Enantioselective synthesis of all diastereomers of heptadeca-1-ene-4,6-diyne-3,8,9,10-tetrol; Putative structure of a conjugated diyne natural product isolated from *Hydrocotyle leucocephala*

Kavirayani R. Prasad* and Bandita Swain

Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India

Supplementary information

S4-S7 :	General procedures and NMR spectral data
S 8:	¹ H and ¹³ C spectrum of Compound 7
S 9:	¹ H and ¹³ C spectrum of Compound 5
S 10:	¹ H and ¹³ C spectrum of Compound 8
S 11:	H and ¹³ C spectrum of Compound 9
S 12:	¹ H and ¹³ C spectrum of silyloxy ether of 9
S 13:	¹ H and ¹³ C spectrum of Compound 4
S 14:	¹ H and ¹³ C spectrum of Compound 10
S 15:	¹ H and ¹³ C spectrum of Compound 11
S 16:	¹ H and ¹³ C spectrum of Compound 3
S 17:	¹ H and ¹³ C spectrum of <i>p</i> -nitrobenzoate of 18
S 18:	¹ H and ¹³ C spectrum of Compound 18
S 19:	¹ H and ¹³ C spectrum of Compound 19
S 20:	¹ H and ¹³ C spectrum of 2- <i>epi</i> -4
S 21:	¹ H and ¹³ C spectrum of 3- <i>epi</i> - 10
S 22:	¹ H and ¹³ C spectrum of intermediate Compound for
	synthesis of 17
S 23:	¹ H and ¹³ C spectrum of 3- <i>epi</i> - 11
S 24:	¹ H and ¹³ C spectrum of Compound 17
S 25:	¹ H and ¹³ C spectrum of Compound 24

S 26:	¹ H and ¹³ C spectrum of Compound 22
S 27:	¹ H and ¹³ C spectrum of 1-benzyloxy 22
S 28:	¹ H and ¹³ C spectrum of Compound 25
S 29:	¹ H and ¹³ C spectrum of Compound 26
S 30:	¹ H and ¹³ C spectrum of Compound 27
S 31:	¹ H and ¹³ C spectrum of Compound 28
S 32:	¹ H and ¹³ C spectrum of Compound 29
S 33:	¹ H and ¹³ C spectrum of Compound 21
S 34:	¹ H and ¹³ C spectrum of Compound 12
S 35:	¹ H and ¹³ C spectrum of Compound 13
S 36:	¹ H and ¹³ C spectrum of Compound 14
S 37:	¹ H and ¹³ C spectrum of Compound 15
S 38:	¹ H and ¹³ C spectrum of Compound 2a
S 39:	¹ H and ¹³ C spectrum of Compound 16
S 40:	¹ H spectrum of Compound 1c
S 41:	¹³ C spectrum of Compound 1c
S 42:	¹ H and ¹³ C spectrum of 3- <i>epi</i> -16
S 43:	¹ H and ¹³ C spectrum of Compound 1d
S 44:	¹ H and ¹³ C spectrum of Compound 20
S 45:	¹ H and ¹³ C spectrum of Compound 1e
S 46:	¹ H and ¹³ C spectrum of intermediate Compound for
	synthesis of 1f
S 47:	¹ H and ¹³ C spectrum of Compound 1f
S 48:	¹ H and ¹³ C spectrum of 3,8-bis- <i>epi</i> - 16
S 49:	¹ H and ¹³ C spectrum of Compound 1g
S 50:	¹ H and ¹³ C spectrum of intermediate Compound for
	synthesis of 1h
S 51:	¹ H and ¹³ C spectrum of Compound 1h

General Procedures: Column chromatography was performed on silica gel, Acme grade 100-200 mesh. TLC plates were visualized either with UV, in an iodine chamber, or with phosphomolybdic acid spray, unless noted otherwise. Unless stated otherwise, all reagents were purchased from commercial sources and used without additional purification. THF was freshly distilled over Na-benzophenone ketyl. Melting points were uncorrected. Unless stated otherwise, ¹H NMR and ¹³C NMR spectra were recorded either on a 400 or on a 300 MHz machine in CDCl₃ as solvent with TMS as reference unless otherwise indicated. Unless stated otherwise, all the reactions were performed under inert atmosphere.

Compound was synthesized following the same procedure described for the synthesis of **16** in 43% yield. R_f 0.4 (1:9 EtOAc/petroleum ether); $[\alpha]_D^{26}$ + 132.3 (*c* 1.30, CHCl₃); IR (neat) 3421, 2954, 2931, 2858, 1250, 1214, 1111, 1059 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.74–7.64 (m, 4H), 7.44–7.37 (m, 6H), 5.84 (ddd, 1H, *J* = 16.8, 10.1, 5.4 Hz), 5.27 (d, 1H, *J* = 16.9 Hz), 5.13 (d, 1H, *J* = 10.1 Hz), 4.84 (d, 1H, *J* = 5.3 Hz), 4.39 (t, 1H, *J* = 4.9 Hz), 3.95 (dt, 1H, *J* = 7.7, 4.1 Hz), 3.74 (dd, 1H, *J* = 7.6, 4.8 Hz), 2.48 (brd, 1H, *J* = 5.6 Hz), 1.65–1.23 (m, 18 H), 1.09 (s, 9H), 0.87 (t, 3H, *J* = 7 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 135.8, 135.5, 135.3, 132.6, 132.4, 129.5, 127.22, 127.20, 115.7, 109.1, 82.6, 78.7, 77.2, 70.0, 69.0, 64.5, 62.8, 32.1, 31.3, 29.1, 28.7, 27.1, 26.6, 26.4, 25.5, 22.2, 18.9, 13.7; HRMS (*m*/*z*): [M + Na]⁺ calcd for C₃₆H₄₈O₄Si, 595.3220; found, 595.3221.

Compound **1d** was synthesized following same procedure described for the synthesis of **1c** as a white solid in 68% yield. R_f 0.5 (3:2 EtOAc/petroleum ether); mp 111–112 °C; $[\alpha]_D^{26}$ + 34.4 (*c* 1.40, MeOH); IR (KBr) 3271, 2918, 2851, 1431, 1079, 1015 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 5.91 (ddd, 1H, *J* = 16.7, 10.1, 5.4 Hz), 5.40 (dd, 1H, *J* = 17.0, 1.1 Hz), 5.19 (dd, 1H, *J* = 10.1, 1.1 Hz), 4.44 (d, 1H, *J* = 7.5 Hz), 3.76 (t, 1H, *J* = 5.8 Hz), 3.38 (d, 1H, *J* = 7.5 Hz), 3.30 (s, 1H), 1.57–1.33 (m, 12H), 0.90 (t, 3H, *J* = 6.5 Hz); ¹³C NMR (100 MHz, CD₃OD) δ 138.0, 116.6, 79.9, 79.6, 77.6, 72.0, 70.4, 70.0, 65.4, 63.8, 34.9, 33.0, 30.7, 30.4, 26.9, 23.7, 14.4; HRMS (*m*/*z*): [M + Na]⁺ calcd for C₁₇H₂₆O₄, 317.1729; found, 317.1714.

$$MeO \xrightarrow{I}_{TBSO} C_7H_{15} \xrightarrow{LiBH_4, THF,} HO \xrightarrow{I}_{TBSO} C_7H_{15}$$

Reaction is performed similar to that described for the synthesis of **4** in 88% yield as colorless oil. R_f 0.5 (3:7 EtOAc/petroleum ether); $[\alpha]_D^{26}$ + 12.1 (*c* 3.50, CHCl₃); IR (neat) 3490, 2955, 2930, 1464, 1255 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.92–3.87 (m, 1H), 3.73–3.66 (m, 4H), 2.25–2.22 (m, 1H), 1.71–1.20 (m, 18H), 0.96–0.84 (m, 12H), 0.12 (s, 3H), 0.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 108.6, 81.2, 80.4, 73.9, 65.0, 34.6, 31.6, 29.6, 29.1, 27.3, 27.0, 26.2, 25.6, 22.5, 17.8, 14.0, -4.4, -4.6; HRMS (*m/z*): [M + Na]⁺ calcd for C₂₀H₄₂O₄Si, 397.2750; found, 397.2754.

Dibromoolefin is synthesized following the same procedure described for compound **10** in 82% yield. R_f 0.6 (5:95 EtOAc/petroleum ether); $[\alpha]_D^{26}$ + 8.5 (*c* 3.30, CHCl₃); IR (neat) 2954, 2930, 2858, 1253, 1076 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.40 (d, 1H, *J* = 8.4 Hz), 4.34–4.33 (brm, 1H), 3.94–3.90 (brm, 1H), 3.61 (t, 1H, *J* = 6.3 Hz), 1.60–1.28 (m, 18H), 0.88 (s, 12H), 0.11 (s, 3H), 0.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.7, 109.0, 90.9, 82.8, 78.5, 74.5, 34.3, 31.7, 29.6, 29.1, 27.5, 26.8, 26.1, 25.7, 22.6, 14.0, – 4.4, –4.8; HRMS (*m*/*z*): [M + Na]⁺ calcd for C₂₁H₄₀Br₂O₃Si, 551.1098; found, 551.1053.

alkyne is synthesized following the same procedure that is described for the synthesis of **11** in 64% yield as colorless oil. R_f 0.5 (5:95 EtOAc/petroleum ether); $[\alpha]_D^{-26} - 10.3$ (*c* 2.20, CHCl₃); IR (neat) 3312,2955, 2930, 2858, 1464, 1253, 1087 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 4.39 (dd, 1H, J = 5.7, 2.1 Hz), 4.01 (dt, 1H, J = 8.4, 3.1 Hz), 3.71 (dd, 1H, J = 7.1, 5.8 Hz), 2.46 (d, 1H, J = 2.1 Hz), 1.75–1.26 (m, 18H), 0.91–0.85 (m, 12H), 0.16 (s, 3H), 0.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 108.9, 83.0, 78.5, 73.9, 63.9, 34.5, 31.7, 29.6, 29.1, 27.5, 27.0, 26.1, 25.7, 22.6, 18.1, 14.0, -4.7, -5.0; HRMS (*m/z*): [M + Na]⁺ calcd for C₂₁H₄₀O₃Si, 391.2644; found, 391.2636.

Silyl deprotection is performed following the same procedure that is described for the synthesis of **11** in 77% yield as colorless oil. R_f 0.6 (1:4 EtOAc/petroleum ether); $[\alpha]_D^{26}$ + 22.7 (*c* 2.30, CHCl₃); IR (neat) 3437, 3311, 2928, 2858, 1372 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.55–4.47 (m, 1H), 4.07 (dt, 1H, *J* = 8.1, 3.6 Hz), 3.79 (dd, 1H, *J* = 7.8, 3.8 Hz), 2.61 (d, 1H, *J* = 5.4 Hz), 2.54 (d, 1H, *J* = 2.2 Hz), 1.80–1.49 (m, 3H), 1.43 (s, 6H), 1.38–1.25 (m, 9H), 0.88 (t, 3H, *J* = 6.7 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 109.0, 82.3, 80.8, 77.3, 75.0, 62.2, 33.9, 31.7, 29.5, 29.0, 27.4, 26.8, 25.9, 22.5, 14.0; HRMS (*m/z*): [M + Na]⁺ calcd for C₁₅H₂₆O₃, 277.1780; found, 277.1779.

Bromo alkyne is prepared following the same procedure that is described for the synthesis of **3** 98% yield. R_f 0.6 (1:4 EtOAc/petroleum ether); $[\alpha]_D^{26}$ + 13.8 (*c* 3.0, CHCl₃); IR (neat) 3444, 2927, 2858, 1493 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.51 (t, 1H, *J* = 4.5 Hz), 4.05 (dt, 1H, *J* = 7.9, 3.9 Hz), 3.78 (dd, 1H, *J* = 7.8, 3.4 Hz), 2.74–2.69 (m, 1H), 1.77–1.28 (m, 18 H), 0.88 (t, 3H, *J* = 6.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 109.3, 82.5, 77.3, 77.2, 63.2, 47.4, 33.8, 31.7, 29.5, 29.1, 27.5, 26.8, 25.9, 22.6, 14.0; HRMS (*m/z*): [M + Na]⁺ calcd for C₁₅H₂₅BrO₃, 355.0885; found, 355.0891.

The diyne was synthesized following the same procedure described for the synthesis of **16**. Yield 47% (colorless oil). R_f 0.4 (1:9 EtOAc/petroleum ether); $[\alpha]_D^{26} - 85.8$ (*c* 3.20, CHCl₃); IR (neat) 3421, 2955, 2931, 2858, 1111, 1060 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.73–7.64 (m, 4H), 7.44–7.35 (m, 6H), 5.84 (ddd, 1H, J = 16.6, 10.1, 5.4 Hz), 5.28 (d, 1H, J = 16.9 Hz), 5.13 (d, 1H, J = 10.1 Hz), 4.84 (d, 1H, J = 5.3 Hz), 4.53 (s, 1H), 4.03 (dt, 1H, J = 7.9, 4.0 Hz), 3.78 (dd, 1H, J = 7.8, 3.5 Hz), 2.47 (brs, 1H), 1.66–1.27 (m, 18H), 1.08–1.07 (m, 9H), 0.87 (t, 3H, J = 6.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 136.2, 135.9, 135.7, 134.7, 133.0, 132.7, 129.9, 129.6, 127.7, 127.61, 127.60, 116.1, 109.3, 82.5, 78.9, 77.3, 76.4, 71.1, 69.3, 64.8, 63.1, 33.7, 31.7, 29.5, 29.1, 27.5, 26.8, 26.7, 26.5, 25.9, 22.6, 19.3, 14.1; HRMS (m/z): [M + Na]⁺ calcd for C₃₆H₄₈O₄Si, 595.3220; found, 595.3224.

Compound **1f** was synthesized following a similar procedure that is described for the synthesis of **1c**. Yield 75% (Gummy mass). R_f 0.5 (3:2 EtOAc/petroleum ether); $[\alpha]_D^{26}$ + 28.2 (*c* 1.10, MeOH); IR (KBr) 3365, 2926, 2856, 2429, 1022 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 5.90 (ddd, 1H, *J* = 16.9, 10.1, 5.5 Hz), 5.39 (d, 1H, *J* = 17.0 Hz), 5.18 (d, 1H, *J* = 10.1 Hz), 4.42 (d, 1H, *J* = 7.3 Hz), 3.84–3.75 (m, 1H), 3.37 (dd, 1H, *J* = 2.4, 7.3 Hz), 3.30 (s, 1H), 1.57–1.30 (m, 12H), 0.90 (t, 3H, *J* = 6.9 Hz); ¹³C NMR (100 MHz, CD₃OD) δ 136.6, 115.1, 80.0, 77.5, 75.2, 69.6, 68.9, 68.1, 63.2, 62.4, 33.1, 31.6, 29.3, 29.0, 25.5, 22.3, 13.0; HRMS (*m*/*z*): [M + Na]⁺ calcd for C₁₇H₂₆O₄, 317.1729; found, 317.1713.

Compound diyne was synthesized following the same procedure as for **16.** Yield 58%. R_f 0.4 (1:9 EtOAc/petroleum ether); $[\alpha]_D^{26}$ + 155.3 (*c* 2.90, CHCl₃); IR (neat) 3414, 2953, 2930, 2858, 1112, 1059 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.74–7.65 (m, 4H), 7.43–7.37 (m, 6H), 5.85 (ddd, 1H, *J* = 16.7, 10.1, 5.4 Hz), 5.29 (d, 1H, *J* = 16.9 Hz), 5.12 (d, 1H, *J* = 10.1 Hz), 4.84 (d, 1H, *J* = 5.3 Hz), 4.40 (m, 1H), 4.20 (dt, 1H, *J* = 10.1, 5.8 Hz), 4.13–4.09 (m, 1H), 2.46 (brs, 1H), 1.75–1.24 (m, 18H), 1.09 (s, 9H), 0.88 (t, 3H, *J* = 6.9 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 136.3, 135.9, 135.7, 134.8, 133.0, 132.8, 129.8, 127.61, 127.60, 116.1, 108.6, 79.7, 78.7, 78.0, 77.2, 70.9, 69.7, 64.9, 63.0, 31.7, 29.5, 29.2, 28.8, 27.3, 27.0, 26.8, 26.5, 25.3, 22.6, 19.3, 14.1; HRMS (*m*/*z*): [M + Na]⁺ calcd for C₃₆H₄₈O₄Si, 595.3220; found, 595.3205.

Preparation of 1g: Compound **1g** was synthesized following the same procedure as for **1c.** Yield 77% (Yellow oil). R_f 0.5 (3:2 EtOAc/petroleum ether); $[\alpha]_D^{26} - 41.7$ (*c* 2.3, MeOH); IR (neat) 3352, 2954, 2925, 2855, 1406, 1021 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.91 (ddd, 1H, J = 16.6, 10.1, 5.3 Hz), 5.46 (d, 1H, J = 16.9 Hz), 5.24 (d, 1H, J = 10.1 Hz), 4.93 (d, 1H, J = 4.4 Hz), 4.75 (brs, 2H), 4.52 (brs, 1H), 3.98 (brs, 1H), 3.68–3.65 (brm, 2H), 3.42 (brs, 1H), 1.76–1.27 (m, 12H), 0.88 (t, 3H, J = 6.9 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 135.6, 117.4, 78.4, 78.1, 76.4, 72.9, 70.5, 70.2, 64.7, 63.1, 33.3, 31.9,

29.7, 29.4, 25.6, 22.6, 14.1; HRMS (m/z): $[M + Na]^+$ calcd for $C_{17}H_{26}O_4$, 317.1729; found, 317.1713.

Conjugated diyne was synthesized following the same procedure as for **16**. Yield 55% (colorless oil). R_f 0.4 (1:9 EtOAc/petroleum ether); $[\alpha]_D^{26} - 72.6$ (*c* 2.5, CHCl₃); IR(neat) 3414, 2954, 2930, 2858, 1111, 1058, 702 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.74–7.64 (m, 4H), 7.43–7.36 (m, 6H), 5.84 (ddd, 1H, *J* = 16.9, 10.1, 5.4 Hz), 5.27 (dd, 1H, *J* = 17.0, 1.2 Hz), 5.12 (d, 1H, *J* = 10.1 Hz), 4.83 (d, 1H, *J* = 5.3 Hz), 4.40 (dd, 1H, *J* = 7.1, 5.0 Hz), 4.20 (ddd, 1H, *J* = 13.5, 6.1, 4.4 Hz), 4.09 (m, 1H), 2.23 (brd, 1H, *J* = 7.3 Hz), 1.76–1.21 (m, 18H), 1.08–1.04 (m, 9H), 0.87 (t, 3H, *J* = 7 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 136.3, 135.9, 135.8, 134.8, 133.0, 132.8, 129.8, 129.6, 127.7, 127.61, 127.60, 116.1, 108.6, 79.7, 78.7, 78.0, 77.2, 70.9, 69.7, 64.9, 63.0, 31.7, 29.5, 29.2, 28.8, 27.3, 27.0, 26.8, 26.5, 25.3, 22.6, 19.3, 14.0; HRMS (*m*/*z*): [M + Na]⁺ calcd for C₃₆H₄₈O₄Si, 595.3220; found, 595.3213.

Compound **1h** was synthesized following the same procedure as for **1c.** Yield 63% (Gummy mass). R_f 0.5 (3:2 EtOAc/petroleum ether); $[\alpha]_D^{26} + 11.9$ (*c* 1.4, MeOH); IR (neat) 3305, 2918, 1453, 1290, 1071, 1013 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 5.91 (ddd, 1H, J = 16.9, 10.1, 5.5 Hz), 5.40 (d, 1H, J = 17 Hz), 5.19 (d, 1H, J = 10.1 Hz), 4.64 (d, 1H, J = 3.9 Hz), 3,56–3.52 (m, 1H), 3.44 (dd, 1H, J = 8.1, 4.0 Hz), 3.31 (brs, 1H), 1.78–1.32 (m, 12H), 0.91 (t, 3H, J = 6.9 Hz); ¹³C NMR (100 MHz, CD₃OD) δ 138.1, 116.6, 79.9, 78.8, 78.4, 73.1, 70.5, 70.2, 65.6, 63.8, 34.2, 33.0, 30.8, 30.5, 26.4, 23.7, 14.4; HRMS (m/z): [M + Na]⁺ calcd for C₁₇H₂₆O₄, 317.1729; found, 317.1724.

220 200 180 160 140 120 100 80 60 40 20 0

220 200 180 160 140 120 100 B0 60 40 20 0

