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Part I: Procedure for retrieving κ and quantum capacitance  

Denoting the total gate capacitances of two graphene devices respectively with CTG and CTG
’, 

their oxide capacitances with COX and COX
’ (given by 0 /OX oxC tκε= , with tox being the 

thickness of the Y2O3 film), we have the following set of two equations for the two unknown κ 

and CQ 
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where 0ε  is the vacuum dielectric constant and κ is assumed to be independent of VTG. The two 

unknowns can therefore be solved analytically to yield 
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Now the unknown κ and ( )Q chC V are expressed in terms of the direct measurable parameters, 

i.e. oxt from AFM measurement, and ( )TG TGC V  from CV measurement. The point to note here 

is that the same Vch corresponds to the same charge Q in the graphene channel which can be 

obtained from experimental ( )TG TGC V  curves by integrating it. At any given Vch , ( )TG TGC V  
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and ' '( )TG TGC V  can be determined as follows: 

1. Obtaining charge Q as a function of the gate voltage for the two devices by integrating the 
CTG-VTG curves as shown in Figure 2d.  

2. Obtaining TGV  and '
T GV  for the same Q value as shown in Figure 2d.  

3. Getting the corresponding TGC  and '
TGC values from the measured ( )TG TGC V  and 

' '( )TG TGC V  curves as in Figure 2b, these obtained values of TGC  and '
TGC  correspond to 

the same Vch and charge Q and can be used to obtain Vch independent κ  using equation 
(S2).  
 

It is worth noting that the quantum capacitance near the Dirac point varies from sample to 

sample owing to the fluctuations in the local density of state residue induced by charged 

impurities on graphene or in surroundings. Thus for real devices, equation (S2) will become 

invalid near the Dirac point. But we expect that equation (S2) gives a good description of 

graphene devices at relatively large gate voltage, where the gate effect largely dominants over the 

effect of residue charges. 

 

Part II: Derivation of equation (5)  

Now we will prove that VTG, Dirac linearly depend on VBG following equation (5). Starting from the 

capacitive equivalent circuit (Figure 3b), [35] we can obtain the total charge Qch induced in the 

graphene channel by the top and bottom gates 

( ) ( )ch OX TG ch BG BG chQ C V V C V V= − − − −             .    (S3)         

On the other hand, because of the charge neutrality condition, the same amount of charge (but 

with opposite sign) is also induced via the quantum capacitance  

ch Q chQ C V= −                                                . (S4) 

Due to the finite impurities in graphene channel, the Dirac point voltages for both the top and back 

gates are generally not equal to zero. In a general case we can define effective gate voltages *
TGV  

and *
BGV  to replace TGV  and BGV  in equation (S3)  

  * 0
,TG TG TG DiracV V V= −

                                         (S5) 
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* 0

,BG BG BG DiracV V V= −
                                      ,     (S6) 

where 0
,TG DiracV  (or 0

,BG DiracV ) is the top (or back) gate voltage at the Dirac point under a certain 

fixed back (or top) gate voltage. At the Dirac point of the top gate, Vch is equal to zero, and then 

Qch is also zero. Substituting equation (S5)–(S6) into (S3), we then obtain the VBG dependent 

Dirac point voltage 

  ( )0 0
, , ,( ) BG

TG Dirac BG TG Dirac BG BG Dirac
OX

CV V V V V
C

= − −
,                        (S7) 

which is often rewritten as  

,/ /OX BG BG TG DiracC C V V= −Δ Δ .                   (S8) 

 
Part III: Extracting mobility of Graphene FET 
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Figure S1： Total channel resistance Rtot vs VTG for device 1 under various VBG, the data were 
originated from Figure 3 (a). Circles represent experimental data, and lines indicate the fitting 
result. 
 

The electron mobility µe and hole mobility µh of a graphene device were extracted according to 

a previously reported model, 11  
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where, /total ds dsR I V=  is the total resistance of the graphene FET including the contact 

resistance Rc and the channel resistance, L is the length of the top gate and W is the width of the 

graphene channel covered by top gate, n and n0 are the top gate modulated carrier density and the 

residual density respectively. The Fermi velocity was chosen as 1.15×10
6 m/s. The fitting results 

were shown in Figure S1 with the residual concentration n0=4.5×1011/cm2, and the mobility for 

electrons and holes were extracted to be about 1900 cm2/Vs and 1800 cm2/Vs respectively.  


