Supplementary information

Enantioselective Conjugate Addition Nitro-Mannich Reactions: Solvent Controlled Synthesis of Acyclic *anti*- and *syn*-β-nitroamines with 3 Contiguous Stereocenters

James C. Anderson,* Gregory J. Stepney, Matthew R. Mills, Lisa R. Horsfall, Alexander J. Blake and William Lewis.

Department of Chemistry, 20 Gordon Street, University College London, London, WC1H 0AJ, UK

Inde	X	Page
Gene	eral experimental	S4
Purif	ication of solvents and reagents	S4
Char	acterisation	S4
Nitro	alkenes	S5
Solve	ent Studies	S5
Tem	perature Studies	S5
Chira	al Ligands	S5
Dete	rmination of <i>ee</i>	S5
Assig	gnment of absolute and relative stereochemistry	S6
Struc	tures and X-ray structures for compounds in Table 4	S7
Refe	rences	S18
Copi Entr	es of 1H and 13C NMR spectra:	
1	ин 13С	S19 S20
2	1H 13C	S21 S22
3	1H 13C	
4	1H 13C	

5	1H
6	1H
7	1H
8	1H
9	1H
10	1H
11	1H
12	1H
13	1H
14	1H
	1H
15	1H
16	1H
17	1H
18	1H
19	1H
20	1H
21	1H
22	1H
23	1H
24	1H
25	1H
26	1H

	13C	
Com	bound	
9	1H	
	13C	
11	1H	
	13C	

General experimental

Unless otherwise stated, all reactions were carried out under an atmosphere of nitrogen. All glassware was flame dried and allowed to cool under a stream of nitrogen before use. Cooling to 0 $^{\circ}$ C was effected using an ice-water bath. Cooling to temperatures below 0 $^{\circ}$ C was effected using dry ice-acetone mixtures. Reactions were monitored by thin layer chromatography (TLC) using Polygram[®] SIL G/UV₂₅₄ 0.25 mm silica gel precoated plastic plates with fluorescent indicator. Sheets were visualised using ultra-violet light (254 nm) and/or anisaldehyde or KmnO₄ solutions, as appropriate. Flash column chromatography was performed using Fluorochem silica gel 60, 35-70 μ . The liquid phase was analytical grade 40-60 petroleum ether (petrol) and ethyl acetate (EtOAc) unless otherwise noted.

Purification of Solvents and Reagents

Commercial solvents and reagents were used as supplied or purified in accordance with standard procedures, as described below.

Tetrahydrofuran (THF) was pre-dried over sodium wire and distilled under an atmosphere of dry nitrogen from sodium benzophenone ketal or obtained from a solvent tower, where degassed THF was passed through two columns of activated alumina and a 7 micron filter under 4 bar pressure.

Diethyl ether (Et₂O) was pre-dried over sodium wire and distilled under an atmosphere of dry nitrogen from sodium benzophenone ketal or obtained from a solvent tower, where degassed Et_2O was passed through two columns of activated alumina and a 7 micron filter under 4 bar pressure.

Toluene was obtained form a solvent tower, where degassed toluene was passed through two columns of activated alumina and a 7 micron filter under 4 bar pressure. Dichloromethane was distilled from calcium hydride powder or purchased as an analytical grade and stored over 4Å molecular sieves.

Characterisation

Melting points are uncorrected. Optical rotations were recorded at 25 °C and are reported in deg cm² g⁻¹. Infrared spectra were recorded as a thin film on sodium chloride discs or as dilute chloroform solutions. ¹H and ¹³C NMR spectra were recorded as dilute solutions in deuterochloroform unless otherwise stated. All chemical shifts (δ) are reported in parts per million (ppm) relative to chloroform ($\delta_{\rm H} = 7.27$ ppm, $\delta_{\rm c} = 77.1$ ppm). Coupling constants (*J*) are reported in Hertz and are recorded as observed in the spectrum without averaging. The multiplicity of an ¹H signal is designated by the following abbreviations: m = multiplet, s = singlet, d = doublet, t = triplet, q = quartet and quin = quintet, br = broad signal. ¹³C multiplicities were assigned using a DEPT sequence. Where appropriate, HMQC and NOE experiments were carried out to aid assignment.

Nitroalkenes were prepared according to literature procedures¹ and their data was in accord with that published.²

Solvent studies

To a stirred mixture of nitroalkene (1.00 mmol) and Cu(Otf)₂ (0.05 mmol) in dry solvent (3 mL) at -78 °C was added Et₂Zn (1.10 mmol, 1M in hexane). The resulting orange solution was stirred for 10 min before being warmed to rt. After 1 h the brown suspension was cooled to -78 °C. A solution of imine (2.00 mmol) in dry solvent (2 mL) was added and the mixture stirred for 20 min. A solution of TFA (3.50 mmol) in dry solvent (0.6 mL) was added dropwise over 20 seconds and the reaction stirred for 1 h. The reaction was warmed to room temperature over 1 h to provide a suspension of white solid and vivid yellow supernatant. The reaction was quenched by the addition of Et₂O (5 mL) and saturated aq. NaHCO₃ (5 mL). The layers were separated and the aqueous phase extracted with Et₂O (2 x 5 mL). The organic layers were combined and the solvent removed *in vacuo* to provide crude β -nitroamine. Note: MgSO4 was not used to dry the product β -nitroamines prior to solvent removal because the products were found to be mildy unstable towards this reagent.

Temperature studies

The reactions were carried out as above for the specified times recorded in Table 2.

Chiral ligands

The Charette ligand Bozphos (7) was used as the $Cu(7)_2Otf$ complex and was prepared in two steps from commercially available Me-DuPHOS according to the literature.³ The Hoveyda ligand **8** was prepared according to the literature⁴ and was used as described.

Determination of ee.

Retention times were compared to racemic standards. If the products could not be separated by a chiral stationary phase, they were measured by degradation.

syn, anti-a. As is normal for the types of *anti-* β -nitroamines we generate, the NMR solutions gradually undergo retro addition if left in CDCl₃ at rt.⁵ Samples were left until complete degradation

(1-2 days) by ¹H NMR and the crude nitroalkane was then used for HPLC analysis to measure the enantiomeric excess of the parent β -nitroamine.

Syn, syn-b. If the product could not be separated by a chiral stationary phase, they were measured by degradation. *B*-Nitroamine (*ca*. 20 mg) was dissolved in THF (3 mL) and TFA (0.2 mL) was added. The yellow solution was heated at reflux for 5 h before being cooled to rt. Et₂O (2 mL) was added and the organic phase was washed with saturated aq. NaHCO₃ (2 mL), dried (MgSO₄) and the solvent removed in vacuo. The crude nitroalkane was then used for HPLC analysis to measure the enantiomeric excess of the parent β -nitroamine.

These processes were validated by subjecting entry 18, Table 4 (Ar=Ph, R=Et, R¹=p-Me-Ph) measured by chiral HPLC (OD-H column, 99.5 % hexane 0.5% IPA) to be 96% *ee* to the above conditions which showed the parent nitroalkane had 95% *ee*.

Assignment of absolute and relative stereochemistry

We have assumed that the initial conjugate addition with ligands 7 and 8 gives the opposite enantiomers as characterised by Charette³ and Hoveyda.⁴

Entry 1/15. X-ray structures of each diastereoisomer confirmed relative stereochemistry.

Entry 2/17. The relative stereochemistry of these two diastereoisomers was assigned by analogy to the other compounds, Entry 2 slowly degraded by retro addition in CDCl₃ indicating *anti*- β -nitroamine stereochemistry⁵ and was reactive towards trifluoroacetic anhydride. Whereas Entry 17 was stable in CDCl₃, purification by chromatography and was unreactive towards trifluoroacetic anhydride, indicating *syn*- β -nitroamine stereochemistry.

Entry 3/18. Entry 3 slowly degraded by retro addition in $CDCl_3$ indicating *anti*- β -nitroamine stereochemistry⁵ and was reactive towards trifluoroacetic anhydride. X-ray confirmed relative stereochemistry of Entry 18, which was stable in $CDCl_3$ and purification by chromatography.

Entry 4. The same diastereoisomer was isolated as the trifluoroacetamide from a THF or PhMe nitro Mannich reaction (both homogeneous) using the Charette ligand 5 and the stereochemistry was assigned by analogy to the other compounds. The parent β -nitroamine before treatment with trifluoroacetic anhydride was unstable in CDCl₃ and collectively indicated *anti*- β -nitroamine stereochemistry.⁵

Entry 5/19. X-ray confirmed relative stereochemistry of Entry 5 which slowly degraded by retro addition in CDCl₃ and was reactive towards trifluoroacetic anhydride. Entry 19 was stable in CDCl₃ and purification by chromatography, indicating *syn*- β -nitroamine stereochemistry.

Entry 6/20. The relative stereochemistry of these two diastereoisomers was assigned by analogy to the other compounds. Entry 6 slowly degraded by retro addition in CDCl₃ indicating *anti*- β -nitroamine stereochemistry⁵ and was reactive towards trifluoroacetic anhydride. Whereas Entry 20 was stable in CDCl₃ and purification by chromatography, indicating *syn*- β -nitroamine stereochemistry.

Entry 7/21. X-ray confirmed relative stereochemistry of Entry 7 which slowly degraded by retro addition in CDCl₃ and was reactive towards trifluoroacetic anhydride. Entry 21 was stable in CDCl₃ and purification by chromatography, indicating *syn*- β -nitroamine stereochemistry.

Entry 8/16. The relative stereochemistry of these two diastereoisomers was assigned by analogy to the other compounds (especially Entry 1/15). Entry 8 slowly degraded by retro addition in CDCl₃ indicating *anti*- β -nitroamine stereochemistry⁵ and was reactive towards trifluoroacetic anhydride. Whereas Entry 16 was stable in CDCl₃ and purification by chromatography, indicating *syn*- β -nitroamine stereochemistry.

Entry 9/22. X-ray structures of each diastereoisomer confirmed the relative stereochemistry.

Entry 10/23. X-ray confirmed relative stereochemistry of Entry 10 which slowly degraded by retro addition in CDCl₃ indicating *anti*- β -nitroamine stereochemistry⁵ and was reactive towards trifluoroacetic anhydride. Entry 23 was stable in CDCl₃ and purification by chromatography, indicating *syn*- β -nitroamine stereochemistry.

Entry 11/24. Entry 11 slowly degrades by retro addition in CDCl₃ indicating *anti*- β -nitroamine stereochemistry⁵ and was reactive towards trifluoroacetic anhydride. X-ray confirmed the relative stereochemistry of Entry 24, which was stable in CDCl₃ and purification by chromatography.

Entry 12/25. The relative stereochemistry of these two diastereoisomers was assigned by analogy to the other compounds. Entry 12 slowly degraded by retro addition in CDCl₃ indicating *anti*- β -nitroamine stereochemistry⁵ and was reactive towards trifluoroacetic anhydride. Whereas Entry 25 was stable in CDCl₃ and purification by chromatography, indicating *syn*- β -nitroamine stereochemistry.

Entry 13. X-ray structure confirmed relative stereochemistry.

Entry 14. The relative stereochemistry of these two diastereoisomers was assigned by analogy to the other compounds. The *syn, anti-***a** diastereoisomer slowly degraded by retro addition in CDCl₃ indicating *anti-* β -nitroamine stereochemistry⁵ and was unstable on chromatography. Whereas *syn, syn-***b** was stable in CDCl₃ and purification by chromatography, indicating *syn-* β -nitroamine stereochemistry.

Entry 26. X-ray structure confirmed relative stereochemistry.

S7

Structures and X-ray structures for compounds in Table 4 Entry 1 - Cu(7)₂OTf, THF

Entry 2 - Cu(7)₂OTf, THF

Entry 3 - Cu(7)₂OTf, THF

Entry 4 - $Cu(7)_2OTf$, THF or PhMe

Entry 5 – Ligand 8, THF

Entry 6 - Ligand 8, THF

Entry 7 - Ligand 8, THF

Entry 8 - Ligand 8, THF

Entry 9 - Ligand 8, THF

X-ray of enantiomer.

Entry 10 - Ligand 8, THF

Entry 11 - Ligand 8, THF

Entry 26 - Ligand 8, PhMe

X-ray of enantiomer.

Entry 13 – no ligand, THF

Entry 14 – no ligand THF

•

Entry 15 - Cu(7)₂OTf, Et₂O

X-ray of enantiomer

Entry 16 – Ligand 8, PhMe

Entry 17 - Cu(7)₂OTf, Et₂O

Entry 18 - Cu(7)₂OTf, Et₂O

Entry 19 - Cu(7)₂OTf, Et₂O

Entry 20 - Ligand 8, PhMe

Entry 21 - Ligand 8, PhMe

Entry 22 - Ligand 8, PhMe

Entry 23 - Ligand 8, PhMe

Entry 24 - Ligand 8, PhMe

X-ray of enantiomer.

Entry 25 – no ligand, diethyl zinc addition in THF, nitro-Mannich in Et₂O

^{1.} a) Fieser, L. F.; Gates, M. J. Am. Chem. Soc. **1946**, 68, 2249. b) Melton, J.; McMurry, J. E. J. Org. Chem. **1975**, 40, 2138.

^{2.} a) Kumaran, G.; Kulkarni, G.H. Synthesis, 1995, 1545. b) Enders, D.; Wiedemann, J. Synthesis, 1996, 1443.

^{3.} Côté, A.; Charette, A.B. J. Org. Chem. 2005, 70, 10864.

^{4.} Mampreian, D. M.; Hoveyda, A. H. Org. Lett. 2004, 6, 2829.

^{5.} Adams, H.; Anderson, J. C.; Peace, S.; Pennell, A. M. K. J. Org Chem. 1998, 63, 9932.

¹H NMR Entry 1

Slot No. 53 Sample ID mrm313 SupervisorID ander Lab Phone No. 3 UserID m_mli

ı

Slot No. 39 Sample ID mrm399 SupervisorID ander Lab Phone No. 1 UserID m_mil

.

¹³C NMR Entry 4

¹H NMR Entry 6

1

Slot No. 41 Sample ID mrm410 SupervisorID ander Lab Phone No. 5 UserID m_mil

¹³C NMR Entry 9

¹³C NMR Entry 11

S51

¹H NMR Entry 20

S61

S64

S73

Slot No. 28 Sample ID mrm488 SupervisorID ander Lab Phone No. 1 UserID m_mli

S76