SUPPORTING INFORMATION FOR:

Mild Method for the Selective Esterification of Carboxylic Acids Based on the GareggSamuelsson Reaction

Sara P. Morcillo, ${ }^{\dagger}$ Luis Álvarez de Cienfuegos, ${ }^{\dagger}$ Antonio J. Mota, ${ }^{\ddagger}$ José Justicia ${ }^{\dagger}$ and Rafael Robles ${ }^{\dagger} *$
${ }^{\dagger}$ Department of Organic Chemistry and ${ }^{\ddagger}$ Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, C. U. Fuentenueva s/n, 18071 Granada, Spain.

Contents

- General details and experimental data S2-8
$-{ }^{1} \mathrm{H}$ for known compounds and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for new compounds \quad S9-50

General Details. All the solvents used in these reactions were freshly purified as is described. ${ }^{1}$ Products were purified by flash chromatography on Merck silica gel 50. Yields refer to analytically pure samples. NMR spectra were recorded in a NMR 400 MHz spectrometer. ${ }^{1} \mathrm{H}$ NMR: $\mathrm{CDCl}_{3}(\delta=7.26 \mathrm{ppm})$ in the indicated solvent as internal standard in the same solvent. ${ }^{13} \mathrm{C}$ NMR: $\mathrm{CDCl}_{3}(\delta=77.16 \mathrm{ppm})$ as internal standard in the same solvent; coupling constants measured in Hz and always given as $\mathrm{J}_{\mathrm{H}, \mathrm{H}}$ coupling constants. ${ }^{31} \mathrm{P}$ NMR spectra: in CDCl_{3} and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (when is indicated) with $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as external standard. The following known compounds were isolated as pure samples and showed NMR spectra matching those of the reported compounds: 2, ${ }^{2} \mathbf{3},{ }^{3} \mathbf{4},{ }^{4} \mathbf{1 8},{ }^{5} \mathbf{2 0},{ }^{6} \mathbf{2 6},{ }^{7} \mathbf{2 7},{ }^{8} \mathbf{2 9},{ }^{9} \mathbf{3 0},{ }^{10} \mathbf{3 1},{ }^{11} \mathbf{3 2},{ }^{12} \mathbf{3 3},{ }^{13}$ 34, ${ }^{14} \mathbf{4 0} .{ }^{15}$

Characterization of new compounds

5: (188 mg, 82\%), colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 5.89(\mathrm{~m}, 1 \mathrm{H}) 5.25(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.63$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$; DEPT) $\delta 172.5$ (C), 158.1 (C), 132.5 (CH), 132.2 (C), $129.3(\mathrm{CH}), 118.1\left(\mathrm{CH}_{2}\right), 113.9(\mathrm{CH}), 65.1\left(\mathrm{CH}_{2}\right)$, $55.2\left(\mathrm{CH}_{3}\right), 36.1\left(\mathrm{CH}_{2}\right), 30.1\left(\mathrm{CH}_{2}\right)$. HRMS (EI) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right] 220.1099$, found 220.1103 .

6: ($268 \mathrm{mg}, 37 \%$), yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 5.05-4.94(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.20(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$; DEPT) $\delta 172.7$ (C), 158.3 (C), 132.9 (C), 129.5 (CH), 114.1 (CH), $67.8(\mathrm{CH}), 55.4\left(\mathrm{CH}_{3}\right), 36.8\left(\mathrm{CH}_{2}\right)$, $30.4\left(\mathrm{CH}_{2}\right), 22.0\left(\mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{3}\right)$; HRMS (EI) m$/ \mathrm{z}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}\left[\mathrm{M}^{+}\right]$222.1256, found 222.1257.

7: $(92 \mathrm{mg}, 28 \%)$, colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.06(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $6.79(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.68(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}; DEPT) $\delta 172.5$ (C), 158.3 (C), 137.7 (C), 134.1 (C), 132.8 (C), 130.5 (C), 129.5 (C), 129.2 (C), 128.7 (C), 126.5 (C), 125.9 (C), 125.6 (C), 123.5 (C), 114.1 (C), 69.8 $(\mathrm{CH}), 55.5\left(\mathrm{CH}_{3}\right), 36.7\left(\mathrm{CH}_{2}\right), 30.4\left(\mathrm{CH}_{2}\right), 22.0\left(\mathrm{CH}_{3}\right) ;$ HRMS $(\mathrm{FAB}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ 357.1467 , found 357.1461 .

9: $(289 \mathrm{mg}, 99 \%)$, colorless oil; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{dd}, J=12.8,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $1.42-1.16(\mathrm{~m}, 12 \mathrm{H}), 0.89(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3} ; \mathrm{DEPT}\right) \delta 173.0(\mathrm{C}), 158.2$ (C), $133.3(\mathrm{C}), 129.6(\mathrm{CH}), 114.2(\mathrm{CH}), 55.6\left(\mathrm{CH}_{3}\right), 39.9\left(\mathrm{CH}_{2}\right), 39.2\left(\mathrm{CH}_{2}\right), 32.14\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right), 29.9$
$\left(\mathrm{CH}_{2}\right)$, $29.5\left(\mathrm{CH}_{2}\right)$, $27.2\left(\mathrm{CH}_{2}\right)$, $22.9\left(\mathrm{CH}_{3}\right)$; HRMS (EI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{~N}\left[\mathrm{M}^{+}\right]$291.2198, found 291.2199 .

10: ($230 \mathrm{mg}, 60 \%$), colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.21 (d, $J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$; DEPT) $\delta 170.7$ (C), 158.2 (C), 137.9 (CH), 137.5 (C), 132.4 (C), $129.3(\mathrm{CH}), 121.6(\mathrm{CH}), 114.1(\mathrm{CH}), 55.3\left(\mathrm{CH}_{3}\right), 39.8\left(\mathrm{CH}_{2}\right), 30.6\left(\mathrm{CH}_{2}\right)$; HRMS (EI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{NI}\left[\mathrm{M}^{+}\right]$381.0226, found 381.0227.

11: $(90 \mathrm{mg}, 32 \%)$, colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.13(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.13(\mathrm{dd}, J=8.5,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.55(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{sa}, 1 \mathrm{H}), 1.27(\mathrm{dt}, J=15.9,7.9 \mathrm{~Hz}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl ${ }_{3}$; DEPT) $\delta 170.3(\mathrm{C}), 158.2(\mathrm{C}), 133.9(\mathrm{C}), 114.1(\mathrm{C}), 55.4\left(\mathrm{CH}_{3}\right)$, $46.0\left(\mathrm{CH}_{2}\right)$, $35.6\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right)$, $30.2\left(\mathrm{CH}_{2}\right), 20.5\left(\mathrm{CH}_{2}\right), 20.3\left(\mathrm{CH}_{2}\right), 14.1\left(\mathrm{CH}_{3}\right), 14.0$ $\left(\mathrm{CH}_{3}\right) ;$ HRMS (EI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{~N}\left[\mathrm{M}^{+}\right] 291.2198$, found 291.2188 .

12: ($267 \mathrm{mg}, ~ 94 \%$), colorless oil, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 2 \mathrm{H}), 7.18(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, $2.90(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$; DEPT) $\delta 171.4(\mathrm{C}), 158.3(\mathrm{C}), 143.3(\mathrm{C}), 133.03(\mathrm{C}), 129.5(\mathrm{CH}), 128.8(\mathrm{CH}), 127.4(\mathrm{CH}), 126.3(\mathrm{CH})$, $114.1(\mathrm{CH}), 55.4\left(\mathrm{CH}_{3}\right), 48.8(\mathrm{CH}), 39.0\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right), 21.8\left(\mathrm{CH}_{3}\right)$; HRMS (EI) m$/ \mathrm{z}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~N}\left[\mathrm{M}^{+}\right]$283.1572, found 283.1581.

14: ($109 \mathrm{mg}, 99 \%$), yellow oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{t}, J=5.7$ $\mathrm{Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.40$ $(\mathrm{m}, 4 \mathrm{H}), 1.35(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3} ; \mathrm{DEPT}\right) \delta 173.5(\mathrm{C}), 158.6$ (C), $133.1(\mathrm{C}), 129.7(\mathrm{CH}), 114.4(\mathrm{CH}), 68.4(\mathrm{CH}), 64.8\left(\mathrm{CH}_{2}\right), 55.7\left(\mathrm{CH}_{3}\right), 39.3\left(\mathrm{CH}_{2}\right), 36.7\left(\mathrm{CH}_{2}\right), 30.6$ $\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 24.0\left(\mathrm{CH}_{3}\right), 22.5\left(\mathrm{CH}_{2}\right)$; HRMS (EI) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4}\left[\mathrm{M}^{+}\right] 280.1675$, found 280.1687.

28: ($162 \mathrm{mg}, 89 \%$), colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.64(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.18(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.84-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.29(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3} ;$ DEPT) $\delta 173.7(\mathrm{C}), 81.2(\mathrm{C}), 76.7(\mathrm{C}), 55.4\left(\mathrm{CH}_{3}\right), 51.5\left(\mathrm{CH}_{2}\right)$, $32.8\left(\mathrm{CH}_{2}\right), 31.1\left(\mathrm{CH}_{2}\right), 24.3\left(\mathrm{CH}_{2}\right)$, $21.9\left(\mathrm{CH}_{2}\right), 18.4\left(\mathrm{CH}_{3}\right), 13.6\left(\mathrm{CH}_{2}\right)$. HRMS (EI) m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{2}\left[\mathrm{M}^{+}+\mathrm{H}\right]$ 183.1385, found 183.1379.

37: $(252 \mathrm{mg}, 89 \%)$, colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.88-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.44-5.28(\mathrm{~m}, 2 \mathrm{H})$, $3.24(\mathrm{dd}, J=13.5,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.43$ $(\mathrm{m}, 1 \mathrm{H}), 1.41-1.34(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3} ;$ DEPT) $\delta 173.3$ (C), $139.3(\mathrm{CH}), 114.4\left(\mathrm{CH}_{2}\right), 39.8\left(\mathrm{CH}_{2}\right), 37.1\left(\mathrm{CH}_{2}\right), 34.0\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 29.5$
$\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right)$; HRMS (EI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{35} \mathrm{ON}\left[\mathrm{M}^{+}\right]$281.2719, found 281.2726.

38: ($270 \mathrm{mg}, 85 \%$), colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.53(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.24(\mathrm{dd}, J=$ $12.5,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.15(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.83-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{dd}, J=13.8,1.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.54-1.45$ $(\mathrm{m}, 2 \mathrm{H}), 1.45-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 16 \mathrm{H}), 0.88(\mathrm{t}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3} ;$ DEPT) § $173.3(\mathrm{C}) 45.5\left(\mathrm{CH}_{2}\right), 39.8\left(\mathrm{CH}_{2}\right), 37.2\left(\mathrm{CH}_{2}\right), 32.9\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right), 29.6$ $\left(\mathrm{CH}_{2}\right), 29.58\left(\mathrm{CH}_{2}\right), 29.57\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.1\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 27.1\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 22.96$ $\left(\mathrm{CH}_{2}\right), 14.4\left(\mathrm{CH}_{3}\right) ;$ HRMS (EI) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{ONCl}\left[\mathrm{M}^{+}\right] 317.2485$, found 317.2481.

39: (139 mg, 88\%), colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.39(\mathrm{~m}$, $2 \mathrm{H}), 7.29-7.23(\mathrm{C}), 6.52(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{dd}, J=12.5,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.69-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.1$ $(\mathrm{m}, 12 \mathrm{H}), 0.83(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$; DEPT) $\delta 166.1$ (C), $140.7(\mathrm{CH}), 135.2$ (C), $129.7(\mathrm{CH}), 129.0(\mathrm{CH}), 128.0(\mathrm{CH}), 121.5(\mathrm{CH}), 40.1\left(\mathrm{CH}_{2}\right), 32.1\left(\mathrm{CH}_{2}\right), 30.0\left(\mathrm{CH}_{2}\right), 29.6\left(\mathrm{CH}_{2}\right)$, $29.5\left(\mathrm{CH}_{2}\right), 27.3\left(\mathrm{CH}_{2}\right), 22.9\left(\mathrm{CH}_{2}\right), 14.3\left(\mathrm{CH}_{3}\right) ;$ HRMS $(\mathrm{FAB}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{ON}\left[\mathrm{M}^{+}\right]$259.1936, found 259.1938.

Synthesis of acid 18

Synthesis of acid 18: To a solution of alcohol $41(300 \mathrm{mg}, 1.75 \mathrm{mmol})$ in acetone $(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, Jones reagent $(1 \mathrm{~mL})$ was added dropwise and the new solution was stirred for 2 h at $0^{\circ} \mathrm{C}$. Then, the solvent was removed, the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and washed with brine. The organic layer was dried (anhyd $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and the solvent removed. The residue was submitted to flash chromatography (EtOAc/Hexane, 4/6) to give alcohol 18 ($294 \mathrm{mg}, 91 \%$) as a colorless oil.

Synthesis of acid 20

Synthesis of tosylate 43: To a solution of diol $42(500 \mathrm{mg}, 3.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL}), \mathrm{TsCl}(475 \mathrm{mg}$, $2.5 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(315 \mathrm{mg}, 3.1 \mathrm{mmol})$ were added, and the mixture was stirred at room temperature for 6 h . Then, the solvent was removed. The residue was submitted to flash chromatography (EtOAc/Hexane, $35 / 65$) to give alcohol 43 ($397 \mathrm{mg}, 41 \%$) as a colorless oil. Its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra matched with previously described. ${ }^{16}$

Synthesis of azide 44: To a solution of tosylate $43(197 \mathrm{mg}, 0.63 \mathrm{mmol})$ in DMF (25 mL) , $\mathrm{NaN}_{3}(49 \mathrm{mg}$, 0.75 mmol) was added and the mixture was heated at reflux for 2 h . Then, AcOEt (40 mL) was added and
the organic layer was washed with brine, dried (anhyd $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and the solvent removed. The residue was submitted to flash chromatography (EtOAc/Hexane, 1/1) to give azide $44(83 \mathrm{mg}, 66 \%)$ as a colorless oil. Its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra matched with previously described. ${ }^{17}$

Synthesis of acid 20: To a solution of azide $44(83 \mathrm{mg}, 0.41 \mathrm{mmol})$ in acetone $(15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, Jones reagent $(0.4 \mathrm{~mL})$ was added dropwise and the new solution was stirred for 2 h at $0^{\circ} \mathrm{C}$. Then, the solvent was removed, the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and washed with brine. The organic layer was dried (anhyd $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and the solvent removed. The residue was submitted to flash chromatography (EtOAc/Hexane, 4/6) to give alcohol $20(75 \mathrm{mg}, 77 \%)$ as a colorless oil.

Synthesis of acid 21

Synthesis of acid 21: To a solution of tosylate $\mathbf{4 3}(180 \mathrm{mg}, 0.57 \mathrm{mmol})$ in acetone $(15 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, Jones reagent (1 mL) was added dropwise and the new solution was stirred for 2 h at $0^{\circ} \mathrm{C}$. Then, the solvent was removed, the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and washed with brine. The organic layer was dried (anhyd $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and the solvent removed. The residue was submitted to flash chromatography (EtOAc/Hexane, 4/6) to give alcohol $21(116 \mathrm{mg}, 60 \%)$ as a colorless oil; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 1.70-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.05(\mathrm{~m}, 10 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl ${ }_{3}$; DEPT) $\delta 179.2(\mathrm{C}), 144.6$ (C), $133.4(\mathrm{C}), 129.8(\mathrm{CH}), 127.9(\mathrm{CH}), 70.6\left(\mathrm{CH}_{2}\right), 53.4\left(\mathrm{CH}_{2}\right), 33.9\left(\mathrm{CH}_{2}\right), 29.0\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{2}\right), 24.6$ $\left(\mathrm{CH}_{2}\right), 21.6\left(\mathrm{CH}_{3}\right)$; HRMS (FAB) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{SNa}\left[\mathrm{M}^{+}+\mathrm{Na}\right] 365.1399$, found 365.1410.

${ }^{31}$ P NMR of the proposed intermediates

a) $\mathrm{Ph}_{3} \mathrm{P}$

b) $\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{II}^{-}(\mathbf{I})$

c)

(II)

References.

1.- Armarego, W. L. F.; Chai, C. L. L. Purification of Laboratory Chemical, $5^{\text {th }}$ Ed.; Elsevier Science, New York, 2003.
2.- Smith, P. L.; Keane, J. M.; Shankman, S. E.; Chordia, M. D.; Harman, W. D. J. Am. Chem. Soc. 2004, 126, 15543-15551.
3.- Amatore, M.; Gosmini, C.; Perichon, J. J. Org. Chem. 2006, 71, 6130-6134.
4.- Kumar, V.; Sharma, A. K.; Sinha, A. S. Helv. Chim. Acta 2006, 89, 483-495.
5.- Pirali, T.; Pagliai, F.; Mercurio, C.; Boggio, R.; Canonico, P. L.; Sorba, G.; Tron, G. C.; Genazzani, A. A. J. Comb. Chem. 2008, 10, 624-627.
6.- Amara, N.; Mashiach, R.; Amar, D.; Krief, P.; Spieser, S. A. H.; Bottomley, M. J.; Aharoni, A.; Meijler, M. M. J. Am. Chem. Soc. 2009, 131, 10610-10619.
7.- Fraunhoffer, K. J.; Bachovchin, D. A.; White, M. C. Org. Lett. 2005, 7, 223-226.
8.- Crosignani, S.; White, P. D.; Linclau, B. J. Org. Chem. 2004, 69, 5897-5905.
9.- Dickson, H.; Gung, B. J. Org. Lett. 2004, 4 , 2517-2519.
10.- Miyamoto, K.; Sei, Y.; Yamaguchi, K.; Ochiai, M. J. Am. Chem. Soc. 2009, 131, 1382-1383.
11.- Oyelere, A. K.; Chen, P. C.; Guerrant, W.; Mwakwari, S. C.; Hood, R.; Zhang,Y.; Fan, Y. J. Med. Chem. 2009, 52, 456-468.
12.- Ferrari, B.; Pavia, A. Bioorg. Chem. 1982, 11, 85-95.
13.- Cvengros, J.; Schütte, J.; Schlörer, N.; Neudörfl, N.; Schmalz, H. G. Angew. Chem. Int. Ed. 2009, 48, 6148-6151.
14.- Liu, X.; Xin, W.; Zhang, J. Green Chem. 2009, 11, 1018-1025.
15.- Reddy, K. R.; Maheswari, C. U.; Venkateshwar, M.; Kantam, M. L. Eur. J. Org. Chem. 2008, 36193622.
16.- Zhu, H.; WIckenden, J. G.; Campbell, N. E.; Leung, J. C. T.; Johnson, K. M.; Sammis, G. M. Org. Lett. 2009, 11, 2019-2022.
17.- Fritschi, S. P.; Linden, A.; Heimgartner, H. Heterocycles 2009, 79, 985-1005.

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR SPECTRA FOR KNOWN AND NEW COMPOUNDS

 -

岂

$$
1
$$

2

N

- 几
-6
σ

出

carbono

Jos-65
RMN-674-10
A-56-semi-7

n
\equiv
comes
SP2-51-proton
SP2-51-carbono
$\stackrel{Y}{i}$

comen

SP2-45

sp2-47
Sp2 47
AC 264 B
 $\stackrel{\circ}{\circ}$

