ps and subsequently subjected to a 2 ns simulated annealing protocol. 

Starting from 300 K they were heated to 1500 K in four steps increasing the temperature 

by 300 K and simulating for 2.5 ps at each step, and then subsequently cooled back to 

300 K in 4 steps decreasing the temperature by 300 K in each step again simulating for 

2.5 ps at each step. After this, a structure was saved and the above process was repeated 

100 times. The 100 structures generated so were energy minimized with the above 
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protocol. From these 100 energy minimized structures, only twenty of the best possible 

structures were superimposed for display. For peptide 3, the backbone and heavy atoms 

RMSD, are 0.56Å and 1.29Å respectively. The corresponding values for peptide 4 are 

1.37 Å and 1.44 Å. 

 

Table S1. Dihedral angle constraints used for peptide 3 and 4 (except for the 

residue at the C-terminal) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dihedral angle  (°) 

φ -120 ± 20 

θ -60 ± 20 

ψ 180 ± 20 

C2H-C2-C3-C3H  -90 ± 20 
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Table S2. Distance constraints used in the MD calculations for peptide 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Residue 

 

Atom Residue Atom Upper Bound Lower Bound 

1 NH 1 C3H 3.58 2.93 

2 NH 2 C3H 3.47 2.84 

2 NH 1 C1H 3.70 3.03 

2 CβH(pro-R) 2 C3H 2.60 2.13 

3 NH 2 C1H 3.74 3.06 

3 NH 3 C3H 3.47 2.84 

3 CβH(pro-R) 3 C3H 2.61 2.14 

4 NH 3 C1H 3.54 2.89 

4 NH 4 C3H 3.49 2.85 

4 CβH(pro-R) 4 C3H 2.71 2.20 
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Table S3. Distance constraints used in the MD calculations for peptide 4 

 

 
 
 
 
 
 
 
 
 
 
 

 

Residue 

 

Atom Residue Atom Upper Bound Lower Bound 

1 NH 1 C3H 3.56 2.91 

2 NH 2 C3H 3.49 2.85 

2 NH 1 C1H 3.92 3.21 

3 NH 2 C1H 3.71 3.03 

3 NH 3 C3H 3.40 2.79 

3 CβH(pro-R) 3 C3H 2.74 2.24 

4 NH 3 C1H 3.81 3.12 

4 NH 4 C3H 3.55 2.91 

4 CβH(pro-R) 4 C3H 2.79 2.28 

5 NH 4 C1H 3.92 3.21 

5 NH 5 C3H 3.54 2.89 

6 NH 5 C1H 3.82 3.13 

6 NH 6 C3H 3.37 2.76 

6 CβH(pro-R) 6 C3H 2.72 2.22 
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CD Spectra of peptides 3 and 4. The CD spectra of 0.2 mM solution in methanol for 

both 3 and 4  show a narrow and another broad shallow negative maxima at ~192 nm and 

at about 215 nm, respectively, alongwith a maxima for 4 at ~ 195, while the [θ] values 

are zero at about 194 and 200 nm for 4. Though the molecular ellipticities θ per residue 

are rather small, still suggesting there is secondary structures for these oligomers.  

 
 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure S41. CD spectra for peptides 3 and 4 in MeOH. 
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