Supporting Information for

Nonterpenoid C₁₅ Acetogenins from Laurencia marilzae

Adrián Gutiérrez-Cepeda, José J. Fernández, * Laura V. Gil, Matías López-Rodríguez, Manuel Norte* and María L. Souto*

Instituto Universitario de Bio-Orgánica "Antonio González", Universidad de La Laguna, Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain

*To whom correspondence should be addressed. Tel: +34 922318586. Fax: +34 922318571. E-mail: jjfercas@ull.es; mnorte@ull.es; msouto@ull.es.

Table of contents:

- Figure S1. ¹H NMR spectrum (500 MHz, CDCl₃) of 12-epoxy-obtusallene IV (1).
- Figure S2. ¹³C NMR spectrum (125 MHz, CDCl₃) of 12-epoxy-obtusallene IV (1).
- **Figure S3.** ¹H NMR spectrum (600 MHz, CDCl₃) of compound **2**.
- Figure S4. ¹³C NMR spectrum (150 MHz, CDCl₃) of compound 2.
- Figure S5. HSQC NMR spectrum (600 MHz, CDCl₃) of obtusallene X (3).
- Figure S6. ¹H NMR spectrum (600 MHz, CDCl₃) of marilzallene (4).

Figure S7. ¹³C NMR spectrum (150 MHz, CDCl₃) of marilzallene (4).

Figure S8. ¹H NMR spectrum (500 MHz, CDCl₃) of (+)-4-acetoxy-marilzallene (5).

Figure S9. ¹³C NMR spectrum (150 MHz, CDCl₃) of (+)-4-acetoxy-marilzallene (5).

Figure S10. ¹H NMR spectrum (600 MHz, CDCl₃) of (–)-4-acetoxy-marilzallene (6).

Figure S11. ¹³C NMR spectrum (150 MHz, CDCl₃) of (-)-4-acetoxy-marilzallene (6).

Figure S12. ¹H NMR spectrum (500 MHz, CDCl₃) of *Z*-adrienyne (7).

Figure S13. ¹³C NMR spectrum (150 MHz, CDCl₃) of Z-adrienyne (7).

Figure S14. ¹H NMR spectrum (500 MHz, CDCl₃) of *E*-adrienyne (8).

Figure S15. ¹³C NMR spectrum (150 MHz, CDCl₃) of *E*-adrienyne (8).

Table S1. NMR spectroscopic data for the observed obtusallene X (3) conformers in C_6D_6 and CD_3OD .

Table S2. NMR spectroscopic data for marilzallene (4) in pyridine- d_5 .

Figure S4. ¹³C NMR spectrum (150 MHz, CDCl₃) of compound **2**.

Figure S7. ¹³C NMR spectrum (150 MHz, CDCl₃) of marilzallene (4).

Figure S9. ¹³C NMR spectrum (150 MHz, CDCl₃) of (+)-4-acetoxy-marilzallene (5).

Figure S10. ¹H NMR spectrum (600 MHz, CDCl₃) of (–)-4-acetoxy-marilzallene (6).

Figure S11. ¹³C NMR spectrum (150 MHz, CDCl₃) of (–)-4-acetoxy-marilzallene (6).

Figure S12. ¹H NMR spectrum (500 MHz, CDCl₃) of *Z*-adrienyne (7).

Figure S13. ¹³C NMR spectrum (150 MHz, CDCl₃) of Z-adrienyne (7).

Figure S14. ¹H NMR spectrum (500 MHz, CDCl₃) of *E*-adrienyne (8).

Figure S15. ¹³C NMR spectrum (150 MHz, CDCl₃) of *E*-adrienyne (8).

	3a -C ₆ D ₆ ^c		3b- $C_6 D_6^{\ c}$		3a- CD ₃ OD ^{<i>d</i>}		3b- CD ₃ OD	
position	$\delta_{\rm C}$ mult.	$\delta_{\rm H} (J \text{ in Hz})$	δ_{C}	$\delta_{\rm H} (J \text{ in Hz})$	δ_{C}	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	δ_{C}	$\delta_{\rm H} (J \text{ in Hz})$
$1 2^b$	72.5, CH	5.57, br d (5.6)	[a]	[a]	72.7	6.31, br d (5.7)	[a]	[a]
3	100.0, CH	5.22, dd (5.7, 8.8)	100.2	5.20, dd (5.6, 8.7)	100.7	5.71, dd (5.4, 5.7)	100.8	5.69, dd (5.4, 5.7)
4	69.8, CH	4.10, m	[a]	[a]	69.2	4.54, m	[a]	[a]
5	34.7, CH ₂	β 2.02, m	[a]	[a]	35.4	β 2.17, m	[a]	β 2.14, m
		α 1.19, m		[a]		α 1.73, ddd (3.2, 8.6, 14.5)		[a]
6	75.6, CH	3.66, m	[a]	[a]	76.6	4.35, ddd (3.2, 4.0, 10.9)	[a]	4.32, ddd (3.2, 3.9, 11.0)
7	59.1, CH	3.82, br d (7.2)	59.2	3.80,br d (8.3)	60.8	4.63, m	[a]	[a]
8	40.5, CH ₂	α 2.00, m	[a]	[a]	40.3	α 2.64, dddd (1.9, 6.8, 8.8, 14.3)	[a]	α 2.61, m
		β 1.70, ddd (5.2, 8.9, 14.3)		β 1.66, ddd (5.2, 9.4, 13.8)		β 2.31, dddd (1.0, 3.8, 6.3, 14.3)		[a]
9	73.3, CH	3.97, ddd (2.6, 5.4, 8.9)	73.7	3.95, ddd (3.3, 5.7, 9.4)	75.6	4.60, m	74.6	[a]
10	48.7, CH	4.13, m	48.4	4.09, m	48.6	4.61, m	[a]	4.58, m
11	43.4, CH ₂	2.47 (2H), m	43.0	2.33 (2H), m	44.2	α 2.92, ddd (1.2, 12.7, 15.6)	43.4	α 2.82, ddd (1.2, 11.7,
						β 2.59, ddd (2.1, 9.9, 15.6)		15.2)
						-		β 2.44, ddd (2.3, 9.7, 15.2)
12	58.5, CH	4.28, ddd (2.4, 6.2, 8.2)	63.6	4.24, ddd (2.4, 7.3, 9.5)	55.0	4.67, ddd (1.2, 4.9, 9.9)	60.8	4.62, m
13	76.3, CH	3.21, dd (4.0, 6.2)	[a]	3.24, dd (4.1, 7.3)	76.6	3.70, dd (3.3, 4.9)	[a]	3.77, dd (3.4, 4.5)
14	72.1, CH	3.66, m	72.3	3.69, m	74.3	4.17, dd (3.3, 6.7)	74.5	4.14, ddd (3.4, 6.8)
15	12.7, CH ₃	1.33, m	12.5	1.32, m	11.4	1.36, d (6.7)	11.1	1.34, d (6.8)

Table S1. NMR Spectroscopic Data for the Observed Obtusallene X (3) Conformers in C_6D_6 and CD_3OD .

[a] Signal overlapped by the resonance of the conformer **3a**. ^{*b*} Signal not observed. ^{*c*} Data recorded at 600/150 MHz (1 H/ 13 C nuclei). ^{*d*} Data recorded at 500/125MHz (1 H/ 13 C nuclei).

position	δ_c mult.	$\delta_{\rm tr}$ (<i>J</i> in Hz)
1	74.8. CH	6.47. dd (1.8. 5.9)
2	201.1. C	0117, 00 (110, 015)
3	107.0, CH	5.81, dd (5.9, 5.9)
4	65.8, CH	4.86, dddd (1.8, 2.5, 5.9, 10.8)
5	43.1, CH ₂	β 2.40, ddd (2.5, 10.4, 14.0)
		α 1.86, ddd (2.1, 10.8, 14.0)
6	76.1, CH	4.65, ddd (2.1, 2.1, 10.4)
7	68.2, CH	4.18, ddd (2.1, 4.7, 11.4)
8	35.6, CH ₂	β 3.15, ddd (10.9, 11.4, 11.9)
		α 2.55, ddd (4.7, 5.5, 11.9)
9	129.2, CH	5.66, ddd (5.5, 10.1, 10.9)
10	131.8, CH	5.86, ddd (7.2, 8.5, 10.1)
11	35.7, CH ₂	β 2.50, ddd (7.2, 9.3, 14.1)
		α 2.14, br dd (8.5, 14.1)
12	81.8, CH	4.27, br dd (5.6, 9.3)
13	133.7, CH	5.61, ddd (1.1, 5.6, 15.5)
14	125.7, CH	5.69, dd (6.3, 15.5)
15	18.1, CH ₃	1.54, dd (1.1, 6.3)

Table S2. NMR Spectroscopic Data for Marilzallene (4) in pyridine- d_5 .

a Data recorded at 600/150 MHz (${}^{1}\text{H}/{}^{13}\text{C}$ nuclei).