Supporting Information for

Chiral Organic Contact Ion Pairs in Metal-free Catalytic Asymmetric Allylic Substitutions

Magnus Rueping,* Uxue Uria, Ming-Yuan Lin, Iuliana Atodiresei
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen (Germany)
Magnus.Rueping@rwth-aachen.de
Table of Contents
General Methods S2
Catalytic Metal-Free Allylic Substitution S3
Table S1. Preliminary Evaluation of Brønsted Acid Nature, Catalyst Loading andTemperature in Asymmetric Allylic SubstitutionS3
Table S2. Solvent and Molecular Sieves Effect on Asymmetric Allylic Substitution S3
Functionalization of the Products S4
Figure S1. EDX of Catalyst 5a S5
Representative Procedure for Enantioselective Allylic Substitution S6
Characterization of Products 4a-o S6
General Procedure for the Reduction of $\mathbf{4 a}$ S13
Characterization of Product 7a S13
Determination of the Absolute Configuration S13
NMR Spectra of Compounds 4a-o and 7a S16
Chiral SFC Data of Compounds 4a-o, 7a and 3a S32

General Methods. Unless otherwise noted, all commercially available compounds were used as received. Solvents for chromatography were technical grade and distilled prior to use. Toluene used in reactions was analytical grade. Analytical thin-layer chromatography (TLC) was performed on Merck silica gel 60 aluminum plates with F-254 indicator, visualized by UV irradiation. Column chromatography was performed using MN silica gel (particle size 0.040-0.063 mm). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR were recorded on a Mercury 300 or Inova 400 spectrometer in CDCl_{3} or $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ with residual proton signal of the deuterated solvents as the internal reference (δ ${ }_{\mathrm{H}}=7.26 \mathrm{ppm}$ and $\delta_{\mathrm{C}}=77.0 \mathrm{ppm}$ for CDCl_{3} and $\delta_{\mathrm{H}}=5.32 \mathrm{ppm}$ and $\delta_{\mathrm{C}}=53.8 \mathrm{ppm}$ for $\mathrm{CD}_{2} \mathrm{Cl}_{2}$). Data are reported in the following order: chemical shift (δ) in ppm; multiplicities are indicated s (singlet), d (doublet), t (triplet), dd (doublet of doublets), td (triplet of doublets), qt (quartet of triplets), ddd (doublet of doublet of doublets), m (multiplet); coupling constants (J) are in Hertz (Hz). ${ }^{13} \mathrm{C}$ NMR spectra were acquired on a broad band decoupled mode. Mass spectra was conducted on GC-MS Shimadzu QP2010 (column: Equity ${ }^{\circledR}$-5, length \times I.D. $30 \mathrm{~m} \times 0.25 \mathrm{~mm}, \mathrm{~d}_{\mathrm{f}}$ $0.25 \mu \mathrm{~m}$, lot \# 28089-U, Supelco). HRMS were measured on a Finnigan MAT 95 or LTQ Orbitrap XL spectrometer. IR spectra were measured in a Perkin-Elmer ATR apparatus and are reported in terms of frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. Optical rotations were measured on a Perkin-Elmer 241 polarimeter. The enantiomeric excess (ee) of the products was determined by Supercritical Fluid Chromatography (SFC) analysis using Daicel Chiralpak IA, Daicel Chiralcel ODH or OJH and (S,S)-Whelk-01 columns. The chiral SFC methods were calibrated with the corresponding racemic mixtures. The CD-spectrum for the 2 H -chromene 4 m was recorded on a circular dichroism spectrometer (AVIV Model 62DS) at room temperature in acetonitrile.

The starting materials 3a-o were readily prepared by using established Claisen-Schmidt condensation and subsequent alkylation reactions (1-3). The two enantiomers of 3a have been separated by preparative SFC on a Chiralpack IA column $250 \times 20 \mathrm{~mm}$, CO2 (60 g) and $12 \% \mathrm{n}$ -Hexan:iso-Propanol 1:1.

Catalytic Metal-free Allylic Substitution

Table S1. Preliminary Evaluation of Brønsted Acid Nature, Catalyst Loading and Temperature in Asymmetric Allylic Substitution.

Entry	Catalyst Ar	Catalyst (mol\%)	Temp $\left({ }^{\circ} \mathbf{C}\right)$	\mathbf{t} $\mathbf{(h)}$	Yield (\%)	ee $(\%)$
1	phenyl (6)	10	rt	312	16	0
2	phenyl (5a)	10	35	0.5	71	34
3	phenyl (5a)	10	rt	1.5	97	36
4	phenyl (5a)	5	0	13	77	56
5	biphenyl (5k)	10	rt	1.5	77	26
6	biphenyl (5k)	5	rt	4	83	22
7	biphenyl (5k)	2	rt	312	54	1

Table S2. Solvent and Molecular Sieves Effect on Asymmetric Allylic Alkylation.

Functionalization of the Products.

We have also gained some insight into the ability of the chromene structure to undergo chemical modifications. In this respect, the presence of a $\mathrm{C}-\mathrm{C}$ double bond in the chromene skeleton provides great flexibility for further structural modifications. For instance, compounds containing a chroman scaffold, which are chemotherapeutic (antiviral) agents (4), are readily available by a simple reduction from adducts 4 (Scheme 1S). For example during the reduction of 4a a new stereogenic center is formed in a diastereoselective way, affording the flavan derivative 7a in an excellent yield.

Scheme 1S. Reduction of chromene $\mathbf{4 a}$ to the corresponding chromane 7a.

Probe: 1
Typ: Vorgabe
ID:

Projekt: Guest 21.07.10
Besitzer: SEM
Bereich: 1_01.tif

Spektrumverarbeitung:
Keine Peaks weggelassen
Verarbeitungsoption : Alle Elemente analysiert (Normalisiert)
Anzahl Iterationen $=6$

Standard :
C CaCO3 1-Jun-1999 12:00 AM
O SiO2 1-Jun-1999 12:00 AM
F MgF2 1-Jun-1999 12:00 AM
P GaP 1-Jun-1999 12:00 AM
S FeS2 1-Jun-1999 12:00 AM

Element	Offstl. Konz.	Intensităt Korrektur	Massen\%	Massen\% Sigma	Atom\%
C K	213.20	0.7775	63.83	1.07	73.03
O K	30.77	0.4191	17.09	0.97	14.68
F K	13.55	0.2284	13.81	0.83	9.99
P K	15.16	1.3411	2.63	0.15	1.17
S K	10.77	0.9461	2.65	0.14	1.14
Insgesamt			100.00		

Quantitative Resultate

Figure S1. EDX of catalyst 5a.

Representative procedure for the Enantioselective Allylic Substitution.

To a solution of the corresponding freshly prepared substituted phenol compound in toluene $(0.08 \mathrm{M})$ was added the catalyst $(5-10 \mathrm{~mol} \%)$ at the temperature indicated and the resulting mixture was stirred until being completed (TLC monitoring). The crude reaction mixture was directly charged on silica gel and purified by column chromatography (cyclohexane/AcOEt 19:1) to afford the corresponding product 4a-0. To avoid the decomposition of these products, they were stored at $-26^{\circ} \mathrm{C}$.

Characterization of Products 4a-o

(2R)- 4-Methyl-2-phenyl-2H-chromene (4a). Following the general procedure $4 \mathbf{4}$ ($34 \mathrm{mg}, 0.15 \mathrm{mmol}$) was isolated as a colorless oil after 20 hours in 92% yield starting from (E)-2-(2-hydroxy-4-phenylbut-3-en-2$\mathrm{yl})$ phenol $(40 \mathrm{mg}, 0.17 \mathrm{mmol})$ in the presence of $\mathbf{5 a}(10 \mathrm{mg}, 10 \mathrm{~mol} \%)$ and using toluene $(2.08 \mathrm{~mL})$ as solvent at $-78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-6.99(\mathrm{~m}, 7 \mathrm{H})$, $6.83(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~m}, 1 \mathrm{H}), 5.77(\mathrm{~m}, 1 \mathrm{H}), 5.53(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{t}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 153.2,141.3,129.6,129.3,128.6,128.2,127.0,123.5,123.2,121.7,121.0$, 116.0, 77.1, 18.2. IR (KBr): $\widetilde{v}=3062,3036,2920,2852,1648,1605,1486,1450,1222,754,699$ $\mathrm{cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%): 222.0\left(\mathrm{M}^{+}, 22\right), 221.0$ (32), 207.0 (77), 202.0 (18), 178.0 (43), 145.1 (55), 115.0 (37), 91.0 (18), 77.9 (19), 77.0 (100), 63.0 (16). HRMS (EI) calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{1}$ 222.10392 found 222.10353. $[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}:+182.4(\mathrm{c}=1.0, \mathrm{MeOH})$. The enantiomeric excess was determined by chiral SFC using a Chiralpak IA column, $2 \% \mathrm{MeOH} / \mathrm{CO}_{2}, 4 \mathrm{~mL} / \mathrm{min}, 244 \mathrm{~nm}$; $\tau_{\text {major }}$ $=3.86 \mathrm{~min}, \tau_{\text {minor }}=3.49 \mathrm{~min}(92 \%$ ee $)$.

(2R)- 4-Methyl-2-p-tolyl-2H-chromene (4b). Following the general procedure $\mathbf{4 b}$ ($31 \mathrm{mg}, 0.16 \mathrm{mmol}$) was isolated as a colorless oil after 17 hours in 84% yield starting from (E)-2-(2-hydroxy-4-p-tolylbut-3-en-2$\mathrm{yl})$ phenol ($40 \mathrm{mg}, 0.16 \mathrm{mmol}$) in the presence of $\mathbf{5 a}(5 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and using toluene (1.96 mL) as solvent at $-78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.24-7.08 (m, 4H), 6.91 (td, $J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (dd, $J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.83$ (dd, $J=3.2,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.61(\mathrm{dd}, J=3.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{t}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 153.3,138.3,138.0,129.5,129.2,127.0,123.4,123.2,121.8,120.9,116.0,76.9,21.2$, 18.0. IR (KBr): $\widetilde{v}=3033,2920,2857,1648,1608,1485,1449,1222,753 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%):$ $236.0\left(\mathrm{M}^{+}, 28\right), 235.1$ (35), 221.0 (100), 201.9 (23), 178.1 (29), 145.1 (44), 115.1 (30), 91.1 (32),
77.1 (10), 65.0 (16). HRMS (ESI^{+}) calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{1}+\mathrm{H}\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{1}\right) 237.12739$ found 237.12685. $[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}:+187.5(\mathrm{c}=1.0, \mathrm{MeOH})$. The enantiomeric excess was determined by chiral SFC using a Chiralpak IA column, $2 \% \mathrm{MeOH} / \mathrm{CO}_{2}, 4 \mathrm{~mL} / \mathrm{min}, 244 \mathrm{~nm} ; \tau_{\text {major }}=4.32 \mathrm{~min}, \tau_{\text {minor }}=$ $3.80 \mathrm{~min}(93 \% \mathrm{ee})$.

(2R)- 2-(4-Methoxyphenyl)-4-methyl-2H-chromene (4c). Following the general procedure $\mathbf{4 c}(42 \mathrm{mg}, 0.17 \mathrm{mmol})$ was isolated as a colorless oil after 17 hours in 91% yield starting from (E)-2-(2-hydroxy-4-(4-methoxyphenyl)but-3-en-2-yl)phenol ($50 \mathrm{mg}, 0.19 \mathrm{mmol}$) in the presence of $\mathbf{5 a}(6 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and using toluene $(2.31 \mathrm{~mL})$ as solvent at $-78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.31-7.23 (m, 2H), 7.12-6.98 (m, 2H), 6.85-6.75 (m, 3H), 6.73-6.67 (m, 1H), 5.77$5.66(\mathrm{~m}, 1 \mathrm{H}), 5.50(\mathrm{dd}, J=3.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{t}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.5,153.2,133.3,129.6,129.2,128.6,123.4,123.2,121.8,120.9,116.0,113.9$, $76.7,55.4,18.2$. IR (KBr): $\widetilde{v}=3036,2919,2840,1650,1608,1511,1486,1450,1248,755 \mathrm{~cm}^{-1}$. MS (EI) m/z (\%): $252.1\left(\mathrm{M}^{+}, 40\right), 251.0$ (40), 237.0 (100), 221.1 (15), 208.0 (30), 194.0 (22), 165.0 (18), 145.0 (34), 115.1 (23), 91.2 (13). HRMS (EI) calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2} 252.11448$ found 252.11378. $[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}:+108.2(\mathrm{c}=1.0, \mathrm{MeOH})$. The enantiomeric excess was determined by chiral SFC using a Chiralpak IA column, $2 \% \mathrm{MeOH} / \mathrm{CO}_{2}, 4 \mathrm{~mL} / \mathrm{min}, 249 \mathrm{~nm} ; \tau_{\text {major }}=6.58 \mathrm{~min}$, $\tau_{\text {minor }}=6.07 \mathrm{~min}(90 \% \mathrm{ee})$.

(2R)-2-(4-bromophenyl)-4-methyl-2H-chromene (4d). Following the general procedure $\mathbf{4 d}(34 \mathrm{mg}, 0.11 \mathrm{mmol})$ was isolated as a colorless oil after 3 days in 80% yield starting from (E)-2-(4-(4-bromophenyl)-2-hydroxybut-3-en-2-yl)phenol ($45 \mathrm{mg}, 0.14 \mathrm{mmol}$) in the presence of $5 \mathrm{a}(9$ $\mathrm{mg}, 10 \mathrm{~mol} \%$) and using toluene (1.76 mL) as solvent at $-78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.43-7.36 (m, 2H), 7.26-7.20 (m, 2H), 7.14-7.03 (m, 2H), 6.84 (td, J=7.5, 1.2 Hz, 1H), 6.73 (dd, $J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.75-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.52-5.48(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{t}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.9,140.2,131.6,130.1,129.4,128.7,123.5,123.0,122.1,121.2,120.9,116.0$, 76.2, 18.2. IR (KBr): $\widetilde{v}=3064,3039,2971,2918,2851,1644,1600,1485,1451,1222,754 \mathrm{~cm}^{-1}$. MS (EI) m/z (\%): 300.8 ($\mathrm{M}^{+}, 24$), 298.9 (31), 286.9 (100), 284.9 (92), 219.0 (27), 204.9 (70), 178.1 (34), 145.0 (79), 115.0 (42), 91.2 (17), 78.1 (16). HRMS (EI) calculated for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{O}_{1} \mathrm{Br}_{1}$ 300.01443 found 300.01328 . $[\alpha]_{\mathrm{D}}^{\mathrm{rt}}:+180.3(\mathrm{c}=0.5, \mathrm{MeOH})$. The enantiomeric excess was determined by chiral SFC using a Chiralpak IA column, $8 \% \mathrm{MeOH} / \mathrm{CO}_{2}, 2.5 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}$; $\tau_{\text {major }}=5.5 \mathrm{~min}, \tau_{\text {minor }}=5.25 \mathrm{~min}(94 \% \mathrm{ee})$.

(2R)-2-(4-chlorophenyl)-4-methyl-2H-chromene (4e). Following the general procedure $4 \mathbf{e}(32 \mathrm{mg}, 0.13 \mathrm{mmol})$ was isolated as a colorless oil after 3 days in 86% yield starting from (E)-2-(4-(4-chlorophenyl)-2-hydroxybut-3-en-2-yl)phenol ($40 \mathrm{mg}, 0.15 \mathrm{mmol}$) in the presence of $5 \mathbf{5 a}$ $\mathrm{mg}, 10 \mathrm{~mol} \%$) and using toluene (1.83 mL) as solvent at $-78{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.41-7.30 (m, 4H), 7.23-7.11 (m, 2H), 6.93 (td, $J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 5.87-5.78 (m, 1H), 5.64-5.54 (m, 1H), $2.10(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $152.9,139.7,133.9,130.1,129.4,128.7,128.3,123.5,123.1,121.1,121.0,116.0,76.2,18.2$. IR $(\mathrm{KBr}): \widetilde{v}=3068,2975,1626,1594,1486,1457,1223,752 \mathrm{~cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%): 256.0\left(\mathrm{M}^{+}, 20\right)$, 254.9 (32), 240.9 (100), 205.0 (19), 201.9 (18), 178.1 (31), 164.9 (10), 145.1 (52), 115.1 (28), 90.9 (14), 76.9 (12). HRMS (ESI^{+}) calculated for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{1} \mathrm{Cl}_{1}+\mathrm{H}\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{1} \mathrm{Cl}_{1}\right) 257.07277$ found 257.07266. $[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}:+174.9(\mathrm{c}=1.0, \mathrm{MeOH})$. The enantiomeric excess was determined by chiral SFC using a Chiralpak IA column, $8 \% \mathrm{MeOH} / \mathrm{CO}_{2}, 2.5 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm} ; \tau_{\text {major }}=4.45 \mathrm{~min}, \tau_{\text {minor }}=$ $4.24 \mathrm{~min}(94 \% \mathrm{ee})$.

(2R)-2-(4-fluorophenyl)-4-methyl-2H-chromene (4f). Following the general procedure $4 \mathbf{f}(30 \mathrm{mg}, 0.13 \mathrm{mmol})$ was isolated as a colorless oil after 27 hours in 81% yield starting from (E)-2-(4-(4-fluorophenyl)-2-hydroxybut-3-en-2-yl)phenol ($40 \mathrm{mg}, 0.16 \mathrm{mmol}$) in the presence of $5 \mathbf{5}$ $(10 \mathrm{mg}, 10 \mathrm{~mol} \%)$ and using toluene $(1.94 \mathrm{~mL})$ as solvent at $-78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.46-7.37 (m, 2H), 7.23-7.10 (m, 2H), 7.09-6.99 (m, 2H), $6.92(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (dd, $J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.90-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.64-5.55(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{t}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.5\left(\mathrm{~d}, J_{\mathrm{CF}}=245.1 \mathrm{~Hz}\right), 152.9,137.0,129.9,129.3,128.9,128.8,123.5,123.1$, $121.1\left(\mathrm{~d}, J_{\mathrm{CF}}=23.6 \mathrm{~Hz}\right), 116.0,115.3\left(\mathrm{~d}, J_{\mathrm{CF}}=21.3 \mathrm{~Hz}\right), 76.3,18.2$. IR $(\mathrm{KBr}): \widetilde{v}=3065,2919$, 2851, 1647, 1604, 1504, 1450, 1223, $755 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m/z (\%): $240.0\left(\mathrm{M}^{+}, 23\right), 239.2(31), 224.8$ (100), 197.0 (22), 195.9 (56), 145.1 (64), 115.1 (42), 113.1 (18), 91.3 (27), 75.1 (21), 64.6 (20). HRMS (EI) calculated for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{1} \mathrm{~F}_{1} 240.09449$ Found 240.09471. $[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}:+210.4$ ($\mathrm{c}=1.0$, $\mathrm{MeOH})$. The enantiomeric excess was determined by chiral SFC using a Chiralpak IA column, 8% $\mathrm{MeOH} / \mathrm{CO}_{2}, 2.5 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm} ; \tau_{\text {major }}=3.1 \mathrm{~min}, \tau_{\text {minor }}=2.97 \mathrm{~min}(94 \%$ ee $)$.

(2R)-2-(3-chlorophenyl)-4-methyl-2H-chromene (4g). Following the general procedure $4 \mathrm{~g}(40 \mathrm{mg}, 0.16 \mathrm{mmol})$ was isolated as a colorless oil after 15 hours in 95% yield starting from (E)-2-(4-(3-chlorophenyl)-2-
hydroxybut-3-en-2-yl)phenol ($45 \mathrm{mg}, 0.16 \mathrm{mmol}$) in the presence of $5 \mathbf{5 a}(10 \mathrm{mg}, 10 \mathrm{~mol} \%)$ and using toluene (2.05 mL) as solvent at $-48^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.36-7.23 (m, 3H), 7.23-7.08 (m, 2H), 6.93 (td, $J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.88-5.79 (m, 1H), 5.64-5.55 (m, 1H), 2.10 (t, $J=1.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $152.9,143.3,134.4,130.1,129.8,129.4,128.2,127.1,125.0,123.6,123.0,121.2,120.8,116.0$, 76.2, 18.2. IR (KBr): $\widetilde{v}=3066,2920,2852,1650,1600,1576,1481,1447,1220,754 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (\%): 255.8 ($\mathrm{M}^{+}, 20$), 255.0 (36), 241.0 (92), 205.0 (25), 201.9 (31), 178.0 (28), 145.1 (100), 115.0 (41), 91.1 (20), 76.9 (15). HRMS (EI) calculated for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{O}_{1} \mathrm{Cl}_{1} 256.06494$ found 256.06452. $[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}:+273.4(\mathrm{c}=1.0, \mathrm{MeOH})$. The enantiomeric excess was determined by chiral SFC using a Chiralpak IA column, $8 \% \mathrm{MeOH} / \mathrm{CO}_{2}, 2.5 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm} ; \tau_{\text {major }}=4.52 \mathrm{~min}, \tau_{\text {minor }}$ $=4.05 \mathrm{~min}(84 \% \mathrm{ee})$.

(2R)-2-(4-fluorophenyl)-4,7-dimethyl-2H-chromene (4h). Following the general procedure $4 \mathrm{~h}(23 \mathrm{mg}, 0.09 \mathrm{mmol})$ was isolated as a colorless oil after 22 hours in 82% yield starting from (E)-2-(4-(4-fluorophenyl)-2-hydroxybut-3-en-2-yl)-5-methylphenol ($30 \mathrm{mg}, 0.11$ $\mathrm{mmol})$ in the presence of $\mathbf{5 a}(7 \mathrm{mg}, 10 \mathrm{~mol} \%)$ and using toluene $(1.38 \mathrm{~mL})$ as solvent at $-78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 7.36-7.28 (m, 2 H), 7.02-6.92 (m, 3 H), 6.67-6.61 (m, 1 H), 6.53-6.49 $(\mathrm{m}, 1 \mathrm{H}), 5.74-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.51-5.46(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{t}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 162.4\left(\mathrm{~d}, J_{\mathrm{CF}}=243.5 \mathrm{~Hz}\right), 152.7,139.7,137.3,130.0,128.8\left(\mathrm{~d}, J_{\mathrm{CF}}=8.4\right.$ Hz), 123.3, 121.7, 120.5, 120.0, 116.4, 115.1 (d, $J_{\mathrm{CF}}=21.2 \mathrm{~Hz}$), 76.0, 21.1, 17.8. IR (KBr): $\widetilde{v}=$ 3038, 2969, 2920, 2857, 1651, 1611, 1507, 1442, 1229, 1151, $820 \mathrm{~cm}^{-1}$. MS (EI) $\mathrm{m} / \mathrm{z}(\%): 254.1$ ($\mathrm{M}^{+}, 21$), 253.0 (32), 239.0 (100), 220.0 (14), 196.1 (37), 159.0 (49), 129.1 (10), 115 (16), 91.2 (16). HRMS (EI) calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{1} \mathrm{~F}_{1} 254.11015$ found 254.10968. $[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}:+210.1$ (c = 1.0, $\mathrm{MeOH})$. The enantiomeric excess was determined by chiral SFC using a Chiralpak IA column, 1% ${ }^{i} \mathrm{PrOH} / \mathrm{CO}_{2}, 2.5 \mathrm{~mL} / \mathrm{min}, 229 \mathrm{~nm} ; \tau_{\text {major }}=7.28 \mathrm{~min}, \tau_{\text {minor }}=7.92 \mathrm{~min}(90 \% \mathrm{ee})$.

(2R)-2-(4-chlorophenyl)-6-methoxy-4-methyl-2H-chromene (4i). Following the general procedure $4 i(35 \mathrm{mg}, 0.12 \mathrm{mmol})$ was isolated as a colorless oil after 5 days in 83% yield starting from (E)-2-(4-(4-chlorophenyl)but-2-en-2-yl)-4-methoxyphenol (45 mg , $0.15 \mathrm{mmol})$ in the presence of $\mathbf{5 a}(9 \mathrm{mg}, 10 \mathrm{~mol} \%)$ and using toluene $(1.85 \mathrm{~mL})$ as solvent at -78 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.41-7.28(\mathrm{~m}, 4 \mathrm{H}), 6.82-6.65(\mathrm{~m}, 3 \mathrm{H}), 5.77-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.65-$ $5.61(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 154.0,146.8$,
$139.5,133.9,130.2,128.6,128.4,124.0,122.0,116.4,113.8,109.6,76.0,55.8,18.2$. IR (KBr): $\widetilde{v}=2919,2850,1680,1488,1433,1210,821 \mathrm{~cm}^{-1}$. MS (EI) $\mathrm{m} / \mathrm{z}(\%): 285.9\left(\mathrm{M}^{+}, 29\right), 285.0$ (49), 273.1 (33), 270.9 (100), 252.0 (17), 242.0 (19), 227.8 (22), 175.1 (65), 165.1 (39), 132.1 (25), 77.0 (13). HRMS (EI) calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{Cl}_{1} 286.07551$ found 286.07550. [$\left.\alpha\right]_{\mathrm{D}}{ }^{\mathrm{rt}}:+65.5$ (c $=1.0$, $\mathrm{MeOH})$. The enantiomeric excess was determined by chiral SFC using a Chiralcel OJH column, $2 \%{ }^{i} \mathrm{PrOH} / \mathrm{CO}_{2}, 4 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm} ; \tau_{\text {major }}=14.11 \mathrm{~min}, \tau_{\text {minor }}=12.49 \mathrm{~min}(84 \% \mathrm{ee})$.

(2R)-4,7-dimethyl-2-p-tolyl-2H-chromene (4j). Following the general procedure $\mathbf{4 j} \mathbf{~}(25 \mathrm{mg}, 0.10 \mathrm{mmol})$ was isolated as a colorless oil after 4 days in 87% yield starting from (E)-2-(2-hydroxy-4-p-tolylbut-3-en-2-yl)-5-methylphenol ($30 \mathrm{mg}, 0.11 \mathrm{mmol}$) in the presence of $5 \mathrm{a}(7 \mathrm{mg}, 10$ $\mathrm{mol} \%$) and using toluene $(1.40 \mathrm{~mL})$ as solvent at $-78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.19(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.64-6.58(\mathrm{~m}, 1 \mathrm{H}), 6.52-6.47(\mathrm{~m}$, $1 \mathrm{H}), 5.70-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.50-5.44(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.94(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 152.9,139.5,138.3,138.0,129.6,129.0,126.9,123.3,121.5,120.7$, $120.5,116.4,76.6,21.1,21.0,17.9$. IR (KBr): $\widetilde{v}=3028,2919,2855,1652,1616,1444,1242,814$ $\mathrm{cm}^{-1} . \mathrm{MS}(\mathrm{EI}) \mathrm{m} / \mathrm{z}(\%): 250.1\left(\mathrm{M}^{+}, 28\right), 249.0$ (43), 235.0 (100), 219.1 (13), 192.1 (20), 159.1 (45), 129.1 (10), 115.0 (12), 91.0 (18). HRMS (EI) calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{1} 250.13522$ found 250.13488. $[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}:+266.9(\mathrm{c}=0.5, \mathrm{MeOH})$. The enantiomeric excess was determined by chiral SFC using a (S, S) Whelk-01 column, $2 \% \mathrm{MeOH} / \mathrm{CO}_{2}, 4 \mathrm{~mL} / \mathrm{min}, 249 \mathrm{~nm} ; \tau_{\text {major }}=6.94 \mathrm{~min}, \tau_{\text {minor }}=6.17 \mathrm{~min}$ (84% ee).

(2R)-7-fluoro-4-methyl-2-p-tolyl-2H-chromene (4k). Following the general procedure $\mathbf{4 k}(26 \mathrm{mg}, 0.10 \mathrm{mmol})$ was isolated as a colorless oil after 22 hours in 94% yield starting from (E)-5-fluoro-2-(2-hydroxy-4-p-tolylbut-3-en-2-yl)phenol ($30 \mathrm{mg}, 0.11 \mathrm{mmol}$) in the presence of $5 \mathbf{5 a}$ ($7 \mathrm{mg}, 10 \mathrm{~mol} \%$) and using toluene $(1.34 \mathrm{~mL})$ as solvent at $-78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.34-7.28 (m, 2H), 6.22-7.08 (m, 3H), $6.60(\mathrm{td}, J=8.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.54$ (dd, $J=10.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.87-5.81 (m, 1H), 5.59-5.54 (m, 1H), $2.35(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{t}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 163.1\left(\mathrm{~d}, J_{\mathrm{CF}}=244.3 \mathrm{~Hz}\right), 154.5\left(\mathrm{~d}, J_{\mathrm{CF}}=12.2 \mathrm{~Hz}\right), 138.0\left(\mathrm{~d}, J_{\mathrm{CF}}=35.7 \mathrm{~Hz}\right), 129.3$, $128.9,127.0,124.4,120.5,119.5,107.4\left(\mathrm{~d}, J_{\mathrm{CF}}=21.2 \mathrm{~Hz}\right), 103.7\left(\mathrm{~d}, J_{\mathrm{CF}}=25.0 \mathrm{~Hz}\right), 77.3,21.3$, 18.2. IR (KBr): $\widetilde{v}=3026,2921,2857,1605,1499,1431,1145,1119,814 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) $\mathrm{m} / \mathrm{z}(\%)$: $254.0\left(\mathrm{M}^{+}, 34\right), 253.0(54), 240.1$ (32), 239.0 (100), 223.0 (24), 219.9 (23), 195.9 (28), 163.1 (45), 132.8 (14), 115.0 (18), 91.0 (16). HRMS (EI) calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{1} \mathrm{~F}_{1} 254.11015$ found
254.10993. $[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}:+215.9(\mathrm{c}=1.0, \mathrm{MeOH})$. The enantiomeric excess was determined by chiral SFC using a Chiralpak IA column, $2 \% \mathrm{MeOH} / \mathrm{CO}_{2}, 4 \mathrm{~mL} / \mathrm{min}, 229 \mathrm{~nm} ; \tau_{\text {major }}=3.63 \mathrm{~min}, \tau_{\text {minor }}=$ $3.12 \min (92 \% \mathrm{ee})$.

(2R)-4-methyl-2-(thiophen-2-yl)-2H-chromene (4l). Following the general procedure $\mathbf{4 l}(26 \mathrm{mg}, 0.11 \mathrm{mmol})$ was isolated as a yellow oil after 24 hours in 94% yield starting from (E)-2-(2-hydroxy-4-(thiophen-2-yl)but-3-en-2yl)phenol ($30 \mathrm{mg}, 0.122 \mathrm{mmol}$) in the presence of $5 \mathrm{a}(4 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and using toluene (1.53 mL) as solvent at $-78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.21(\mathrm{~m}, 2 \mathrm{H})$, 7.20-7.07 (m, 2H), 7.02-6.91 (m, 2H), 6.85 (dd, $J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.11-6.04$ (m, 1H), 5.80-5.72 $(\mathrm{m}, 1 \mathrm{H}), 2.14(\mathrm{t}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.6,144.4,130.4,129.4,126.7$, 126.1, 125.9, 123.6, 123.3, 121.3, 120.7, 116.4, 71.7, 18.0. IR (KBr): $\widetilde{v}=2918,2851,1652,1484$, 1447, 1216, $831 \mathrm{~cm}^{-1} . \operatorname{MS}$ (EI) m/z (\%): $228.0\left(\mathrm{M}^{+}, 41\right), 227.1$ (34), 213.0 (100), 183.9 (37), 165.1 (19), 152.0 (14), 145.1 (23), 115.0 (31), 91.0 (16). HRMS (EI) calculated for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{1}{ }^{32} \mathrm{~S}_{1}$ 228.06034 found 228.06044. $[\alpha]_{\mathrm{D}}^{\mathrm{rt}}:+102.2(\mathrm{c}=1.0, \mathrm{MeOH})$. The enantiomeric excess was determined by chiral SFC using a Chiralpak IA column, $2 \% \mathrm{MeOH} / \mathrm{CO}_{2}, 4 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm}$; $\tau_{\text {major }}$ $=4.49 \mathrm{~min}, \tau_{\text {minor }}=3.79 \mathrm{~min}(90 \% \mathrm{ee})$.

(2R)-4-ethyl-2-phenyl-2H-chromene (4m). Following the general procedure $\mathbf{4 m}(33 \mathrm{mg}, 0.14 \mathrm{mmol})$ was isolated as a white solid after 3 days in 88% yield starting from (E)-2-(3-hydroxy-1-phenylpent-1-en-3-yl)phenol (40 mg, $0.16 \mathrm{mmol})$ in the presence of $\mathbf{5 a}(10 \mathrm{mg}, 10 \mathrm{~mol} \%)$ and using toluene $(1.96$ mL) as solvent at - $78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) δ 7.48-7.19 (m, 6 H), 7.18-7.07 (m, 1 H), $6.90(\mathrm{td}, \mathrm{J}=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.75(\mathrm{~m}, 1 \mathrm{H}), 5.87-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.67-5.62(\mathrm{~m}, 1 \mathrm{H}), 2.49$ (qt, $J=7.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 153.2$, 141.2, 135.1, 128.9, 128.4, 128.1, 126.9, 123.1, 122.7, 120.9, 119.6, 116.0, 76.8, 24.0, 12.2. IR (KBr): $\widetilde{v}=3068$, 3031, 2965, 2910, 1648, 1601, 1485, 1449, 1208, $747 \mathrm{~cm}^{-1}$. MS (EI) m/z (\%): $236.1\left(\mathrm{M}^{+}, 21\right)$, 235.1 (19), 208.1 (26), 207.1 (100), 178.0 (46), 159.1 (38), 144.2 (19), 131.0 (18), 115.1 (22), 90.9 (25). HRMS (ESI ${ }^{+}$) calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{1}+\mathrm{H}\left(\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{1}\right) 237.12739$ Found 237.12730. $[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}$: $+210.7(\mathrm{c}=1.0, \mathrm{MeOH})$. The enantiomeric excess was determined by chiral SFC using a Chiralcel OJH column, $5 \% \mathrm{MeOH} / \mathrm{CO}_{2}, 3 \mathrm{~mL} / \mathrm{min}, 265 \mathrm{~nm} ; \tau_{\text {major }}=6.05 \mathrm{~min}, \tau_{\text {minor }}=5.60 \mathrm{~min}(91 \% \mathrm{ee} ;$ 98% ee after crystallization).

(2R)-2-(4-chlorophenyl)-4-ethyl-2H-chromene (4n). Following the general procedure $\mathbf{4 n}(20 \mathrm{mg}, 0.07 \mathrm{mmol})$ was isolated as a colorless oil after 6 days in 71% yield starting from (E)-2-(1-(4-chlorophenyl)-3-hydroxypent-1-en-3-yl)phenol ($30 \mathrm{mg}, 0.10 \mathrm{mmol}$) in the presence of 5 a ($6 \mathrm{mg}, 10 \mathrm{~mol} \%$) and using toluene $(1.30 \mathrm{~mL})$ as solvent at $-78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.36-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.16$ (dd, $\left.J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.04$ (td, J=7.7, 1.5 $\mathrm{Hz}, 1 \mathrm{H}), 6.83(\mathrm{td}, \mathrm{J}=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.66(\mathrm{~m}, 1 \mathrm{H}), 5.81-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.56-5.51(\mathrm{~m}, 1 \mathrm{H})$, 2.41 (qt, $J=7.3,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 152.9,139.8$, $135.6,129.0,128.5,128.4,127.5,123.1,121.0,119.1,116.1,75.9,24.0,12.1$. $\operatorname{IR}(\mathrm{KBr}): \widetilde{v}=3066$, 2967, 2922, 2852, 1598, 1486, 1455, 1221, $753 \mathrm{~cm}^{-1}$. MS (EI) $m / z(\%): 269.9\left(\mathrm{M}^{+}, 15\right), 269.0$ (15), 243.0 (37), 241.0 (100), 205.0 (29), 178.0 (27), 159.3 (32), 144.0 (20), 114.8 (22), 107.2 (19), 91.2 (21), 68.5 (14). HRMS (EI) calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{1} \mathrm{Cl}_{1} 270.08059$ found 270.08019. [$\left.\alpha\right]_{\mathrm{D}}{ }^{\mathrm{rt}}:+217.3$ $(\mathrm{c}=1.0, \mathrm{MeOH})$. The enantiomeric excess was determined by chiral SFC using a Chiralcel OJH column, $5 \%{ }^{i} \operatorname{PrOH} / \mathrm{CO}_{2}, 3 \mathrm{~mL} / \mathrm{min}, 250 \mathrm{~nm} ; \tau_{\text {major }}=9.91 \mathrm{~min}, \tau_{\text {minor }}=8.73 \mathrm{~min}(96 \%$ ee $)$.

(2R)-2-(4-bromophenyl)-4-ethyl-2H-chromene (40). Following the general procedure $40(23 \mathrm{mg}, 0.07 \mathrm{mmol})$ was isolated as a colorless oil after 6 days in 61% yield starting from (E)-2-(1-(4-bromophenyl)-3-hydroxypent-1-en-3-yl)phenol ($40 \mathrm{mg}, 0.12 \mathrm{mmol}$) in the presence of 5 a ($7 \mathrm{mg}, 10 \mathrm{~mol} \%$) and using toluene $(1.50 \mathrm{~mL})$ as solvent at $-78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 7.53-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.12(\mathrm{td}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.84-5.77$ $(\mathrm{m}, 1 \mathrm{H}), 5.69-5.58(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{qt}, J=7.4,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.18(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 152.9,140.3,135.6,131.5,129.1,128.7,127.9,123.2,121.9,121.1,119.0,116.1$, 76.0, 24.0, 12.1. IR (KBr): $\widetilde{v}=2966,2921,2851,1592,1485,1453,1221,753 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) m / z (\%): 313.9 ($\mathrm{M}^{+}, 16$), 313.0 (16), 286.9 (89), 284.9 (100), 219.1 (41), 205.1 (72), 191.2 (29), 159.1 (45), 144.1 (20), 115.2 (24), 91.0 (19). HRMS (ESI $)$ calculated for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{O}_{1} \mathrm{Br}_{1}+\mathrm{H}$ $\left(\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{1} \mathrm{Br}_{1}\right) 315.03790$ found 315.03793. $[\alpha]_{\mathrm{D}}{ }^{\mathrm{rt}}:+162.6(\mathrm{c}=0.25, \mathrm{MeOH})$. The enantiomeric excess was determined by chiral SFC using a Chiralcel OJH column, $5 \%{ }^{i} \mathrm{PrOH} / \mathrm{CO}_{2}, 3 \mathrm{~mL} / \mathrm{min}$, $229 \mathrm{~nm} ; \tau_{\text {major }}=9.33 \mathrm{~min}, \tau_{\text {minor }}=8.13 \mathrm{~min}(93 \%$ ee $)$.

General procedure for reduction of product 4a.

To a solution of chromene $\mathbf{4 a}(20 \mathrm{mg}, 0.09 \mathrm{mmol})$ in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ was added $\mathrm{Pd}-\mathrm{C}(3 \mathrm{mg}$, 5% in 50% water) and the resulting mixture was stirred under an atmosphere of H_{2} at room temperature for 2 hours. The crude reaction mixture was filtrated, washed with MeOH several times (5 or 6) and purified by column chromatography (cyclohexane/AcOEt 19:1) to afford the corresponding product $7 \mathrm{a}(18 \mathrm{mg}, 0.08 \mathrm{mmol})$ in 90% yield.

Characterization of Product 7a

(2R,4R)- 4-methyl-2-phenylchroman (7a). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major, syn) δ 7.52-7.27 (m, 6H), 7.19-7.11 (m, 1H), 6.99-6.89 (m, 2H), 5.09 (dd, $J=11.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{ddd}, J=13.6,5.7,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.92-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major, syn) $\delta 154.8,141.7,129.2,128.5,127.9,127.4,127.1,126.1,120.6,116.9,78.0,40.0,30.1$, 20.2. IR (KBr): $\widetilde{v}=3067,3034,2953,2916,2867,1577,1484,1450,1226,749,701 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) $m / z(\%): 224.0\left(\mathrm{M}^{+}, 34\right), 209.0(29), 165.0(7), 133.1$ (21), 131.0 (21), 120.0 (22), 115.1 (25), 114.1 (44), 91.1 (100), 78.0 (24). The enantiomeric excess and diastereomeric ratio was determined by chiral SFC using a Chiralcel ODH column, $10 \% \mathrm{EtOH} / \mathrm{CO}_{2}, 4 \mathrm{~mL} / \mathrm{min}, 265 \mathrm{~nm}$; $\tau_{\text {anti, major }}=1.98 \mathrm{~min}, \tau_{\text {syn,major }}=2.73 \mathrm{~min}, \tau_{\text {syn,minor }}=2.31 \mathrm{~min}(92 \% \mathrm{ee} ; \mathrm{dr}: 10: 1)$.

Determination of the absolute configuration

X-ray Crystallographic Data.

The structure of the chromene $\mathbf{4 m}$ was determined by single-crystal X-ray analysis.

Fig. S2. Structure of $\mathbf{4 m}$ in the solid state $X_{a b s}=0.003(267)$.

However, the values of the Flack parameter and standard uncertainty did not allow unambiguous determination of the absolute configuration. As an alternative, CD-spectroscopy was considered and the recorded and theoretically calculated CD-spectra of compound $\mathbf{4 m}$ were analyzed (Fig. S3 a, b). The theoretical CD-spectrum has been obtained as an average of the spectra of the most stable five conformers lying in a range of $2 \mathrm{kcal} / \mathrm{mol}$. Single spectra of the corresponding conformers have been obtained at the TD-DFT/B3LYP/6-31+G**/B3LYP/6-31+G** level using Gaussian 09 program package (5-6). Since the measured spectrum resembles the mirror image of the spectrum calculated for the (S)-enantiomer, we conclude that the absolute configuration of the compound present in our sample is (R).

a) Recorded CD-spectrum of $\mathbf{4 m}$.

b) Averaged calculated CD-spectrum for (S)-4m at the TD-DFT/B3LYP/6-31+G**//B3LYP/6$31+\mathrm{G}^{* *}$ level.

Fig. S3. Recorded and calculated CD-spectra for $\mathbf{4 m}$.

References

1. Barros, A. I. R. N. A. ; Silva, A. M. S.; Alkorta, I.; Elguero, J. Tetraedron 2004, 60, 6513-6521.
2. Cabrera, M.; Simoens, M.; Falchi, G.; Lavaggi, M. L.; Piro, O. E.; Castellano, E. E.; Vidal, A.; Azqueta, A.; Monge, A.; de Cerain, A. L.; Sagrera, G.; Seoane, G.; Cerecetto H.; Gonzalez, M. Bioorg. Med. Chem. 2007, 15, 3356-3367.
3. Dennis, L.; George, Z. J. Org. Chem. 1980, 45, 2551-2553.
4. Patent J. F. Batchelor, H. F. Hodson, J. G. Vinter, Benzopyran compounds, useful as chemotherapeutic agents. Eur. Pat. Appl. EP 25599, CAN 95, 42910, 1981.
5. The calculations have been performed by using the facilities and computing resources offered by the Center for Computing and Communication of the RWTH Aachen University.
6. Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

NMR Spectra of Compounds 4a-o and 7a.

Figure S4: NMR spectra of compound 4a.

Figure S5: NMR spectra of compound 4b.

Figure S6: NMR spectra of compound 4c.

Figure S7: NMR spectra of compound 4d.

Figure S8: NMR spectra of compound 4e.

Figure S9: NMR spectra of compound $\mathbf{4 f}$.

Figure S10: NMR spectra of compound $\mathbf{4 g}$

Figure S11: NMR spectra of compound 4h

Figure S12: NMR spectra of compound $\mathbf{4 i}$

Figure S13: NMR spectra of compound $\mathbf{4 j}$

Figure S14: NMR spectra of compound $\mathbf{4 k}$

Figure S15: NMR spectra of compound 41

Figure S16: NMR spectra of compound $\mathbf{4 m}$

Figure S17: NMR spectra of compound 4n

Figure S18: NMR spectra of compound 40

Figure S19: NMR spectra of compound 7a

Chiral SFC Data of compounds 4a-o, 7a and 3a.

Peak Info					
Number	Area \%	Area	RT (min)	St. (min)	End (min)
1	4.0778	796.5832	3.55	3.4666	3.6583
2	95.922	18738.0703	3.84	3.7666	4.2133

Figure S20: SFC chromatograms of compound 4a.

Figure S21: SFC chromatograms of compound $\mathbf{4 b}$.

Figure S22: SFC chromatograms of compound 4c.
Peak Info

Number	Area 8
1	2.6682
2	97.3318

$$
120.7935
$$

RT (min)
st. (min)
5.1266
End (min)
5.25
5.3799
5.3615

Figure S23: SFC chromatograms of compound 4d.
Single Absorbance

Single Absorbance

Peak Info

Number	Area \%
1	3.1703
2	96.8297

Area	RT (min)
85.5246	4.24
2612.1687	4.45

st. (min)
End (min)
6. 8297
2612.1687
4.3499
4.6832

Figure S24: SFC chromatograms of compound 4e.
Single Absorbance

Single Absorbance

RT: Ret. Time	A: Area

Peak Info Number
Area \%

Area	RT (min)
81.6242	2.97
2584.6924	3.1

st. (min)
End (min)
1
3.0613
96.9387
2584.6924
2.9199
3.0216
2
3.0283
3.2466

Figure S25: SFC chromatograms of compound $\mathbf{4 f}$.

Figure S26: SFC chromatograms of compound $\mathbf{4 g}$.

Figure S27: SFC chromatograms of compound $\mathbf{4 h}$.
Number
Area \%
7.871
92.129

Area	RT (min)
868.0277	12.49
10160.149	14.11

Area
868.027
10160.149
st. (min)
12.1737
13.819

End (min)
12.9355
14.9926

Figure S28: SFC chromatograms of compound $\mathbf{4 i}$.

Figure S29: SFC chromatograms of compound $\mathbf{4 j}$.

Figure S30: SFC chromatograms of compound $\mathbf{4 k}$.

Figure S31: SFC chromatograms of compound $4 \mathbf{1}$.

Figure S32: SFC chromatograms of compound 4m.

Figure S33: SFC chromatograms of compound $\mathbf{4 n}$.

Figure S34: SFC chromatograms of compound 40
Single Absorbance

Single Absorbance

Peak Info

Number	Area 8
1	9.8341
2	3.7767
3	86.3892

Area

RT (min)
st. (min)
End (min)
16.2165
1.98
1.9232
2.0582
86.3892
142.4559
2.73
2.6382
2.8465

Figure S35: SFC chromatograms of compound 7a

Figure S36: SFC chromatogram of $\mathbf{4 a}(91 \%$ ee) obtained in the reaction starting from optically pure $3 \mathbf{a}$ (ee $>99 \%$) and chiral catalyst 5a.
Peak Info

Number	Area	Area	RT (min)	St. (min)	
1	49.9386	6133.5373	3.27	3.0399	3.4466
2	50.0614	6148.6079	3.91	3.83	

Figure S37: SFC chromatogram of racemic 3a

Peak Info

Number	Area \&	Area	RT (min)	St. (min)	End (min)
1	100	27270.7225	3.26	3.0673	3.719

Figure S38: SFC chromatograms of the two enantiomers of 3a.

