Direct Enantioselective Aldol-Tishchenko Reaction Catalyzed by Lithium Diphenylbinaphtholate

Tomonori Ichibakase and Makoto Nakajima*
Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan

Supporting Information

Table of Contents

1. General methods S-2
2. The aldol-Tishchenko reaction of 3-pentanone (2a) and benzaldehyde (3a) S-2
3. Isomerization of 4aa to 5aa and 5aa to 4aa S-3
4. The aldol-Tishchenko reaction and subsequent deacylation S-3
5. The aldol-aldol-Tishchenko reaction of cyclopentanone ($\mathbf{2 f}$) and benzaldehyde (3a) S-7
6. The Evans-Tishchenko reduction of racemic β-hydroxy ketone (10) S-9
7. The Evans-Tishchenko reduction of β-hydroxy ketone (11) S-9
8. References S-10
9. ${ }^{1} \mathrm{H}$ NMR and HPLC chart of the Tishchenko products S-11
10. ${ }^{13} \mathrm{C}$ NMR chart of new compounds S-23
11. ${ }^{1} \mathrm{H}$ NMR chart and X-ray structure report for 9 S-26

1. General Methods

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured in CDCl_{3} with JEOL JNM-ECX400 spectrometer. Tetramethylsilane (TMS) ($\delta=0 \mathrm{ppm}$) and $\mathrm{CDCl}_{3}(\delta=77.0 \mathrm{ppm})$ were served as internal standards for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, respectively. Infrared spectra were recorded on JEOL JIR 6500-W. Mass spectra were measured with JEOL JMS-DX303HF mass spectrometer. Optical rotations were recorded on JASCO P-1010 polarimeter. High-pressure liquid chromatography (HPLC) was performed on JASCO P-980 and UV-1575.
Thin-layer chromatography (TLC) analysis was carried out using Merck silica gel plates. Visualization was accomplished with UV light, phosphomolybdic acid and/or anisaldehyde. Column chromatography was performed using Kanto Chemical Silica Gel 60N (spherical, neutral, 63-210 $\mu \mathrm{m}$).
Absolute configulations of 4aa, 5aa, 6aa~ $\mathbf{6 a d}$, 6ba, 7da, $\mathbf{1 2}$ were determined by the comparison of $[\alpha]_{D}$ data or HPLC data in the literatures. Absolute configulations of 6ae, 6ca, 7ea were determined by analogy.

2. The aldol-Tishchenko reaction of 3-pentanone (2a) and benzaldehyde (3a).

Under an argon atmosphere, n-BuLi ($0.094 \mathrm{mmol}, 20 \mathrm{~mol} \%$) in hexane ($0.17 \mathrm{M}, 0.55 \mathrm{~mL}$) was added to a solution of (R)-3,3'-diphenylbinaphthol ($20.7 \mathrm{mg}, 0.047 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in THF at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 5 min . Benzaldehyde ($\mathbf{3 a}$) ($0.12 \mathrm{~mL}, 1.18 \mathrm{mmol}, 2.5$ equiv.) and 3 -pentanone ($\mathbf{2 a}$) ($0.05 \mathrm{~mL}, 0.47$ mmol) were successively added to the above mixture at rt and the mixture was stirred for 3 h . The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and the mixture was stirred for 5 min at rt . The aqueous layer was extracted with AcOEt and the combined organic layers were washed with brine (3 mL). After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentration in vacuo, the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford monoacylated diol $\mathbf{4 a a}$ ($61 \mathrm{mg}, 44 \%$ yield) and $\mathbf{5 a a}$ ($31 \mathrm{mg}, 22 \%$ yield) both as a colorless oil.
(1R,2R,3S)-2-Methyl-1-phenyl-1,3-pentanediol 1-O-benzoate (4aa) ${ }^{1}$.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.75\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right), 0.95\left(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.38-1.49(\mathrm{~m}$, $1 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.57-1.68 (m, $1 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.08-2.16 (m, $1 \mathrm{H},-\mathrm{CHCH}_{3}$), $2.47($ brs, $1 \mathrm{H},-\mathrm{OH}), 3.72-3.77(\mathrm{~m}, 1 \mathrm{H}$, HO-CH), $5.95(\mathrm{~d}, 1 \mathrm{H}, J=10.1 \mathrm{~Hz}, \mathrm{BzO}-\mathrm{CHPh}), 7.29-7.46(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-H), 7.54-7.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-H), 8.04-8.07(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar}-H)$.
$[\alpha]_{\mathrm{D}}{ }^{30}+12.6\left(c 1.19, \mathrm{CHCl}_{3}, 85 \%\right.$ ee $),[\alpha]_{\mathrm{D}}{ }^{30}+11.6\left(c 0.73, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 85 \%\right.$ ee $)$, [lit. 1: $[\alpha]_{\mathrm{D}}-8.5\left(c 0.73, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 73 \%\right.$ ee, $1 S, 2 S, 3 R)$]
HPLC (Daicel chiralcel OD-H, Hex/IPA $=97 / 3,1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}(\mathrm{min}) 6.6$ (major, $1 R, 2 R, 3 S$), 7.8 (minor, $1 S, 2 S$, $3 R)$, [lit. 1: $8.1(1 R, 2 R, 3 S), 8.7(1 S, 2 S, 3 R)]$.
(1R,2R,3S)-2-Methyl-1-phenyl-1,3-pentanediol 3-O-benzoate (5aa) ${ }^{1}$.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.75\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right), 1.00\left(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.61-1.71(\mathrm{~m}$, $1 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.88-2.09 (m, 2H, $\left.-\mathrm{CH}_{2} \mathrm{CH}_{3},-\mathrm{CHCH}_{3}\right), 3.74(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz},-\mathrm{OH}), 4.19(\mathrm{dd}, 1 \mathrm{H}, J=9.6,3.2$
$\mathrm{Hz}, \mathrm{HO}-\mathrm{CHPh}$), 5.62 (ddd, $1 \mathrm{H}, J=8.7,5.0,1.4 \mathrm{~Hz}, \mathrm{BzO}-\mathrm{CH}), 7.24-7.37(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-H), 7.47-7.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-H)$, 7.59-7.63 (m, 1H, Ar-H), 8.10-8.13 (m, 2H, Ar-H).
$[\alpha]_{\mathrm{D}}{ }^{30}-0.3\left(c 1.07, \mathrm{CHCl}_{3}, 85 \% \mathrm{ee}\right),[\alpha]_{\mathrm{D}}{ }^{31}+9.1(c 0.96, \mathrm{MeOH}, 85 \% \mathrm{ee}),[\alpha]_{\mathrm{D}}{ }^{29}-3.7\left(c 1.09, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 85 \%\right.$ ee $)$, [lit. 1: $[\alpha]_{\mathrm{D}}+3.3\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 72 \%\right.$ ee, $\left.\left.1 S, 2 S, 3 R\right)\right]$
HPLC (Daicel chiralpak AD-H, Hex/IPA $=19 / 1,1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}(\mathrm{min}) 12.1$ (major, $1 R, 2 R, 3 S$), 20.5 (minor, $1 S$, $2 S, 3 R)$, [lit. 1: $12.3(1 R, 2 R, 3 S), 21.6(1 S, 2 S, 3 R)]$.

3. Isomerization of 4aa to 5aa and 5aa to 4aa.

Under an argon atmosphere, n-BuLi (0.094 mmol) in hexane ($0.17 \mathrm{M}, 0.55 \mathrm{~mL}$) was added to a solution of (R)-3,3'-diphenylbinaphthol ($20.7 \mathrm{mg}, 0.047 \mathrm{mmol}$) and $\mathbf{4 a a}(54.9 \mathrm{mg})$ or $\mathbf{5 a a}(16.8 \mathrm{mg})$ in THF at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 3 h . The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and the mixture was stirred for 5 min at rt . The aqueous layer was extracted with AcOEt and the combined organic layers were washed with brine (3 mL). After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentration in vacuo, the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford monoacylated diol 4aa and 5aa both as a colorless oil.

4. The aldol-Tishchenko reaction and subsequent deacylation.

Typical procedure:

Under an argon atmosphere, $n-\mathrm{BuLi}(0.094 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ in hexane ($0.17 \mathrm{M}, 0.55 \mathrm{~mL}$) was added to a solution of (R)-3,3'-diphenylbinaphthol ($20.7 \mathrm{mg}, 0.047 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in THF at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 5 min . Benzaldehyde (3a) ($0.12 \mathrm{~mL}, 1.18 \mathrm{mmol}, 2.5$ equiv.) and 3-pentanone (2a) ($0.05 \mathrm{~mL}, 0.47$ mmol) were successively added to the above mixture and the mixture was stirred for 48 h . The reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and the mixture was stirred for 5 min at rt . The aqueous layer was extracted with AcOEt and the combined organic layers were washed with brine (3 mL). After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentration in vacuo, the residue was dissolved in $\mathrm{MeOH}(2 \mathrm{~mL})$ and treated with $\mathrm{NaOMe}(0.05 \mathrm{mmol} .11$ $\mathrm{mol} \%$) in $\mathrm{MeOH}(0.5 \mathrm{M}, 0.1 \mathrm{~mL}$). After 3 h , the mixture was diluted with AcOEt (20 mL), and washed with water $(5 \mathrm{~mL})$. The aqueous layer was extracted twice with $\mathrm{AcOEt}(10 \mathrm{~mL} \times 2)$ and the combined organic layers were washed with brine $(10 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration in vacuo, the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ $\left.\mathrm{AcOEt}=4 / 1\right)$ to gave diol $\mathbf{6 a a}(74 \mathrm{mg}, 81 \%)$ as a colorless oil.
(1R,2R,3S)-2-Methyl-1-phenylpentane-1,3-diol (6aa) ${ }^{1}$.

${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.85\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right), 0.89\left(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.36-1.56(\mathrm{~m}$, $2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.88-1.95 (m, 1H, $-\mathrm{CHCH}_{3}$), 2.91 (brs, $1 \mathrm{H},-\mathrm{OH}$), 3.54 (brs, $1 \mathrm{H},-\mathrm{OH}$), $3.70(\mathrm{ddd}, 1 \mathrm{H}, J=8.7,4.6$, $2.3 \mathrm{~Hz}, \mathrm{HO}-\mathrm{CH}$), 4.67 (d, $1 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{HO}-\mathrm{C} H), 7.22-7.36$ (m, 5H, Ar- H).
$[\alpha]_{\mathrm{D}}{ }^{29}+45.4\left(c 1.22, \mathrm{CHCl}_{3}, 91 \%\right.$ ee $),[\alpha]_{\mathrm{D}}{ }^{29}+43.6\left(c 1.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 91 \%\right.$ ee $)$, [lit. 1: $[\alpha]_{\mathrm{D}}-36.2\left(c 0.60, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, 75% ee, $1 S, 2 S, 3 R$)]
HPLC (Daicel chiralpak AD-H, Hex/IPA = 19/1, $1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}(\mathrm{min}) 14.7$ (major, $1 R, 2 R, 3 S$), 20.3 (minor, $1 S$, $2 S, 3 R)$, [lit. 1: Hex/IPA = 9/1, $7.8(1 R, 2 R, 3 S), 10.1(1 S, 2 S, 3 R)]$.

($\mathbf{1 R}, \mathbf{2 R}, \mathbf{3 S}$)-2-Methyl-1-(4-methylphenyl)pentane-1,3-diol (6ab) ${ }^{1}$.

Following the typical procedure, the reaction of p-tolualdehyde ($\mathbf{3 b}$) ($0.14 \mathrm{~mL}, 1.18 \mathrm{mmol}, 2.5$ equiv.) and 3-pentanone ($\mathbf{2 a}$) ($0.05 \mathrm{~mL}, 0.47 \mathrm{mmol}$) gave diol $\mathbf{6 a b}(85.3 \mathrm{mg}, 87 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.81\left(\mathrm{~d}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right), 0.89\left(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.35-1.58(\mathrm{~m}$, $2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.85-1.92 (m, 1H, $-\mathrm{CHCH}_{3}$), $2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{3}\right), 3.07$ (brs, $1 \mathrm{H},-\mathrm{OH}$), $3.53(\mathrm{brs}, 1 \mathrm{H},-\mathrm{OH}), 3.69$ (ddd, $1 \mathrm{H}, J=8.7,4.6,1.8 \mathrm{~Hz}, \mathrm{HO}-\mathrm{CH}), 4.62(\mathrm{~d}, J=6.8 \mathrm{~Hz}, \mathrm{HO}-\mathrm{CHAr}), 7.13(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{Ar}-H), 7.20$ (d, $2 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{Ar}-H)$.
$[\alpha]_{\mathrm{D}}{ }^{29}+41.0\left(c 1.05, \mathrm{CHCl}_{3}, 95 \%\right.$ ee $)$
HPLC (Daicel chiralpak AD-H, Hex/IPA = 29/1, $1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}(\mathrm{min}) 24.6$ (major, $1 R, 2 R, 3 S$), 29.4 (minor, $1 S$, $2 S, 3 R)$, [lit. $1: \mathrm{Hex} / \mathrm{IPA}=9 / 1,8.4(1 R, 2 R, 3 S), 9.1(1 S, 2 S, 3 R)]$.
(1R,2R,3S) -1-(4-methoxyphenyl)-2-Methylpentane-1,3-diol (6ac) ${ }^{1}$.

Following the typical procedure, the reaction of p-anisaldehyde ($\mathbf{3 c}$) $(0.14 \mathrm{~mL}, 1.18 \mathrm{mmol}, 2.5$ equiv.) and 3-pentanone (2a) ($0.05 \mathrm{~mL}, 0.47 \mathrm{mmol}$) gave diol $\mathbf{6 a c}(84.9 \mathrm{mg}, 81 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.79\left(\mathrm{~d}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right), 0.90\left(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.38-1.58(\mathrm{~m}$, $2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.83-1.91 (m, 1H, $-\mathrm{CHCH}_{3}$), 3.12 (brs, $1 \mathrm{H},-\mathrm{OH}$), 3.62 (brs, $1 \mathrm{H},-\mathrm{OH}$), 3.69 (ddd, $1 \mathrm{H}, \mathrm{J}=8.2$, 4.1, $1.8 \mathrm{~Hz}, \mathrm{HO}-\mathrm{CH}), 3.78\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 4.60(\mathrm{~d}, J=7.3 \mathrm{~Hz}, \mathrm{HO}-\mathrm{CHAr}), 6.84-6.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.21-7.25(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$).
$[\alpha]_{\mathrm{D}}{ }^{29}+41.8\left(c 0.75, \mathrm{CHCl}_{3}, 95 \%\right.$ ee $)$
HPLC (Daicel chiralpak AD-H, Hex $/$ IPA $=9 / 1,1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}(\mathrm{min}) 11.0$ (major, $1 R, 2 R, 3 S$), 12.4 (minor, $1 S$, $2 S, 3 R)$, [lit. 1: $11.3(1 R, 2 R, 3 S), 12.7(1 S, 2 S, 3 R)]$.
(1R,2R,3S) -1-(4-Bromophenyl)-2-methylpentane-1,3-diol (6ad) ${ }^{1}$.

Following the typical procedure, the reaction of p-bromobenzaldehyde (3d) ($212.4 \mathrm{mg}, 1.18 \mathrm{mmol}, 2.5$ equiv.) and 3-pentanone (2a) $(0.05 \mathrm{~mL}, 0.47 \mathrm{mmol})$ gave diol $\mathbf{6 a d}(102.5 \mathrm{mg}, 80 \%)$ as a colorless prism.
mp 96-97 ${ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.84-0.89\left(\mathrm{~m}, 6 \mathrm{H},-\mathrm{CHCH}_{3},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.34-1.54\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.80-1.87(\mathrm{~m}$, $1 \mathrm{H},-\mathrm{CHCH}_{3}$), 3.04 (brs, $1 \mathrm{H},-\mathrm{OH}$), 3.63 (ddd, $1 \mathrm{H}, J=8.7,5.0,2.3 \mathrm{~Hz}, \mathrm{HO}-\mathrm{CH}$), 4.08 (brs, $1 \mathrm{H},-\mathrm{OH}$), $4.60(\mathrm{~d}, 1 \mathrm{H}$, $J=6.4 \mathrm{~Hz}, \mathrm{HO}-\mathrm{CHAr}), 7.15-7.19(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-H), 7.43-7.46$ (m, 2H, Ar-H).
$[\alpha]_{\mathrm{D}}{ }^{29}+34.5\left(c 1.05, \mathrm{CHCl}_{3,} 88 \%\right.$ ee $)$
HPLC (Daicel chiralpak AS-H, Hex/IPA $=9 / 1,1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}(\mathrm{min}) 7.2$ (major, $1 R, 2 R, 3 S$), 10.2 (minor, $1 S, 2 S$, $3 R)$, [lit. 1: 6.3(1R, 2R, 3S), $10.1(1 S, 2 S, 3 R)]$.
(1E,3R,4R,5S)-4-Methyl-1-phenyl-1-heptane-3,5-diol (6ae).

Following the typical procedure, the reaction of trans-cinnamaldehyde ($\mathbf{3 e}$) $(0.15 \mathrm{~mL}, 1.18 \mathrm{mmol}, 2.5$ equiv.) and 3-pentanone (2a) $(0.05 \mathrm{~mL}, 0.47 \mathrm{mmol})$ gave diol 6ae $(62.8 \mathrm{mg}, 61 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.92-0.98\left(\mathrm{~m}, 6 \mathrm{H},-\mathrm{CHCH}_{3},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.49-1.61\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.73-1.80(\mathrm{~m}$, $1 \mathrm{H},-\mathrm{CHCH}_{3}$), 2.85 (brs, $1 \mathrm{H},-\mathrm{OH}$), 3.29 (brs, $1 \mathrm{H},-\mathrm{OH}$), 3.84-3.88 (m, 1H, HO-CH), $4.30(\mathrm{t}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}$, HO-CH), $6.25(\mathrm{dd}, 1 \mathrm{H}, J=16.0,6.4 \mathrm{~Hz}$, olefine- H), $6.62(\mathrm{~d}, 1 \mathrm{H}, J=15.6 \mathrm{~Hz}), 7.21-7.39(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-H)$.
${ }^{13} \mathrm{C} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 10.63,11.02,26.71,41.78,74.10,76.61,126.41,127.52,128.50,130.74,131.60, ~}$ 136.68.

IR (neat) v $3552 \mathrm{~cm}^{-1}$.
LR-FABMS $\left(\mathrm{CHCl}_{3}+\mathrm{NBA}+\mathrm{NaI}\right) 243\left((\mathrm{M}+\mathrm{Na})^{+}\right), 241,176(\mathrm{bp}), 145,136,55$.
HR-FABMS calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Na}\left((\mathrm{M}+\mathrm{Na})^{+}\right)$243.1361, found 243.1340 .
$[\alpha]_{\mathrm{D}}{ }^{29}+6.9\left(c 1.27, \mathrm{CHCl}_{3}, 94 \%\right.$ ee $),[\alpha]_{\mathrm{D}}{ }^{31}+15.4$ (c 1.14, benzene, 94% ee $)$
HPLC (Daicel chiralpak AD-H, Hex/IPA = 19/1, $1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}(\mathrm{min}) 18.5$ (major, $3 R, 4 R, 5 S$), 21.2 (minor, $3 S$, $4 S, 5 R$).
(1R,2R,3S)-2-Ethyl-1-phenylhexane-1,3-diol (6ba) ${ }^{1}$.

Following the typical procedure, the reaction of benzaldehyde (3a) ($0.12 \mathrm{~mL}, 1.18 \mathrm{mmol}, 2.5$ equiv.) and 4-heptanone (2b) $(0.07 \mathrm{~mL}, 0.47 \mathrm{mmol})$ gave diol $\mathbf{6 b a}(69.4 \mathrm{mg}, 71 \%)$ as a colorless oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.82\left(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz},-\mathrm{CHCH}_{2} \mathrm{CH}_{3}\right), 0.91\left(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 1.16-1.63 (m, 7H, $-\mathrm{CHCH}_{2} \mathrm{CH}_{3},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.32 (brs, $1 \mathrm{H},-\mathrm{OH}$), 3.74 (ddd, $J=9.2,4.1,1.8 \mathrm{~Hz}, \mathrm{HO}-\mathrm{CH}$), 3.89 (brs, $1 \mathrm{H},-\mathrm{OH}), 4.85(\mathrm{~d}, 1 \mathrm{H}, J=5.5 \mathrm{~Hz}), 7.22-7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-H)$.
$[\alpha]_{\mathrm{D}}{ }^{28}+37.6\left(c 0.99, \mathrm{CHCl}_{3}, 91 \%\right.$ ee $)$
HPLC (Daicel chiralpak AS-H, Hex/IPA = 19/1, $1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}(\mathrm{min}) 8.6$ (major, $1 R, 2 R, 3 S$), 11.4 (minor, $1 S, 2 S$, $3 R)$, [lit. 1: Нex/IPA = 9/1, $5.1(1 R, 2 R, 3 S), 5.7(1 S, 2 S, 3 R)]$.
(1R,2R,3S,4E)-2-Methyl-1-phenyl-4-hexene-1,3-diol (6ca).

Following the typical procedure, the reaction of benzaldehyde (3a) ($0.12 \mathrm{~mL}, 1.18 \mathrm{mmol}, 2.5$ equiv.) and 4-hexene-3-one ($\mathbf{2 c}$) ($0.05 \mathrm{~mL}, 0.47 \mathrm{mmol}$) gave diol $\mathbf{6 c a}(77.8 \mathrm{mg}, 80 \%)$ as a colorless oil.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.69\left(\mathrm{~d}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz},-\mathrm{CHCH}_{3}\right), 1.72\left(\mathrm{~d}, 3 \mathrm{H}, J=5.5 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CHCH}_{3}\right)$, 1.96-2.04 (m, 1H, $-\mathrm{CHCH}_{3}$), 3.42 (brs, $1 \mathrm{H},-\mathrm{OH}$), 3.87 (brs, $1 \mathrm{H},-\mathrm{OH}$), 4.20-4.23 (m, 1H, HO-CH), 4.57 (d, 1H, J $=8.3 \mathrm{~Hz}), 5.56-5.89(\mathrm{~m}, 2 \mathrm{H}$, olefine- H), 7.23-7.34 (m, 5H, Ar-H).
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 12.5,17, .8,44.2,75.0,77.9,126.6,127.5,127.7,128.3,130.7,143.6$.
IR (neat) v $3354 \mathrm{~cm}^{-1}$.
LR-FABMS $\left(\mathrm{CHCl}_{3}+\mathrm{NBA}+\mathrm{NaI}\right) 229\left((\mathrm{M}+\mathrm{Na})^{+}, \mathrm{bp}\right), 173,149,107,55$.
HR-FABMS calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}\left((\mathrm{M}+\mathrm{Na})^{+}\right)$229.1204, found 229.1200.
$[\alpha]_{\mathrm{D}}{ }^{28}+5.7$ (c 1.34, $\mathrm{CHCl}_{3}, 87 \%$ ee $)$
HPLC (Daicel chiralcel OD-H, Hex/IPA $=19 / 1,1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}} 11.1$ (minor, $1 S, 2 S, 3 R$), 12.2 (major, $1 R, 2 R$, $3 S$).
(1S,2S, αR)- α-(2-Hydroxycyclohexyl)-benzenemethanol (7da) ${ }^{2}$.

Following the typical procedure, the reaction of benzaldehyde (3a) ($0.12 \mathrm{~mL}, 1.18 \mathrm{mmol}, 2.5$ equiv.) and cyclohexanone ($\mathbf{2 d}$) $(0.05 \mathrm{~mL}, 0.47 \mathrm{mmol})$ in THF (3 mL) gave diol 7da ($87.5 \mathrm{mg}, 87 \%$) as colorless needles. mp 122-124 ${ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.78-0.92(\mathrm{~m}, 1 \mathrm{H}), 1.02-1.15(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.65(\mathrm{~m}, 3 \mathrm{H})$, $1.74-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.93(\mathrm{~m}, 1 \mathrm{H}), 3.23(\mathrm{brs}, 1 \mathrm{H}), 3.49(\mathrm{dt}, 1 \mathrm{H}, J=10.5,4.6 \mathrm{~Hz}), 3.70(\mathrm{brs}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H})$, 7.24-7.36 (m, 5H).
$[\alpha]_{\mathrm{D}}{ }^{27}+27.6\left(c 1.02, \mathrm{CHCl}_{3}, 90 \%\right.$ ee $),\left[\right.$ lit. 2: $[\alpha]_{\mathrm{D}}+32\left(c 0.95, \mathrm{CHCl}_{3}, 99 \%\right.$ ee, $\left.\left.1 S, 2 S, \alpha R\right)\right]$
HPLC (Daicel chiralcel OD-H, Hex/IPA $=9 / 1,1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}(\mathrm{min}) 7.3$ (minor, $1 R, 2 R, \alpha S$), 8.7 (major, $1 S, 2 S$, αR).

Following the typical procedure, the reaction of benzaldehyde (3a) ($0.12 \mathrm{~mL}, 1.18 \mathrm{mmol}, 2.5$ equiv.) and 2-cyclohexene-1-one (2e) ($0.05 \mathrm{~mL}, 0.47 \mathrm{mmol}$) in THF (3 mL) at $-23{ }^{\circ} \mathrm{C}$ gave diol 6ea $(84.2 \mathrm{mg}, 88 \%)$ as colorless needles.
mp 135-137 ${ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.15-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.93-2.09(\mathrm{~m}, 3 \mathrm{H}), 2.71(\mathrm{brs}, 1 \mathrm{H}), 3.12(\mathrm{brs}$, $1 \mathrm{H}), 4.24(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 5.56-5.60(\mathrm{~m}, 1 \mathrm{H}), 5.70-5.72(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.38(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13} \mathrm{C} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 22.2,25.0, ~ 47.4, ~ 68.1, ~ 76.2, ~ 126.5, ~ 127.4, ~ 128.1, ~ 128.8, ~ 130.3, ~ 142.0 . ~}$
IR (KBr) v $3313 \mathrm{~cm}^{-1}$.
LR-FABMS $\left(\mathrm{CHCl}_{3}+\mathrm{NBA}+\mathrm{NaI}\right) 227\left((\mathrm{M}+\mathrm{Na})^{+}, \mathrm{bp}\right), 173,149,107,77$.
HR-FABMS calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}\left((\mathrm{M}+\mathrm{Na})^{+}\right)$227.1048, found 227.1030.
$[\alpha]_{D}{ }^{27}-11.4\left(c 0.99, \mathrm{CHCl}_{3}, 85 \%\right.$ ee $)$
HPLC (Daicel chiralcel OD-H, Hex/IPA $=9 / 1,1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}(\mathrm{min}) 8.8$ (minor, $1 R, 6 R, S$), 11.3 (major, $1 S, 6 S$, R).

5. The aldol-aldol-Tishchenko reaction of cyclopentanone ($2 f$) and benzakdehyde (3a).

Under an argon atmosphere, $n-\mathrm{BuLi}(0.094 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ in hexane ($0.17 \mathrm{M}, 0.55 \mathrm{~mL}$) was added to a solution of (R) - 3,3 '-diphenylbinaphthol ($20.7 \mathrm{mg}, 0.047 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in THF at $-23{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 5 min . Then benzaldehyde ($\mathbf{3 a}$) $(0.17 \mathrm{~mL}, 1.65 \mathrm{mmol}, 3.5$ equiv) and cyclopentanone ($\mathbf{2 f}$) (0.04 mL , 0.47 mmol) were added to the above mixture. After 24 h , the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and the mixture was stirred for 5 min at rt . The aqueous layer was extracted with AcOEt and the combined organic layers were successively washed with brine (3 mL). Drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentration in vacuo, the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give an inseparable mixture of triol mono esters as a colorless oil. To the solution of the mono ethers, pyridinium p-toluenesulfonate ($1.2 \mathrm{mg}, 0.047 \mathrm{mmol}, 10 \mathrm{~mol} \%$) and 2,2-dimethoxypropane ($0.09 \mathrm{~mL}, 0.71 \mathrm{mmol}, 1.5$ equiv) was added and the mixture was stirred for 12 h . After diluted with AcOEt (20 mL) , the mixture was washed with water ($5 \mathrm{~mL} \times 3$) and brine (10 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration in vacuo, the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/toluene $=1 / 1)$ to give $\mathbf{8}(137 \mathrm{mg}, 66 \%, 2$ steps $)$ as colorless needles and its diastereomer $\mathbf{8}^{\prime}(46 \mathrm{mg}, 22 \%, 2$ steps $)$ as colorless needles.

(rel-1S,2S,3R,1 $\alpha R, 2 \alpha R$)-2-Hydroxy- $\alpha 1, \alpha 2$-diphenyl-1,3-cyclopentanedimethanol 2, α 2-O,O-acetonide

 $\alpha 1-O$-benzoate (8).
mp 114-115 ${ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.20-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.40-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.85(\mathrm{~m}, 3 \mathrm{H})$, $2.47-2.55(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{t}, 1 \mathrm{H}, J=10.1 \mathrm{~Hz}), 4.60(\mathrm{~d}, 1 \mathrm{H}, J=10.1 \mathrm{~Hz}), 6.22(\mathrm{~d}, 1 \mathrm{H}, J=4.6 \mathrm{~Hz}), 7.21-7.33(\mathrm{~m}$,
$8 \mathrm{H}), 7.39-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.60(\mathrm{~m}, 1 \mathrm{H}), 8.13-8.16(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 19.91,21.10,21.58,29.90,47.77,48.63,75.41,75.70,78.65,100.50,126.13$, $126.40,127.62,127.70,128.17,128.32,128.43,129.60,130.37,133.00,139.43,140.71,165.47$.
IR (neat) $v 1718 \mathrm{~cm}^{-1}$.
LR-FABMS $\left(\mathrm{CHCl}_{3}+\mathrm{NBA}+\mathrm{NaI}\right) 465\left((\mathrm{M}+\mathrm{Na})^{+}\right), 413,385,329,263,245,176,154(\mathrm{bp}), 136,105,77$.
HR-FABMS calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}\left((\mathrm{M}+\mathrm{Na})^{+}\right)$465.2042, found 465.2043.
$[\alpha]_{\mathrm{D}}{ }^{27}-8.2$ (c 1.01, $\mathrm{CHCl}_{3}, 99 \%$ ee)
HPLC (Daicel chiralpak AD-H, Hex/IPA = 99/1, $1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}(\mathrm{min}) 14.4$ (major), 17.4 (minor).

diastereomer of $8\left(\mathbf{8}^{\prime}\right)$.

mp 116-117 ${ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.45-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.99(\mathrm{~m}, 1 \mathrm{H})$, 2.24-2.33 (m, 1H), 2.61-2.69 (m, 1H), 4.08 (dd, 1H, $J=7.8,5.0 \mathrm{~Hz}), 4.44(\mathrm{~d}, 1 \mathrm{H}, J=10.1 \mathrm{~Hz}), 6.08(\mathrm{~d}, 1 \mathrm{H}, J=$ $7.3 \mathrm{~Hz}), 7.24-7.59(\mathrm{~m}, 13 \mathrm{H}), 8.07-8.11(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 23.61,25.37,27.11,28.51,49.41,52.69,73.61,75.18,77.60,100.43,126.58$, $126.82,127.59,127.83,128.23,128.39,129.62,130.34,133.01,139.58,141.20,165.70$.
IR (KBr) v $1711 \mathrm{~cm}^{-1}$.
LR-FABMS $\left(\mathrm{CHCl}_{3}+\mathrm{NBA}+\mathrm{NaI}\right) 466\left((\mathrm{M}+\mathrm{Na})^{+}\right), 414,386,329,263,245,176,105(\mathrm{bp}), 91$. HR-FABMS calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Na}\left((\mathrm{M}+\mathrm{Na})^{+}\right) 465.2042$, found 465.2046 .
$[\alpha]_{\mathrm{D}}{ }^{27}-30.0\left(c 1.52, \mathrm{CHCl}_{3}, 98 \%\right.$ ee $)$
HPLC (Daicel chiralpak AD-H, Hex/IPA = 99/1, $1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}(\mathrm{min}) 19.0$ (major), 25.8 (minor).

To the solution of $\mathbf{8}$ in $\mathrm{MeOH}(2 \mathrm{~mL})$, $\mathrm{NaOMe}(0.05 \mathrm{mmol} .11 \mathrm{~mol} \%)$ in $\mathrm{MeOH}(0.5 \mathrm{M}, 0.1 \mathrm{~mL})$ was added and the resulting homogeneous mixture was stirred for 12 h . The reaction was quenched with conc. HCl aq. (5 mL) and the mixture was stirred for 1 h at rt . The mixture was diluted with ethyl acetate (20 mL), and washed with water (5 mL). The aqueous layer was extracted twice with AcOEt ($10 \mathrm{~mL} \times 2$) and the combined organic layers were washed with brine $(10 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration in vacuo, the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/AcOEt $\left.=3 / 2\right)$ to give triol $\mathbf{9}(88 \mathrm{mg}, 65 \%$, from cyclopentanone $(\mathbf{2 f}))$ as colorless prisms.

(rel-1S,2R,3R,1 $\alpha R, 2 \alpha R$)-2-Hydroxy- $\alpha 1, \alpha 2$-diphenyl-1,3-cyclopentanedimethanol (9).

mp 136-137 ${ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.04-1.14(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.61(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.30$ (ddd, $J=18.8,9.2,5.0 \mathrm{~Hz}), 2.61(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}), 3.05(\mathrm{~s}, 1 \mathrm{H}), 3.10(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{t}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 4.48(\mathrm{~d}$, $1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 4.86-4.88(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.37(\mathrm{~m}, 10 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 21.68,23.85,52.51,52.71,74.44,79.14,80.49,126.30,126.42,127.52,127.91$,
128.37, 128.45, 142.95, 143.30.

IR (KBr) $\vee 3302 \mathrm{~cm}^{-1}$.
LR-FABMS $\left(\mathrm{CHCl}_{3}+\mathrm{NBA}+\mathrm{NaI}\right) 321\left((\mathrm{M}+\mathrm{Na})^{+}\right), 263,245,176,154(\mathrm{bp}), 136,107,69$.
HR-FABMS calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}\left((\mathrm{M}+\mathrm{Na})^{+}\right)$321.1467, found 321.1475.
$[\alpha]_{\mathrm{D}}{ }^{30}+55.5\left(c 1.01, \mathrm{CHCl}_{3}, 99 \%\right.$ ee $)$
Relative stereochemistry was determined by X-ray analysis (cf. S-26).

6. The Evans-Tishchenko reaction of racemic β-hydroxy ketone (10).

Under an argon atmosphere, $n-\mathrm{BuLi}(0.094 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ in hexane $(0.17 \mathrm{M}, 0.55 \mathrm{~mL})$ was added to a solution of (R)-3,3'-diphenylbinaphthol ($20.7 \mathrm{mg}, 0.047 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in THF (1 mL) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 5 min . Then benzaldehyde (3a) ($0.07 \mathrm{~mL}, 0.07 \mathrm{mmol}, 1.5$ equiv.) and 2-(Hydroxyphenylmethyl)cyclohexanone (10) (syn/anti $=1 / 2$, racemic) ($96 \mathrm{mg}, 0.47 \mathrm{mmol}$) in THF (2 mL) were successively added to the above mixture. After 24 h , the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and the mixture was stirred for 5 min at rt . The aqueous layer was extracted with AcOEt and the combined organic layers were washed with brine (3 mL). After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentration in vacuo, the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to afford monoacylated diol as an colorless oil. The diol monoester was dissolved in $\mathrm{MeOH}(2 \mathrm{~mL})$ and treated with $\mathrm{NaOMe}(0.05 \mathrm{mmol} .11 \mathrm{~mol} \%)$ in $\mathrm{MeOH}(0.5 \mathrm{M}, 0.1 \mathrm{~mL})$ and the resulting homogeneous mixture was stirred for 3 h . The mixture was diluted with ethyl acetate (20 mL), and washed with water (5 mL). The aqueous layer was extracted twice with $\operatorname{AcOEt}(10 \mathrm{~mL} x 2)$ and the combined organic layers were washed with brine $(10 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration in vacuo, the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ $\mathrm{AcOEt}=4 / 1$) to give diol $\mathbf{7 d a}(68 \mathrm{mg}, 71 \%, 86 \%$ ee $)$ as colorless needles.

7. The Evans-Tishchenko reduction of $\boldsymbol{\beta}$-hydroxy ketone (11).

Under an argon atmosphere, $n-\mathrm{BuLi}(0.094 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ in hexane $(0.17 \mathrm{M}, 0.55 \mathrm{~mL})$ was added to a solution of (R) - $3,3^{\prime}$-diphenylbinaphthol ($20.7 \mathrm{mg}, 0.047 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in THF at $-45^{\circ} \mathrm{C}$, and the mixture was stirred for 5 min . Then a solution of benzaldehyde ($\mathbf{3 b}$) $(0.072 \mathrm{~mL}, 75 \mathrm{mg}, 0.72 \mathrm{mmol}, 1.5$ equiv) and 2,2-dimethyl-3-hydroxy-1-phenylpropan-1-one (11) $(0.073 \mathrm{~mL}, 0.47 \mathrm{mmol})$ were successively added to the above mixture. After 0.5 h , the reaction was quenched with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ aq and the mixture was stirred for 10 min at rt . The aqueous layer was extracted with AcOEt and the combined organic layer was washed with brine. After drying over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporating the solvent, the residue was purified by silica gel column chromatography $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford the diol monoester product $\mathbf{1 2}(114 \mathrm{mg}, 87 \%$ yield, 99% ee $)$ as colorless prisms.

(S)-2,2-Dimethyl-1-phenylpropane-1,3-diol 3-O-benzoate (12) ${ }^{3}$.

mp 73-74 ${ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.97\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.04\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 2.45(\mathrm{brs}, 1 \mathrm{H},-\mathrm{OH}), \quad 4.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.0$ $\left.\mathrm{Hz}, \mathrm{BzO}-\mathrm{CH}_{2}\right), 4.43\left(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}, \mathrm{BzO}-\mathrm{CH}_{2}\right), 4.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HO}-\mathrm{CHPh}), 7.25-7.48(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}-H)$, 7.56-7.60 (m, 1H, Ar-H), 8.04-8.06 (m, 2H, Ar-H).
$[\alpha]_{\mathrm{D}}{ }^{30}-23.1\left(c 1.13, \mathrm{CHCl}_{3}, 99 \%\right.$ ee $)$
HPLC (Daicel chiralpak AD-H, Hex/IPA = 9/1, $1.0 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}} 8.8$ (major, S), 12.8 (minor, R).

Determination of the absolute configuration of 12.

To a solution of $\mathbf{1 2}(114 \mathrm{mg})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$, $\mathrm{NaOMe}(0.05 \mathrm{mmol} .11 \mathrm{~mol} \%)$ in $\mathrm{MeOH}(0.5 \mathrm{M}, 0.1 \mathrm{~mL})$ was added and the resulting homogeneous mixture was stirred for 3 h . The mixture was diluted with ethyl acetate (20 mL), and washed with water (5 mL). The aqueous layer was extracted twice with ethyl acetate ($10 \mathrm{~mL} \times 2$) and the combined organic layers were washed with brine (10 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After concentration in vacuo, the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ethyl acetate $\left.=4 / 1\right)$ to gave diol $13(70$ $\mathrm{mg}, \mathbf{9 6 \%}$) as colorless needles. The optical rotation data shows (+)-13 has S-configuration, which shows (-)-12 has S-configuration.

(S)-2,2-Dimethyl-1-phenylpropane-1,3-diol (13) ${ }^{4}$.

mp 62-63 ${ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.79(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{~d}, 1 \mathrm{H}, J=10.6 \mathrm{~Hz}), 3.50-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.77$ (brs, $1 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.35(\mathrm{~m}, 5 \mathrm{H})$.
$[\alpha]_{\mathrm{D}}{ }^{30}+44.7\left(c 1.00, \mathrm{CHCl}_{3,} 99 \%\right.$ ee $),\left[\right.$ lit. $4:[\alpha]_{\mathrm{D}}{ }^{30}+21.7\left(c 1.17, \mathrm{CHCl}_{3}, 55 \%\right.$ ee, $\left.\left.S\right)\right]$

8. References

(1) Mlynarski, J.; Rakiei, B.; Stodulski, M.; Suszczyuńska, A.; Frelek, J. Chem. Eur. J. 2006, 12, 8158-8167.
(2) Acetti, D.; Brenna, E.; Fuganti, C.; Gatti, F. G.; Serra, S. Eur. J. Org. Chem. 2010, 142-151.
(3) Markert, M.; Mahrwald, R. Synthesis 2004, 1429-1433.
(4) Kotani, S.; Shimoda, Y.; Sugiura, M.; Nakajima, M. Tetrahedron Lett. 2009, 50, 4602-4605.
9. ${ }^{1} \mathrm{H}$ NMR and HPLC chart of the Tishchenko products

1. racemic

2. Optically active (93\% ee)

1. racemic

2. Optically active (95\% ee)

1. racemic

2. Optically active (95% ee)

1. racemic

D-2500									00/00/00	04:40
METHOD:				TAG: 3 CH :			1			
FILE:	-	CALC-METHOD:		ARE	TABLE:		0	CONC:	AREA	
NO.	RT		AREA		CONC	BC				
1		7.28	1222132		49.768	BB				
2		0.10	1233505		50.232	BB				
TOTAL										
			2455		100.000					
PEAK R		:	1080							

2. Optically active (88% ee)

D-2580
METHOD: TAG: $4 \mathrm{CH:} 1$

FILE: θ CALC-METHOD: AREA\% TABLE: θ CONC: AREA

NO.	RT	AREA	CONC	BC
1	7.24	2374366	93.958	$B B$
2	10.18	152685	6.042	$B B$
TOTAL			2527851	100.888
		0		

1. racemic

2. Optically active (94\% ee)

1. racemic

2. Optically active (91% ee)

D-2580									00/80/80	81:59
METHOD:				TAE	4 CH :					
FILE:	0	CALC-METHOD:		ARE	TABLE:		0	CONC:	AREA	
NO.		RT		EA	CONC	BC				
1		8.58	1947	68	95.348	BB				
2		11.36		07	4.652	BB				
TOTAL										
			2042	75	100.800					
PEAK R	RE	J :	0							

1. racemic

2. Optically active (87% ee)

D-250日 00/00/00 01:06

METHOD:				TAG: 4		CH:			AREA
File:	θ	CAL	HOD:	ARE	TABL		0	CONC:	
NO.		RT		EA	CONC	BC			
1		11.08	118	48	6.659	Bu			
2		12.22	1558	84	93.341	U8			
total									
			1661	54	100.000				
PEAK	E	J :	-						

1. racemic

2. Optically active (90% ee)

D-2500

METHOD:	TAG:	$8 \mathrm{CH}: 1$
FILE: 0 CALC-METHOD: AREA\%	TABLE: θ CONC: AREA	

NO.	RT	AREA	CONC	BC
1	7.31	131929	5.196	BB
2	8.70	2407024	94.804	BB
TOTAL				
		2538953	108.800	
PEAK	J :	0		

1. racemic

C-R8A CHROMSTOPAC CH 1 Report No. $=2$

MK IDNO
COWC
 49.3695 100

DAT 1: ©CHEM1.C00 10:07:03 16:05:08

2. Optically active (85% ee)

(- RKA ClikOMSTOPAC CH=1 Reporl No. -3

1. racemic

2. Optically active (99% ee)

1. racemic

2. Optically active (98\% ee)

C-R8A CHROMATOPAC CH=1 Report No. $=7 \quad$ DATA=1:9CHRM1.C00 $\quad 10 / 07 / 06 \quad 17: 33: 20$

1. racemic

D-2500 \quad e0/80/80 08:24

2. Optically active (99% ee)

D-2500									00/08/00	00:55
METHOD:				the	2 CH :					
FILE:	0	CALC-METHOD:		AREA	TABLE:		0	CONC:	AREA	
No.	RT8.82			EA	CONC	BC				
			11895		99.538	BB				
$\begin{array}{lr}1 & 8.82 \\ 2 & 12.84\end{array}$				69	0.478	BB				
TOTAL										
			11147		100.808					

10. ${ }^{13} \mathrm{C}$ NMR chart of new compounds

11. ${ }^{1} \mathrm{H}$ NMR and X-ray structure report for 14

A. Crystal Data

Empirical Formula
Formula Weight
Crystal Color, Habit
Crystal Dimensions
Crystal System
Lattice Type
Indexing Images
Detector Position
Pixel Size
Lattice Parameters

Space Group
Z value
D calc
F000
$\mathrm{m}(\mathrm{MoK} \alpha)$

B. Intensity Measurements

Diffractometer
Radiation

Detector Aperture
Data Images
ω oscillation Range ($\chi=45.0, \phi=0.0$)
Exposure Rate
ω oscillation Range ($\chi=45.0, \phi=180.0$)
Exposure Rate
Detector Position
Pixel Size
$2 \theta_{\text {max }}$
No. of Reflections Measured
Corrections

C. Structure Solution and Refinement

Structure Solution
Refinement
Function Minimized
Least Squares Weights
$2 \theta_{\text {max }}$ cutoff
Anomalous Dispersion
No. Observations (I>2.00 (I))
No. Variables
Reflection/Parameter Ratio
Residuals: R1 ($\mathrm{I}>2.00 \sigma(\mathrm{I})$)
Residuals: wR2 (I $>2.00 \sigma(\mathrm{I})$)
Goodness of Fit Indicator
Max Shift/Error in Final Cycle
Maximum peak in Final Diff. Map
Minimum peak in Final Diff. Map
Direct Methods (SIR92)
Full-matrix least-squares on F^{2}
$\Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}$
$1 /\left[0.0017 \mathrm{Fo}^{2}+1.0000 \sigma\left(\mathrm{Fo}^{2}\right)\right] /\left(4 \mathrm{Fo}^{2}\right)$
54.9^{0}
All non-hydrogen atoms
6992
441
15.85
0.0446
0.1180
1.006
0.000
$0.33 \mathrm{e}^{-} / \mathrm{A}^{3}$
$-0.49 \mathrm{e}^{-} / \mathrm{A}^{3}$

