# **Supporting Information**

# Dihydropyranone Formation by *Ipso* C–H Activation in a Glucal 3-Carbamate-Derived Rhodium Acyl Nitrenoid

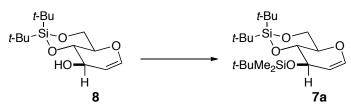
Brisa Hurlocker, Nadia C. Abascal, Lindsay M. Repka, Elsy Santizo-Deleon, Abigail L. Smenton, Victoria Baranov, Ritu Gupta, Sarah E. Bernard, Shenjuti Chowdhury, and Christian M. Rojas\*

Department of Chemistry, Barnard College, 3009 Broadway, New York, New York 10027

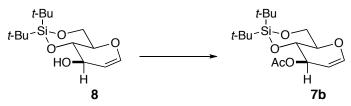
| Contents                                                                                                         | <b>Pages</b> |
|------------------------------------------------------------------------------------------------------------------|--------------|
| General experimental information                                                                                 | <b>S</b> 3   |
| Part 1. Synthesis of compounds 7 for control experiments                                                         | S4-S6        |
| 3-O-tert-Butyldimethylsilyl-4,6-O-di-tert-butylsilylene-D-glucal (7a)                                            | S4           |
| 3-O-Acetyl-4,6-O-di- <i>tert</i> -butylsilylene-D-glucal (7b)                                                    | S4           |
| 4,6- <i>O</i> -Di- <i>tert</i> -butylsilylene-3- <i>O</i> -( <i>N</i> -tosyl)carbamoyl-D-glucal ( <b>7</b> c)    | S5           |
| 4,6- <i>O</i> -Di- <i>tert</i> -butylsilylene-3- <i>O</i> -( <i>N</i> -phenyl)carbamoyl-D-glucal ( <b>7d</b> )   | S5           |
| 4,6- <i>O</i> -Isopropylidene-3- <i>O</i> -( <i>N</i> -phenyl)carbamoyl-D-allal ( <b>7e</b> )                    | S6           |
| Part 2. Experiments with compounds 1 and 7                                                                       | S6-S9        |
| General Procedure                                                                                                | S6           |
| Product ratios in amidoglycosylation with primary carbamate <b>1</b>                                             | S7           |
| Control experiment with <b>1</b> omitting the catalyst                                                           | S7           |
| Control experiments with 1 and Lewis acid catalysts                                                              | S7           |
| Control experiment with 6                                                                                        | S8           |
| Control experiments with 7a and 7b                                                                               | S8           |
| Control experiments with 7c and 7d                                                                               | S8           |
| Control experiment with 7e                                                                                       | S9           |
| Part 3. Synthesis of <i>N</i> -tosyloxycarbamate 10 and glucal 3-azidoformate 11                                 | S9-11        |
| 4,6- <i>O</i> -Di- <i>tert</i> -butylsilylene-3- <i>O</i> -( <i>N</i> -hydroxy)carbamoyl-D-glucal ( <b>9</b> )   | S9           |
| 4,6- <i>O</i> -Di- <i>tert</i> -butylsilylene-3- <i>O</i> -( <i>N</i> -tosyloxy)carbamoyl-D-glucal ( <b>10</b> ) | S10          |
| 4,6-O-Di-tert-butylsilylene-3-O-carbonylazido-D-glucal (11)                                                      | S10          |
| Part 4. Investigations with N-tosyloxycarbamate 10                                                               | S11-13       |
| Reaction of <b>10</b> in the absence of alcohol with $Rh_2(OAc)_4$ catalysis                                     | S11          |
| Reaction of <b>10</b> in the presence of 4-penten-1-ol with $Rh_2(OAc)_4$ catalysis                              | S12          |
| Statistical comparison of results from iodine(III)-mediated reaction of <b>1</b> with reaction of <b>10</b>      | S12          |
| Control experiments using <b>10</b> in the absence of rhodium or base                                            | S13          |
| Reaction of <b>10</b> in the presence of 4-penten-1-ol with (CuOTf) <sub>2</sub> •PhH catalysis                  | <b>S</b> 13  |
| Table of Contents continued on next page                                                                         |              |

| Contents (continued)                                                                                                                                                                  |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Part 5. Investigations with glucal 3-azidoformate 11                                                                                                                                  | S13-14 |
| General photolysis procedure                                                                                                                                                          | S13    |
| General thermolysis procedure                                                                                                                                                         | S14    |
| Tabular summary of results for reactions of <b>11</b>                                                                                                                                 | S14    |
| Part 6. Stability of dihydropyranone 3 under the reaction conditions                                                                                                                  | S15    |
| Independent preparation of dihydropyranone <b>3</b>                                                                                                                                   | S15    |
| Control experiments with dihydropyranone <b>3</b>                                                                                                                                     | S15    |
| Copies of <sup>1</sup> H and <sup>13</sup> C NMR spectra                                                                                                                              | S16-39 |
| 4,6- <i>O</i> -Di- <i>tert</i> -butylsilylene-3- <i>O</i> -carbamoyl-D-glucal (1). <sup>1</sup> H NMR                                                                                 | S16    |
| 4-Pentenyl 2-amino-2- <i>N</i> -3- <i>O</i> -carbonyl-2-deoxy-4,6- <i>O</i> -di- <i>tert</i> -butylsilylene- $\alpha$ -D-mannopyrano-side ( <b>2</b> - $\alpha$ ). <sup>1</sup> H NMR | S17    |
| 4-Pentenyl 2-amino-2- <i>N</i> -3- <i>O</i> -carbonyl-2-deoxy-4,6- <i>O</i> -di- <i>tert</i> -butylsilylene- $\beta$ -D-mannopyrano-side ( <b>2-</b> $\beta$ ). <sup>1</sup> H NMR    | S18    |
| 1,2-Dideoxy-4,6-O-di- <i>tert</i> -butylsilylene-D-erythro-hex-1-enopyran-3-ulose ( <b>3</b> ). <sup>1</sup> H NMR                                                                    | S19    |
| 3-O-tert-Butyldimethylsilyl-4,6-O-di-tert-butylsilylene-D-glucal (7a). <sup>1</sup> H and <sup>13</sup> C NMR                                                                         | S20-21 |
| 3-O-Acetyl-4,6-O-di- <i>tert</i> -butylsilylene-D-glucal (7b). <sup>1</sup> H and <sup>13</sup> C NMR                                                                                 | S22-23 |
| 4,6- <i>O</i> -Di- <i>tert</i> -butylsilylene-3- <i>O</i> -( <i>N</i> -tosyl)carbamoyl-D-glucal ( <b>7c</b> ). <sup>1</sup> H and <sup>13</sup> C NMR                                 | S24-25 |
| 4,6- <i>O</i> -Di- <i>tert</i> -butylsilylene-3- <i>O</i> -( <i>N</i> -phenyl)carbamoyl-D-glucal ( <b>7d</b> ). <sup>1</sup> H and <sup>13</sup> C NMR                                | S26-27 |
| 4,6- <i>O</i> -Isopropylidene-3- <i>O</i> -( <i>N</i> -phenyl)carbamoyl-D-allal ( <b>7e</b> ). <sup>1</sup> H and <sup>13</sup> C NMR                                                 | S28-29 |
| 4,6- <i>O</i> -Di- <i>tert</i> -butylsilylene-3- <i>O</i> -( <i>N</i> -hydroxy)carbamoyl-D-glucal ( <b>9</b> ). <sup>1</sup> H and <sup>13</sup> C NMR                                | S30-31 |
| 4,6- <i>O</i> -Di- <i>tert</i> -butylsilylene-3- <i>O</i> -( <i>N</i> -tosyloxy)carbamoyl-D-glucal ( <b>10</b> ). <sup>1</sup> H and <sup>13</sup> C NMR                              | S32-33 |
| 4,6-O-Di-tert-butylsilylene-3-O-carbonylazido-D-glucal (11)                                                                                                                           | S34-35 |
| 4,6- <i>O</i> -Di- <i>tert</i> -butylsilylene-3- <i>O</i> -carbonylimidazole-D-glucal ( <b>18</b> ). <sup>1</sup> H NMR                                                               | S36    |
| <sup>1</sup> H NMR analysis (CDCl <sub>3</sub> ) of iodine(III)-mediated reaction of primary carbamate <b>1</b>                                                                       | S37    |
| <sup>1</sup> H NMR analysis (CDCl <sub>3</sub> ) of reaction of <b>10</b> in the absence of alcohol                                                                                   | S38    |
| <sup>1</sup> H NMR analysis (acetone- $d_6$ ) of reaction of <b>10</b> in the presence of 4-penten-1-ol                                                                               | S39    |

**General:** NMR spectra were recorded at 300 MHz for <sup>1</sup>H spectra and 75 MHz for <sup>13</sup>C spectra. <sup>1</sup>H chemical shifts are reported in parts per million ( $\delta$ ) relative to tetramethylsilane (TMS,  $\delta$  0.00), using as a reference either added TMS or an appropriate signal for residual solvent protons. <sup>13</sup>C NMR chemical shifts are reported in parts per million, using the center peak of the solvent signal as a reference (e.g.,  $\delta$  77.0 for CDCl<sub>3</sub>). <sup>13</sup>C NMR peak multiplicities, where reported, were inferred using either DEPT 135 or edited HSQC experiments. The designation "o" (for <u>o</u>dd number of attached hydrogens) denotes a CH or CH<sub>3</sub> carbon. Where <sup>1</sup>H and <sup>13</sup>C NMR peak assignments are given, these were made unambiguously by a combination of <sup>1</sup>H/<sup>1</sup>H COSY and <sup>1</sup>H/<sup>13</sup>C HSQC experiments. Infrared spectra were recorded on an FT-IR spectrometer. Melting points were obtained using a capillary melting point apparatus and are uncorrected.


Iodosobenzene (PhIO) was prepared according to the literature procedure<sup>1</sup> and was stored at -20 °C under dry argon or nitrogen. Oven-dried (135 °C) 4 Å molecular sieves were further activated by flamedrying under vacuum (0.5 mmHg) just prior to use. Methylene chloride was either distilled from CaH<sub>2</sub> or used as received from Sigma-Aldrich (anhydrous, Sure Seal). Anhydrous dimethylformamide and tetrahydrofuran (Sure Seal) were purchased from Sigma-Aldrich and used as received. Other reagents were obtained commercially and were used as received. Reactions were carried out in oven- or flame-dried glassware under an atmosphere of dry nitrogen. The amidoglycosylation products were sometimes difficult to visualize on TLC. A useful system to char the TLC plates involved pre-warming the eluted TLC plate, dipping the plate in a solution of Coleman's Permanganate [KMnO<sub>4</sub> (3 g), K<sub>2</sub>CO<sub>3</sub> (20 g), 5% NaOH (5 mL), H<sub>2</sub>O (300 mL)], and then gently heating the TLC plate.

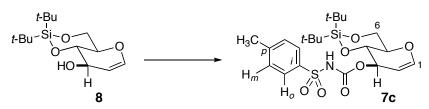
We have reported spectroscopic data for  $1, 5, 2-\alpha, 5, 2-\beta, 5, 3, 5, 14, 5^{5,6}$  and  $17^{5,6a,7}$  previously, and <sup>1</sup>H NMR spectra of authentic samples of those materials were used for comparison in this study.


<sup>&</sup>lt;sup>1</sup> Saltzman, H.; Sharefkin, J. G. In *Organic Syntheses*; Baumgarten, H. E., Ed.; John Wiley & Sons: New York, 1973; Coll. Vol. 5, pp 658–659.

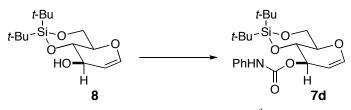
#### **Experimental Procedures and Characterization Data**






3-O-tert-Butyldimethylsilyl-4,6-O-di-tert-butylsilylene-D-glucal (7a). To a solution of di-tertbutylsilylene-protected D-glucal  $8^2$  (101.3 mg, 0.354 mmol) in DMF (1.5 mL) was added imidazole (73.9 mg, 1.09 mmol), followed by tert-butyldimethylsilyl chloride (81.3 mg, 0.539 mmol). After stirring 4 h at 23 °C, the mixture was poured into satd aq NaHCO<sub>3</sub> (15 mL) and extracted with CH<sub>2</sub>Cl<sub>2</sub> (25 mL). The organic layer was further washed with satd aq NaHCO<sub>3</sub> (15 mL) and brine (15 mL), dried  $(MgSO_4)$ , filtered, and concentrated on the rotovap and then under high vacuum overnight to remove residual DMF. The crude material was chromatographed (4% EtOAc/hexanes, 50 mL SiO<sub>2</sub>), affording tert-butyldimethylsilyl ether 7a (134.0 mg, 95%) as a clear, colorless oil.  $R_f = 0.73 (15\%)$ EtOAc/hexanes); IR (thin film) 1650 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CDCl<sub>2</sub>)  $\delta$  6.23 (dd, J = 6.0, 1.6 Hz, 1H), 4.60 (dd, *J* = 6.1, 1.9 Hz, 1H), 4.28 (ddd, *J* = 7.0, 1.8, 1.8 Hz, 1H), 4.16 (dd, *J* = 10.3, 4.9 Hz, 1H), 3.97 (dd, J = 10.3, 7.1 Hz, 1H), 3.95 (dd, J = 10.3, 10.3 Hz, 1H), 3.81 (ddd, J = 10.2, 10.2, 4.8 Hz, 1H), 1.06(s, 9H), 1.00 (s, 9H), 0.92 (s, 9H), 0.13 (s, 3H), 0.12 (s, 3H);  $^{13}$ C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  142.9 (o), 105.1 (o), 77.06 (o),\* 72.8 (o), 70.7 (o), 66.0 (t), 27.5 (o), 27.0 (o), 25.8 (o), 22.8 (s), 19.8 (s), 18.2 (s), -4.4 (o), -4.7 (o); \*the <sup>13</sup>C NMR resonance at  $\delta$  77.06 was distinguished from the solvent peak by reprocessing the FID with lb = 0 and was also visible in the DEPT 135 spectrum; HRMS (FAB) m/zcalcd for C<sub>20</sub>H<sub>39</sub>O<sub>4</sub>Si<sub>2</sub> (M-H)<sup>+</sup> 399.2387, found 399.2393.

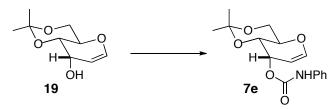



**3-O-Acetyl-4,6-O-di-***tert***-butylsilylene-D-glucal**<sup>2</sup> (**7b**). To a room-temperature solution of di-*tert*butylsilylene-protected D-glucal **8**<sup>2</sup> (49.9 mg, 0.174 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (3.0 mL) were added, sequentially, pyridine (56  $\mu$ L, 0.70 mmol), acetic anhydride (33  $\mu$ L, 0.35 mmol), and 4-(*N*,*N*-dimethylamino)pyridine (2.4 mg, 0.020 mmol). After 3 h, satd aq NaHCO<sub>3</sub> (20 mL) was added and the mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 x 20 mL). The combined organic extracts were washed with satd aq CuSO<sub>4</sub> (15 mL), dried (MgSO<sub>4</sub>), filtered, and concentrated. Chromatography (8% EtOAc/hexanes, 15 mL SiO<sub>2</sub>) afforded acetate ester **7b** as a yellowish syrup (53.1 mg, 93%). *R<sub>f</sub>* = 0.60 (20% EtOAc/hexanes); IR (thin film)

<sup>&</sup>lt;sup>2</sup> Hoberg, J. O. *Carbohydr. Res.* **1997**, *300*, 365–367.

1744, 1648 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  6.32 (dd, J = 6.0, 1.6 Hz, 1H), 5.38 (ddd, J = 7.6, 1.8, 1.8 Hz, 1H), 4.73 (dd, J = 6.1, 2.1 Hz, 1H), 4.19 (dd, J = 9.5, 4.3 Hz, 1H), 4.15 (dd, J = 10.0, 7.5 Hz, 1H), 3.99 (dd, J = 9.9, 9.9 Hz, 1H), 3.91 (ddd, J = 10.0, 10.0, 4.4 Hz, 1H), 2.11 (s, 3H), 1.06 (s, 9H), 0.99 (s, 9H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  171.0, 145.0, 100.6, 73.6, 72.9, 72.3, 65.7, 27.4, 26.8, 22.7, 21.2, 19.8; HRMS (FAB) m/z calcd for C<sub>16</sub>H<sub>27</sub>O<sub>5</sub>Si (M-H)<sup>+</sup> 327.1628, found 327.1635.




**4,6**-*O*-Di-*tert*-butylsilylene-**3**-*O*-(*N*-tosyl)carbamoyl-D-glucal (7c). A solution of 4,6-O-di-tertbutylsilylene-D-glucal 8<sup>2</sup> (301.5 mg, 1.053 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) was cooled to 0 °C, followed by addition of p-toluenesulfonyl isocyanate (176 µL, 1.16 mmol). The solution was stirred 10 min at 0 °C then 25 min at room temperature, diluted with H<sub>2</sub>O (15 mL), and extracted with CH<sub>2</sub>Cl<sub>2</sub> (15 mL). The aqueous layer was further extracted with CH<sub>2</sub>Cl<sub>2</sub> (10 mL) and the combined organic layers were washed with H<sub>2</sub>O (15 mL), dried (Na<sub>2</sub>SO<sub>4</sub>), and concentrated to leave the crude as a white foamy oil. Column chromatography ( $20 \rightarrow 25 \rightarrow 30\%$  EtOAc/hexanes, 175 mL SiO<sub>2</sub>) gave carbamate 7c as an oil (313 mg, 61%).  $R_f = 0.57$  (40% EtOAc/hexanes); IR (thin film) 3240, 1757, 1646, 1598 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.94 (apparent d, J = 8.4 Hz, 2H, H<sub>a</sub>), 7.61 (br, 1H, NH), 7.32 (apparent d, J = 8.1 Hz, 2.0 Hz, 1H, H2), 4.15 (dd, J = 9.6, 4.3 Hz, 1H, H6<sub>eo</sub>), 4.03 (dd, J = 10.1, 7.6 Hz, 1H, H4), 3.94 (dd, J = 9.9, 9.9 Hz, 1H, H6<sub>ax</sub>), 3.85 (ddd, J = 10.1, 10.1, 4.4 Hz, 1H, H5), 2.43 (s, 3H, Ar-CH<sub>3</sub>), 0.97 (s, 9H, SiC(CH<sub>3</sub>)<sub>3</sub>), 0.91 (s, 9H, SiC(CH<sub>3</sub>)<sub>3</sub>); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 150.1 (s), 145.5 (o, C1), 145.0 (s), 135.5 (s), 129.6 (o, C<sub>m</sub>), 128.4 (o, C<sub>o</sub>), 99.5 (o, C2), 74.8 (o, C3), 73.5 (o, C4), 72.7 (o, C5), 65.5 (t, C6), 27.2 (o, SiC(CH<sub>3</sub>)<sub>3</sub>), 26.7 (o, SiC(CH<sub>3</sub>)<sub>3</sub>), 22.6 (s, SiC(CH<sub>3</sub>)<sub>3</sub>), 21.7 (o, Ar-CH<sub>3</sub>), 19.7 (s, SiC(CH<sub>3</sub>)<sub>3</sub>); HRMS (FAB) m/z calcd for C<sub>22</sub>H<sub>32</sub>NO<sub>7</sub>SiS (M-H)<sup>+</sup> 482.1669, found 482.1690.

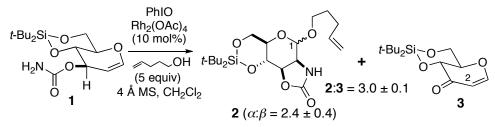


**4,6-O-Di-***tert*-**butylsilylene-3-O-**(*N*-**phenyl**)**carbamoyl-D-glucal**<sup>3</sup> (7d). Glucal derivative 8<sup>2</sup> (54.5 mg, 0.190 mmol) was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (2.5 mL) at room temperature and phenyl isocyanate (23  $\mu$ L, 0.21 mmol) was added, followed by DBU (3.0  $\mu$ L, 0.019 mmol). After 2.5 h, brine (20 mL) was added and the mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 x 10 mL). The combined organic extracts were dried

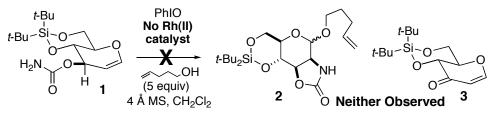
<sup>&</sup>lt;sup>3</sup> (a) Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Vega, J. A. *Angew. Chem. Int. Ed.* **2000**, *39*, 2525–2529. (b) Nicolaou, K. C.; Baran, P. S.; Zhong, Y.-L.; Barluenga, S.; Hunt, K. W.; Kranich, R.; Vega, J. A. *J. Am. Chem. Soc.* **2002**, *124*, 2233–2244.

(MgSO<sub>4</sub>), filtered, and concentrated. The crude material was chromatographed (10% EtOAc/hexanes, 15 mL SiO<sub>2</sub>), providing *N*-phenyl carbamate **7d** as a syrup (77.0 mg, quant).  $R_f = 0.58$  (30% EtOAc/hexanes); IR (thin film) 3327, 1724, 1647, 1602 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.48-7.20 (m, 4H), 7.07 (apparent t, J = 7.3 Hz, 1H), 6.75 (s, 1H), 6.33 (dd, J = 6.0, 1.2 Hz, 1H), 5.36 (ddd, J = 7.6, 1.6, 1.6 Hz, 1H), 4.87 (dd, J = 6.0, 1.8 Hz, 1H), 4.28-4.12 (m, 2H), 4.06-3.88 (m, 2H), 1.07 (s, 9H), 1.00 (s, 9H); there was evidence of a minor rotamer (~6%) from <sup>1</sup>H NMR signals just upfield of the signals at  $\delta$  6.33, 5.36, and 4.87; <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  153.3, 144.9, 137.8, 129.0, 123.5, 118.8, 100.9, 73.7, 73.4, 72.9, 65.7, 27.4, 26.9, 22.7, 19.8; the <sup>13</sup>C resonances at  $\delta$  118.8 and 73.4 were appreciably broadened; HRMS (FAB) *m/z* calcd for C<sub>21</sub>H<sub>32</sub>NO<sub>5</sub>Si (M+H)<sup>+</sup> 406.2050, found 406.2055.

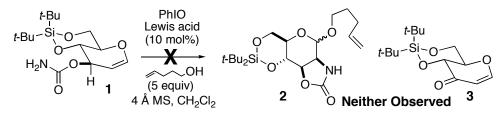



**4,6-***O***-Isopropylidene-3-***O***-(***N***-phenyl)carbamoyl-D-allal (7e). To a room-temperature solution of isopropylidene-protected allal <b>19**<sup>4</sup> (101.2 mg, 0.544 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (3.0 mL) was added DBU (24  $\mu$ L, 0.16 mmol), followed by phenyl isocyanate (119  $\mu$ L, 1.09 mmol). After 50 min, the reaction mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> and washed with satd aq NaHCO<sub>3</sub> (15 mL). The organic layer was dried (MgSO<sub>4</sub>), filtered, and concentrated. The residue was chromatographed (20 $\rightarrow$ 30 $\rightarrow$ 40% EtOAc/hexanes, 50 mL SiO<sub>2</sub>), affording *N*-phenyl carbamate **11e** as a white solid (118.5 mg, 71%). mp 144-146 °C, *R<sub>f</sub>* = 0.50 (40% EtOAc/hexanes); IR (thin film) 3379, 3334, 1729, 1711, 1631, 1601 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.43-7.23 (m, 4H), 7.15-6.90 (m, 2H), 6.46 (d, *J* = 6.0 Hz, 1H), 5.24 (dd, *J* = 5.8, 3.1 Hz, 1H), 5.08 (dd, *J* = 6.0, 6.0 Hz, 1H), 4.16-4.00 (m, 3H), 3.95-3.80 (m, 1H), 1.54 (s, 3H), 1.43 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  153.0, 147.2, 137.9, 128.9, 123.2, 118.6, 100.0, 98.8, 69.2, 65.7, 63.4, 61.8, 28.7, 18.9; HRMS (FAB) *m/z* calcd for C<sub>16</sub>H<sub>19</sub>NO<sub>5</sub> (M<sup>+</sup>) 305.1263, found 305.1266.

# Part 2. Experiments with compounds 1 and 7


**General Procedure:** The glycal substrate (~50 mg), activated 4Å molecular sieves (300 wt % relative to the glycal), catalyst (0.1 equiv when included), and PhIO (1.8 equiv) were combined in a 10 mL round-bottom flask at room temperature. Introduction of 4-penten-1-ol (5.0 equiv) was followed immediately by addition of  $CH_2Cl_2$  (2.0 mL) and the mixture was well stirred for >3 h and in most cases for ~24 h (reactions of 1 under these conditions, with catalyst included, were complete in under 3 h). The reaction mixture was filtered through a plug of tightly packed Celite (2 cm x 2 cm in a medium porosity fritted glass filter funnel), rising with EtOAc (75 mL). The filtrate was concentrated on the rotovap and kept under high vacuum (~0.5 mmHg) overnight to remove excess 4-penten-1-ol. The

<sup>&</sup>lt;sup>4</sup> Kan, C.; Long, C. M.; Paul, M.; Ring, C. M.; Tully, S. E.; Rojas, C. M. Org. Lett. 2001, 3, 381–384.


crude was analyzed by <sup>1</sup>H NMR, comparing with spectra of authentic samples of  $2,^5 3,^5 14,^{5b,6}$  and  $17.^{5,6a,7}$  Where appropriate, the crude material was chromatographed (SiO<sub>2</sub>, EtOAc/hexanes) to isolate pure recovered starting material.



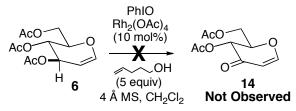
**Product ratios for amidoglycosylation with primary carbamate 1.** The amidoglycosylation shown above was conducted according to the general procedure given above and as described previously.<sup>5</sup> We have also reported spectroscopic data for the anomers of **2** and dihydropyranone **3**.<sup>5</sup> The ratios **2**:**3** and **2**- $\alpha$ :**2**- $\beta$  were determined by integration of the <sup>1</sup>H NMR (CDCl<sub>3</sub>) signals for H1 of **2**- $\alpha$  and **2**- $\beta$  ( $\delta$  4.81 and  $\delta$  4.69, respectively) and H2 of **3** ( $\delta$  5.42). The ratios reported in the scheme above are the average of five separate runs ± std dev.



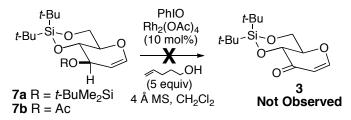
**Control experiment with 1 omitting the catalyst.** Reaction time: 18 h. Neither the amidoglycosylation product 2 nor the dihydropyranone 3 was observed when comparing the <sup>1</sup>H NMR spectrum of the crude product to the spectra of authentic 2 (both anomers) and 3. Remaining starting material 1 (86%) was evident by <sup>1</sup>H NMR analysis of the crude material versus mesitylene as an internal standard.



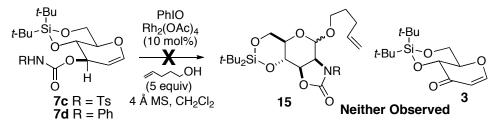
Control experiments with 1 and Lewis acid catalysts. Separate experiments were conducted using  $Sm(OTf)_3$ ,  $La(OTf)_3$ , and  $Zn(OTf)_2$  as possible catalysts. Reaction time for each experiment: 17 h. In each case, neither the amidoglycosylation product 2 nor the dihydropyranone 3 was observed when


<sup>&</sup>lt;sup>5</sup> (a) Bodner, R.; Marcellino, B. K.; Severino, A.; Smenton, A. L.; Rojas, C. M. *J. Org. Chem.* **2005**, *70*, 3988–3996. (b)

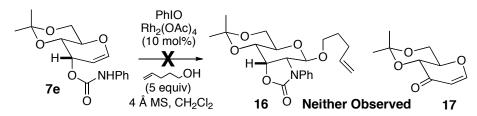
Gupta, R.; Sogi, K. M.; Bernard, S. E.; Decatur, J. D.; Rojas, C. M. Org. Lett. 2009, 11, 1527–1530.


<sup>&</sup>lt;sup>6</sup> (a) Fetizon, M.; Do Khac, D.; Nguyen Dinh, T. *Tetrahedron Lett.* **1986**, *27*, 1777–1780. (b) Czernecki, S.; Vijayakumaran, K.; Ville, G. J. Org. Chem. **1986**, *51*, 5472–5475. (c) Bouillot, A.; Do Khac, D.; Fétizon, M.; Guir, F.; Memoria, Y. Synth. Commun. **1993**, *23*, 2071–2081.

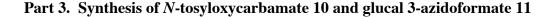
<sup>&</sup>lt;sup>7</sup> Fraser-Reid, B.; Walker, D. L.; Tam S. Y.-K.; Holder, N. L. Can. J. Chem. **1973**, *51*, 3950–3954.

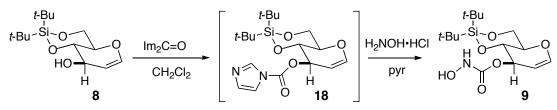

comparing the <sup>1</sup>H NMR spectrum of the crude product to the spectra of authentic **2** (both anomers) and **3**. Remaining starting material **1** was evident by <sup>1</sup>H NMR analysis of the crude material versus mesitylene as an internal standard [94% with  $Sm(OTf)_3$ , 93% with La(OTf)<sub>3</sub>, and 92% with  $Zn(OTf)_2$ ].




**Control experiment with 6.** Reaction time: 24 h. None of dihydropyranone  $14^{5b,6}$  was observed when comparing the <sup>1</sup>H NMR spectrum of the crude product to the spectrum of authentic  $14^{.5b}$  Starting material 6 (87%) was recovered by chromatography (30% EtOAc/hexanes, SiO<sub>2</sub>).

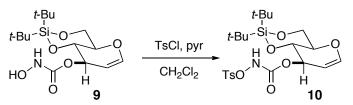



Control experiments with 7a and 7b. Reaction time with 7a: 5 h. Reaction time with 7b: 20 h. None of dihydropyranone 3 was observed in the <sup>1</sup>H NMR spectrum of the crude product from either reaction; only the starting glycals were evident. Glucal 7a (83%) was recovered by chromatography  $(5\rightarrow10\rightarrow15\% \text{ EtOAc/hexanes}, \text{SiO}_2)$ , while the amount of remaining 7b was measured by <sup>1</sup>H NMR (80% versus mesitylene as an internal standard).

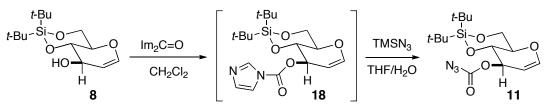



Control experiments with 7c and 7d. With 7c, we conducted two experimental runs, one for 5 h and the other for 26 h. In neither case was 3 observed in the crude reaction mixture, nor did we detect signs of 15 (R = Ts). Recovered 7c (71% after 5h and 61% after 26 h) was purified by chromatography  $(15\rightarrow 20\rightarrow 25\% \text{ EtOAc/hexanes}, 50 \text{ mL SiO}_2)$ . With 7d, the reaction time was 19 h, and dihydropyranone 3 was not formed, as judged by comparison of the <sup>1</sup>H NMR spectrum of crude material with the spectrum of authentic 3. Neither were signals attributable to oxidative cyclization products 15 (R = Ph) observed in the reaction with 7d. Unreacted *N*-phenyl carbamate 7d (70%) was recovered.




**Control experiment with 7e.** Reaction time: 26 h. None of dihydropyranone  $17^{5,6a,7}$  was observed when comparing the <sup>1</sup>H NMR spectrum of the crude product to the spectrum of authentic  $17^{.5a}$  Neither were signals attributable to amidoglycosylation product **16** observed. Starting material **7e** (94%) was recovered by chromatography (30 $\rightarrow$ 40% EtOAc/hexanes, SiO<sub>2</sub>).






4,6-O-Di-tert-butylsilylene-3-O-(N-hydroxy)carbamoyl-D-glucal (9). To a solution of alcohol  $8^2$ (0.5009 g, 1.75 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (20 mL) was added 1,1'-carbonyl diimidazole (0.4252 g, 2.62 mmol). After 2 h at room temperature, the mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> (80 mL) and washed with satd aq NH<sub>4</sub>Cl (3 x 80 mL). The organic layer was dried (MgSO<sub>4</sub>), filtered, and concentrated, providing the carbonyl imidazole product 18 as a light yellow foam. Without further purification, N-acyl imidazole 18 (assumed 1.75 mmol) was dissolved in pyridine (4.0 mL) and hydroxylamine hydrochloride (0.3648 g, 5.25 mmol) was added. After stirring 60 h at room temperature, the reaction mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> (80 mL) and washed with water (2 x 80 mL) and brine (80 mL). The organic layer was dried (MgSO<sub>4</sub>), filtered, and concentrated. The crude product was chromatographed (30% EtOAc/hexanes, 100 mL SiO<sub>2</sub>), yielding hydroxycarbamate 9 as a white solid (0.4697 g, 78%). Data for hydroxycarbamate 9: mp 110.0 °C;  $R_f = 0.21$  (30% EtOAc/hexanes); IR (thin film) 3315, 1731, 1649 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.44 (s, 1H), 6.92 (very br s, 1H), 6.33 (dd, J = 6.0, 1.5 Hz, 1H), 5.34 (ddd, J = 7.5, 1.8, 1.8 Hz, 1H), 4.80 (dd, J = 6.1, 2.1 Hz, 1H), 4.25-4.10 (m, 2H), 4.04-3.85 (m, 2H), 1.05 (s, 9H), 0.99 (s, 9H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 160.0 (s), 145.2 (o), 100.3 (o), 74.4 (o), 73.6 (o), 72.8 (o), 65.6 (t), 27.4 (o), 26.8 (o), 22.7 (s), 19.8 (s); HRMS (FAB) m/z calcd for C<sub>15</sub>H<sub>28</sub>NO<sub>6</sub>Si (M+H)<sup>+</sup> 346.1686, found 346.1688.

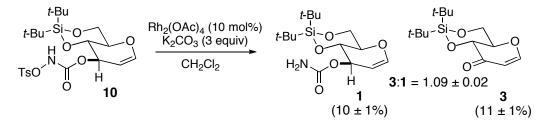
Data for intermediate *N*-acyl imidazole **18**:  $R_f = 0.41$  (30% EtOAc/hexanes); <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.17 (s, 1H), 7.45 (br s, 1H), 7.10 (m, 1H), 6.42 (dd, J = 6.0, 1.5 Hz, 1H), 5.56 (ddd, J = 7.5, 1.8, 1.8 Hz, 1H), 4.88 (dd, J = 6.1, 2.1 Hz, 1H), 4.37-4.19 (m, 2H), 4.09-3.93 (m, 2H), 1.05 (s, 9H), 1.00 (s, 9H).



4,6-O-Di-tert-butylsilylene-3-O-(N-tosyloxy)carbamoyl-D-glucal (10). The N-hydroxycarbamate 9 (105.1 mg, 0.3042 mmol) was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (1.5 mL) and pyridine (74  $\mu$ L, 0.915 mmol) was added, followed by p-toluenesulfonyl chloride (89.3 mg, 0.468 mmol). The solution was stirred at 25 °C during 4.5 h, diluted with CH<sub>2</sub>Cl<sub>2</sub> (25 mL), and washed with water (2 x 20 mL) and brine (1 x 20 mL). The organic layer was dried (MgSO<sub>4</sub>), filtered, and concentrated. The crude material was immediately chromatographed  $(20 \rightarrow 25 \rightarrow 30\% \text{ EtOAc/Hexanes}, 50 \text{ mL SiO}_2)$ . Because 10 was prone to decomposition when kept neat for extended periods of time, the yield was determined by weight after concentration on the rotovap, followed by 5 min on the vacuum line. The resulting product 10, a colorless foam (~120 mg, 80%), consequently contained traces of solvent, and the reported yield is an upper-limit estimate. After weighing, 10 was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) and used immediately.  $R_t$  = 0.52 (30% EtOAc/hexanes); IR (thin film) 3281, 1775, 1736, 1647, 1597 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz,  $CD_2Cl_2$ )  $\delta 8.20$  (s, 1H), 7.86 (apparent d, J = 8.4 Hz, 2H), 7.37 (apparent d, J = 8.0 Hz, 2H), 6.31 (dd, J = 6.0, 1.4 Hz, 1H), 5.21 (ddd, J = 7.4, 1.8, 1.8 Hz, 1H), 4.53 (dd, J = 6.1, 2.0 Hz, 1H), 4.16 (dd, J = 9.6, 4.4 Hz, 1H), 4.03 (dd, J = 10.2, 7.4 Hz, 1H), 3.95 (dd, J = 9.9, 9.9 Hz, 1H), 3.87 (ddd, J = 10.1, 10.1, 4.5 Hz, 1H), 2.45 (s, 3H), 1.05 (s, 9H), 0.96 (s, 9H); <sup>13</sup>C NMR (75 MHz, CD<sub>2</sub>Cl<sub>2</sub>) δ 155.9 (s), 147.0 (s), 146.1 (o), 131.0 (s), 130.4 (o), 130.0 (o), 100.0 (o), 75.7 (o), 73.9 (o), 73.4 (o), 66.2 (t), 27.7 (o), 27.2 (o), 23.1 (s), 22.1 (o), 20.2 (s); HRMS (FAB) m/z calcd for  $C_{22}H_{34}NO_8SiS$  (M+H)<sup>+</sup> 500.1774, found 500.1760.

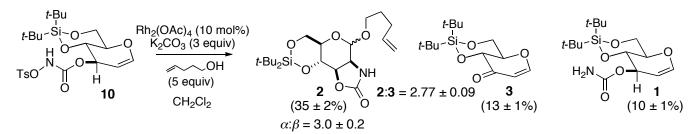


**4,6-***O***-Di***-tert***-butylsilylene-3***-O***-carbonylazido-D-glucal (11).** The *N*-acyl imidazole **18** was prepared from glucal **8** (529 mg, 1.85 mmol) as described above. After aqueous workup but without further purification, the intermediate **18** was dissolved in THF (5.0 mL) and TMSN<sub>3</sub> (1.0 mL, 7.5 mmol) was added. The solution was stirred at 25 °C during 69 h, at which point TLC indicated partial conversion to the upper  $R_f$  product **11**, but considerable amounts of unreacted **18** still remained. As suggested by the work of Yoshimitsu and Tanaka,<sup>8</sup> H<sub>2</sub>O (500  $\mu$ L) was added and stirring continued at room temperature for 2 h. Remarkably, all the *N*-acyl imidazole **18** reacted within this period of time. The mixture was poured into satd aq NaHCO<sub>3</sub> (30 mL) and extracted with Et<sub>2</sub>O (50 mL). The organic layer was washed with satd aq NaHCO<sub>3</sub> (2 x 30 mL), dried (MgSO<sub>4</sub>), filtered, and concentrated. The crude material was


<sup>&</sup>lt;sup>8</sup> Yoshimitsu, T.; Ino, T.; Futamura, N.; Kamon, T.; Tanaka, T. Org. Lett. 2009, 11, 3402–3405.

chromatographed (4% EtOAc/Hexanes, 125 mL SiO<sub>2</sub>), providing **11** as a clear, colorless oil (385 mg, 59% for the two steps from alcohol **8**). The azidoformate **11** exhibited signs of decomposition on SiO<sub>2</sub>-coated TLC plates (lower  $R_f$  spots appeared), but showed clean NMR spectra and was stable to storage over at least several weeks.

CAUTION: Azidoformates are potentially explosive. While we did not experience any problems with the preparation, storage, and use of 11, proper precautions should be taken in handling this material.<sup>9</sup>


Data for **11**:  $R_f = 0.66$  (30% EtOAc/hexanes); IR (thin film) 2180, 2140, 1755 (shoulder), 1733, 1648 cm<sup>-1</sup>; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  6.36 (dd, J = 6.1, 1.5 Hz, 1H), 5.35 (ddd, J = 7.4, 1.8, 1.8 Hz, 1H), 4.78 (dd, J = 6.1, 2.1 Hz, 1H), 4.24-4.14 (m, 2H), 3.99 (dd, J = 9.9, 9.9 Hz, 1H), 3.91 (ddd, J = 10.1, 10.1, 4.4 Hz, 1H), 1.06 (s, 9H), 0.99 (s, 9H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  157.4 (s), 145.9 (o), 99.2 (o), 76.8 (o), 73.3 (o), 72.8 (o), 65.6 (t), 27.3 (o), 26.8 (o), 22.7 (s), 19.8 (s); HRMS (FAB) *m/z* calcd for C<sub>15</sub>H<sub>25</sub>N<sub>3</sub>O<sub>5</sub>Si (M<sup>+</sup>) 355.1563, found 355.1560.

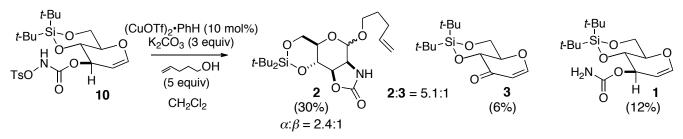
#### Part 4. Investigations with N-tosyloxycarbamate 10



**Reaction of 10 in the absence of alcohol with Rh<sub>2</sub>(OAc)<sub>4</sub> catalysis.** Potassium carbonate (102.3 mg, 0.740 mmol) and Rh<sub>2</sub>(OAc)<sub>4</sub> (10.8 mg, 0.0244 mmol) were combined in a 10 mL round-bottom flask and a solution of freshly prepared *N*-tosyloxycarbamate **10** (~120 mg, 0.242 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL) was added. The carbamate-containing pear-shaped flask was rinsed with CH<sub>2</sub>Cl<sub>2</sub> (2 x 1.0 mL) with the rinsings being added to the reaction mixture. The reaction mixture was initially green, becoming blue-grey and then purplish over a period of 1 h. The mixture was well stirred during 16.5 h then filtered through a tightly packed pad of Celite, rising with EtOAc (80 mL). The filtrate was concentrated and the crude material analyzed by <sup>1</sup>H NMR (CDCl<sub>3</sub>), which identified dihydropyranone **3** and carbamate **1** by comparison with <sup>1</sup>H NMR spectra of authentic samples. The **3**:1 ratio was determined by integration of the H3 signal for **1** ( $\delta$  5.27) and the H2 signal of **3** ( $\delta$  5.42). The ratio reported in the scheme above is the average of three separate runs ± std dev. NMR yields of **1** and **3** were determined by including mesitylene as an internal standard; here, too, the reported values are the average of three separate runs ± std dev.

<sup>&</sup>lt;sup>9</sup> For a report on the violent decomposition of *tert*-butylazidoformate (BocN<sub>3</sub>) during distillation, see: Feyen, P. *Angew*. *Chem., Int. Ed. Engl.* **1977**, *16*, 115.




Reaction of 10 in the presence of 4-penten-1-ol with Rh<sub>2</sub>(OAc)<sub>4</sub> catalysis. Potassium carbonate (95.8 mg, 0.693 mmol) and Rh<sub>2</sub>(OAc)<sub>4</sub> (11.1 mg, 0.0251 mmol) were combined in a 10 mL round-bottom flask and 4-penten-1-ol (125  $\mu$ L, 1.23 mmol) was added, followed immediately by a solution of freshly prepared *N*-tosyloxycarbamate 10 (~114 mg, 0.228 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL). The carbamate-containing pear-shaped flask was rinsed with CH<sub>2</sub>Cl<sub>2</sub> (2 x 1.0 mL) with the rinsings being added to the reaction mixture. The well stirred mixture turned from a blue-green-grey to a purple color within 20–30 min. Stirring was continued 16 h and the purple mixture was filtered through a tightly packed pad of Celite, rising with EtOAc (80 mL). The filtrate was concentrated (rotovap  $\rightarrow$  vacuum line to remove excess 4-penten-1-ol) and the crude material analyzed by <sup>1</sup>H NMR (separately in CDCl<sub>3</sub> and acetone-*d*<sub>6</sub>), comparing to authentic samples of 1, 2, and 3. The 2:3 and 2- $\alpha$ :2- $\beta$  ratios were best measured in acetone-*d*<sub>6</sub> from the resonances for H3 of 2- $\alpha$  ( $\delta$  4.56), H1 of 2- $\beta$  ( $\delta$  4.86), and H2 of 3 ( $\delta$  5.33). The ratios reported in the scheme above are the average of three separate runs ± std dev. The yields were determined by <sup>1</sup>H NMR analysis of the crude in CDCl<sub>3</sub> using the H1 signals for 2- $\alpha$  and 2- $\beta$  ( $\delta$  4.81 and  $\delta$  4.69, respectively), the H2 signal for 3 ( $\delta$  5.42), and the H3 signal for 1 ( $\delta$  5.27) versus mesitylene added as an internal standard. The reported values are the average of three experiments ± std dev.

Statistical comparison of results from iodine(III) mediated amidoglycosylation of 1 with results from amidoglycosylation of 10 using  $Rh_2(OAc)_4$  catalysis). The mean values of the 2- $\alpha$ :2- $\beta$  ratio were compared using a Student's t-test. The t-value (6 degrees of freedom) = 2.380, and the p-value = 0.054,<sup>10</sup> indicating a near-95% confidence level that the difference between the means was statistically significant. The mean values of the 2:3 ratio were also compared. For this comparison, the t-value (6 degrees of freedom) = 3.614, and the p-value = 0.011, indicating a greater than 98% confidence level that the difference between the means was statistically significant. We attribute these small but nevertheless statistically significant differences in the product ratios to the impact of the different reaction conditions (4 Å molecular sieves in the iodine(III)-mediated reactions of 1 versus K<sub>2</sub>CO<sub>3</sub> in reactions of 10) on trapping of the glycosyl aziridine or oxocarbenium ion formed upon nitrenoid insertion into the glucal C=C.

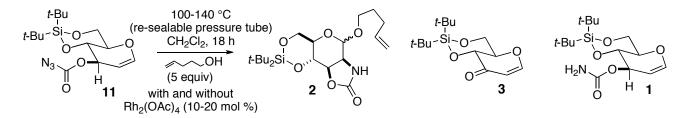
<sup>&</sup>lt;sup>10</sup> P-values were calculated using a two-tail, equal variance t-test, as implemented in Microsoft Excel 2008 for Macintosh.


**Control experiments using 10 in the absence of rhodium or base.** Following the same procedures outlined above, the control experiments were conducted as shown in the table below. The crude reaction mixtures were analyzed by <sup>1</sup>H NMR and TLC, comparing with authentic samples of **1**, **2**, and **3**:<sup>11</sup>

| Entry | 4-penten-1-ol | $Rh_2(OAc)_4$ | K <sub>2</sub> CO <sub>3</sub> | 1 observed? | 2 observed? | <b>3</b> observed? |
|-------|---------------|---------------|--------------------------------|-------------|-------------|--------------------|
| 1     | _             | _             | +                              | no          | N/A         | no                 |
| 2     | +             | -             | +                              | no          | no          | no                 |
| 3     | +             | +             | _                              | no          | no          | no                 |



**Reaction of 10 in the presence of 4-penten-1-ol with (CuOTf)**<sub>2</sub>**•PhH catalysis.** Potassium carbonate (94.7 mg, 0.685 mmol) and (CuOTf)<sub>2</sub>**•PhH** (11.3 mg, 0.0225 mmol) were combined in a 10 mL roundbottom flask and 4-penten-1-ol (120  $\mu$ L, 1.18 mmol) was added, followed immediately by a solution of freshly prepared *N*-tosyloxycarbamate **10** (~114 mg, 0.228 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (1.5 mL). The carbamatecontaining pear-shaped flask was rinsed with CH<sub>2</sub>Cl<sub>2</sub> (2 x 1.0 mL) and the rinsings were added to the reaction mixture. The mixture was stirred 18 h at room temperature and filtered through a tightly packed pad of Celite, rising with CH<sub>2</sub>Cl<sub>2</sub> (75 mL). The filtrate was concentrated (rotovap  $\rightarrow$  vacuum line to remove excess 4-penten-1-ol) and the crude material analyzed by <sup>1</sup>H NMR (separately in CDCl<sub>3</sub> and acetone-*d*<sub>6</sub>), comparing to authentic samples of **1**, **2**, and **3** as described above for the rhodium(II)catalyzed reaction, except that yields were determined versus mesitylene in acetone-*d*<sub>6</sub> instead of in CDCl<sub>3</sub>.


## Part 5. Investigations with glucal 3-azidoformate 11

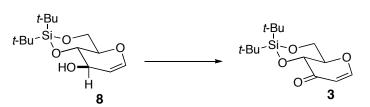


**General photolysis procedure.** A solution of azidoformate **11** ( $\sim$ 22 mg, 0.062 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (4–10 mL) in a quartz reaction tube was irradiated during 1–4 h with a low-pressure 254 nm lamp through a

<sup>&</sup>lt;sup>11</sup> Because the crude reaction products in the control experiments consisted of complex mixtures, we cannot completely rule out formation of the merest traces of **1**, **2**, or **3**.

Vycor filter in a Rayonet merry-go-round apparatus. The solution was concentrated and the crude reaction mixture analyzed by <sup>1</sup>H NMR in both CDCl<sub>3</sub> and acetone- $d_6$ , using diagnostic resonances as described above in the *N*-tosyloxycarbamate reactions. Yields were determined by <sup>1</sup>H NMR versus mesitylene as an internal standard, either in acetone- $d_6$  or CDCl<sub>3</sub>. Photolysis experiments were also conducted with added 4-penten-1-ol and Rh<sub>2</sub>(OAc)<sub>4</sub> as summarized in the table below. In photochemical reactions run for varying lengths of time and to varying amounts of starting material consumption, we did not in any case detect formation of dihydropyranone **3**. The dihydropyranone is photo-labile to an appreciable extent (see the description of control experiments on the following page), but we expect that if **3** had formed in the photochemical reactions of **11**, we would have detected at least some of it.




General thermolysis procedure. A solution of azidoformate 11 (~20 mg, 0.056 mmol) and 4-penten-1-ol (~29  $\mu$ L, 0.285 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (4–6 mL) was heated in a thick-walled re-sealable pressure tube at ~100 °C-140 °C) as summarized in the table below. Thermolysis was also conducted in the presence of Rh<sub>2</sub>(OAc)<sub>4</sub>. The reaction mixture was concentrated and analyzed by <sup>1</sup>H NMR as described above. Below 90 °C, the azidoformate 11 did not undergo appreciable thermal reaction either in the absence or presence of Rh<sub>2</sub>(OAc)<sub>4</sub> over periods of 2–15 h.

| h <i>v</i> | Δ                                                                    | <i>∽</i> ~~OH | $Rh_2(OAc)_4$ | $\%2(\alpha:\beta)$                    | %3   | %1                    |
|------------|----------------------------------------------------------------------|---------------|---------------|----------------------------------------|------|-----------------------|
| 1 h        |                                                                      |               |               |                                        |      | Formed but            |
|            |                                                                      |               |               | N/A                                    | None | yield nd <sup>a</sup> |
| 1 h        |                                                                      | +             |               | 44 (1.5:1)                             | None | <i>-b-</i>            |
| 1.5 h      |                                                                      | +             | +             | 20 (2.4)                               | None | <i>-b-</i>            |
| 4 h        |                                                                      | +             | +             | 34 (2.5)                               | None | <i>-b-</i>            |
|            |                                                                      |               |               | Formed but                             |      |                       |
|            | 110 °C, 1 h → 140 °C 1 h                                             | +             |               | yield nd <sup>a</sup>                  | None | <i>-b-</i>            |
|            | 110 °C, 18 h                                                         | +             |               | 2 of $\beta$ (nd <sup><i>a</i></sup> ) | None | None                  |
|            | $23 \text{ °C}, 15 \text{ h} \rightarrow 55 \text{ °C}, 2 \text{ h}$ |               |               |                                        |      |                       |
|            | → 90 °C, 17 h                                                        | +             | +             | 8 (3.0)                                | 2    | 5                     |

## Tabular summary of results for reactions of 11.

 $a^{n}$ nd = not determined.  $b^{b}$ Not detected, but regions in  ${}^{1}$ H NMR spectra of the crude reaction mixture that would have contained resonances for **1** were obscured by other signals.

#### Part 6. Stability of dihydropyranone 3 under the reaction conditions



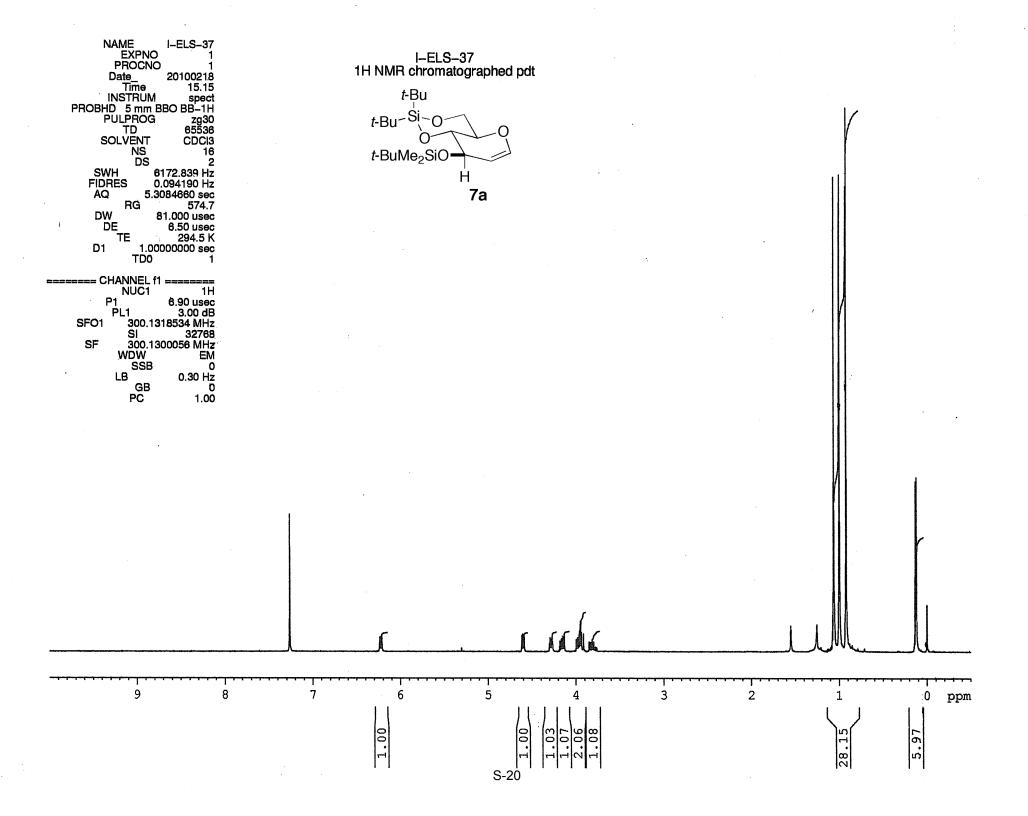
**Independent preparation of dihydropyranone 3.** To a solution of alcohol **12** (100.6 mg, 3.54 mmol) in  $CH_2Cl_2$  (2.0 mL) was added pyridinium dichromate (199.9 mg, 5.44 mmol) and the solution was stirred 4 h at room temperature. Additional PDC (91.6 mg, 2.49 mmol) was added and the solution stirred overnight. The reaction mixture was diluted with  $Et_2O$  (10 mL) and filtered through Celite. The solution was dried (MgSO<sub>4</sub>), filtered, and concentrated. Chromatography (25% EtOAc/hexanes, 50 mL SiO<sub>2</sub>) yielded dihydropyranone **3** as a white solid (55.1 mg, 55%). The identity of this material with that prepared in our previous studies was confirmed by <sup>1</sup>H NMR analysis.

**Control experiments with dihydropyranone 3.** To a solution of dihydropyranone **3** (35.6 mg, 0.125 mmol) in  $CD_2Cl_2$  (1.00 mL) was added 4-penten-1-ol (64  $\mu$ L, 0.63 mmol), followed immediately by K<sub>2</sub>CO<sub>3</sub> (52.6 mg, 0.380 mmol) and Rh<sub>2</sub>(OAc)<sub>4</sub> (6.0 mg, 0.14 mmol). The mixture was stirred at room temperature, and aliquots (100  $\mu$ L) were taken after 15 min, 1 h, and 18 h. The aliquots were mixed with a stock solution of mesitylene in  $CD_2Cl_2$  (500  $\mu$ L of a 0.0250 M solution, 0.0125 mmol mesitylene), and the resulting solution was analyzed by <sup>1</sup>H NMR. No decomposition of the dihydropyranone was noted after 18 h as measured against the mesitylene internal standard.

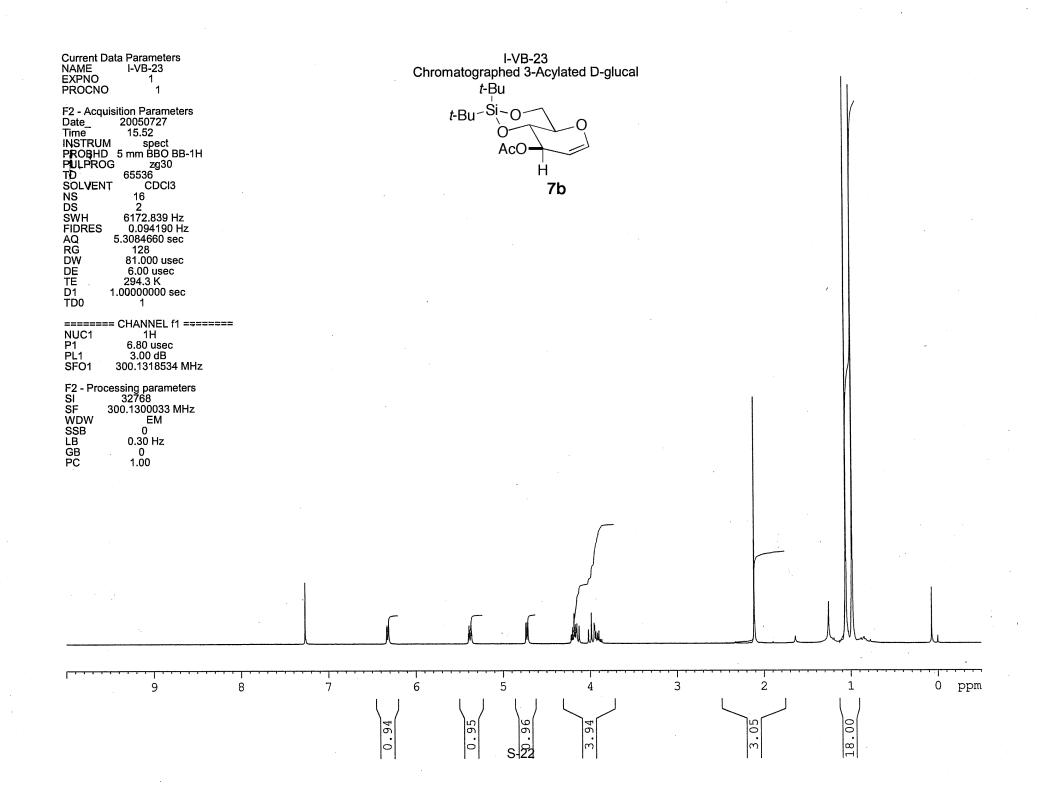
In a separate experiment, the same procedure was followed, but in the absence of 4-penten-1-ol. Again, no decomposition of the dihydropyranone was noted.

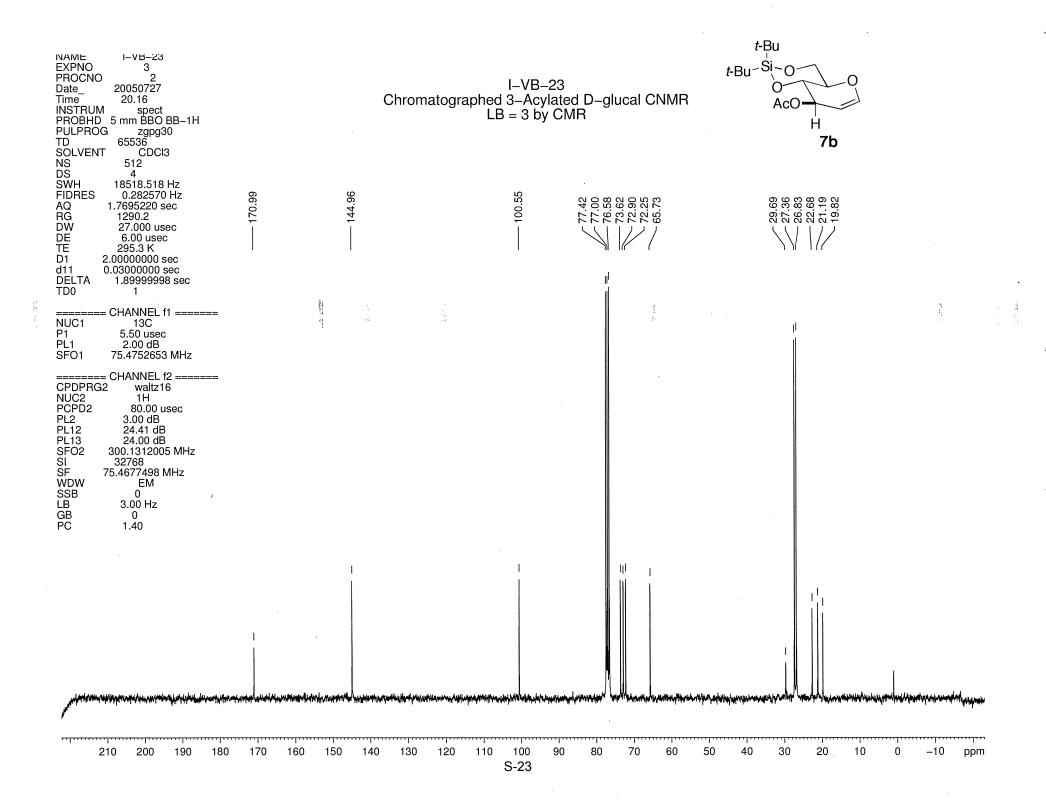
To assess the stability of dihydropyranone **3** under the conditions used for photolysis reactions of **11**, a solution of **3** (22 mg, 0.0773 mmol) in  $CH_2Cl_2$  (10 mL) in a quartz reaction tube was irradiated (254 nm low-pressure lamp, Vycor filter, Rayonet merry-go-round apparatus) during 1 h. The solution was concentrated and analyzed by <sup>1</sup>H NMR. While no identifiable byproducts were observed, the amount of remaining **3** was 42% versus mesitylene added as an internal standard. When the photochemical control was repeated in the presence of added 4-penten-1-ol (5 equiv), 34% of the original **3** remained after 1 h photolysis.

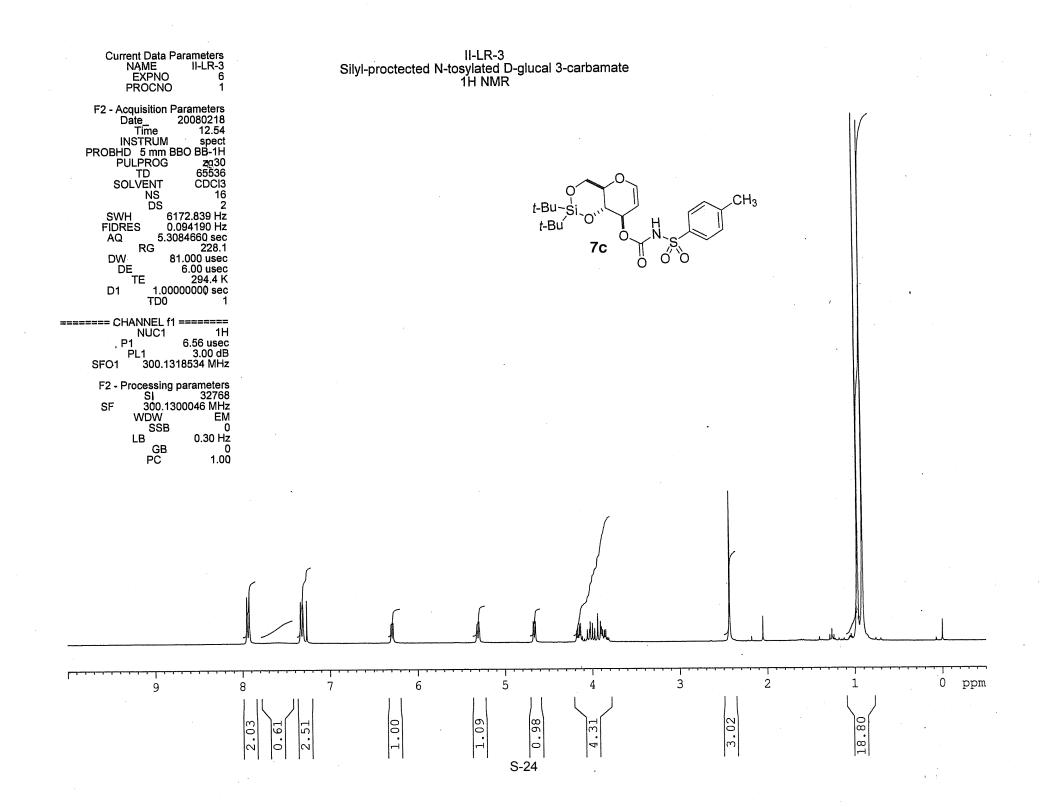
| Current Data Parameters<br>NAME I-AS-3<br>EXPNO 1<br>PROCNO 1                                                                                                                                                                                                                                                           | C   | Di-t-butyl silylene<br>By CMR | I-AS-3<br>e-protected carbam<br>on 12/21/2007 | nate         |   |   |   |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------|-----------------------------------------------|--------------|---|---|---|-------|
| F2 - Acquisition Parameters<br>Date_ 20071221<br>Time 15.52<br>INSTRUM spect<br>PROBHD 5 mm BBO BB-1H<br>PULPROG zg30<br>TD 65536<br>SOLVENT CDCI3<br>NS 16<br>DS 2<br>SWH 6172.839 Hz<br>FIDRES 0.094190 Hz<br>AQ 5.3084660 sec<br>RG 128<br>DW 81.000 usec<br>DE 6.00 usec<br>TE 293.8 K<br>D1 1.0000000 sec<br>TD0 1 | • . | t-Bu₂Si<br>O<br>H₂N<br>Ŭ<br>O |                                               |              |   |   |   |       |
| ======= CHANNEL f1 =======<br>NUC1 1H<br>P1 6.65 usec<br>PL1 3.00 dB<br>SFO1 300.1318534 MHz                                                                                                                                                                                                                            |     |                               |                                               | ·            |   |   |   |       |
| F2 - Processing parameters<br>SI 32768<br>SF 300.1300027 MHz<br>WDW EM<br>SSB 0<br>LB 0.30 Hz<br>GB 0<br>PC 1.00                                                                                                                                                                                                        |     |                               | · · · · ·                                     |              |   |   |   |       |
|                                                                                                                                                                                                                                                                                                                         |     |                               |                                               | - ANN - THM. |   |   |   | L     |
| 9 8                                                                                                                                                                                                                                                                                                                     |     | 00<br>6                       | 5                                             | 4            | 3 | 2 | 1 | 0 ppm |


S-16

| NAME<br>EXPNO<br>PROCNO | ta Parameters<br>II-CMR-255<br>2<br>1  |                                        | ΙI-                | -CMR-255-F17-21                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
|-------------------------|----------------------------------------|----------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|---|
| Date_<br>Fime           | sition Parameters<br>20030414<br>11.57 |                                        | O<br>r<br>t-Bu₂Si√ |                                                                                                                      | N        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 1.     |   |
| INSTRUM                 | spect<br>mm BBO BB-1H                  |                                        | _                  | `0``` <b>`</b> NH                                                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
| PULPROG                 | zg30                                   |                                        |                    | 0{                                                                                                                   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
|                         | 65536                                  |                                        |                    | <b>2-</b> α ο                                                                                                        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
| SOLVENT<br>NS           | CDC13<br>16                            |                                        |                    |                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
| )S                      | 2                                      |                                        |                    |                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
| 5WH                     | 6172.839 Hz                            |                                        |                    |                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
| FIDRES                  | 0.094190 Hz                            |                                        |                    |                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
| AQ<br>RG                | 5.3084660 sec<br>456.1                 |                                        |                    |                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
| .e<br>WC                | 81.000 usec                            |                                        |                    |                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
| DE                      | 6.00 usec                              |                                        |                    |                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                |        |   |
| TE<br>D1                | 300.0 K                                |                                        |                    |                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
| 11                      | 1.00000000 sec                         |                                        |                    |                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
|                         | == CHANNEL f1 ======                   | =====                                  |                    |                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
| NUC1<br>P1              | 1H<br>13.10 usec                       |                                        |                    |                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
| PL1                     | 3.00 dB                                |                                        |                    |                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
| SF01                    | 300.1318534 MHz                        |                                        |                    |                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
| F2 - Proce              | ssing parameters                       |                                        |                    |                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
| SI                      | 32768                                  |                                        |                    |                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
| SF                      | 300.1300045 MHz                        |                                        |                    |                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
| WDW<br>SSB              | EM<br>O                                |                                        |                    |                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
| LB                      | 0.30 Hz                                |                                        |                    |                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
| GB                      | 0                                      |                                        |                    |                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | Ŵ      |   |
| PC                      | 1.00                                   |                                        |                    |                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
|                         | t parameters                           |                                        |                    |                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ١                | ·      |   |
| CX                      | 27.00 cm                               |                                        |                    |                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
| F1P<br>F1               | 10.000 ррт<br>3001.30 Hz               |                                        |                    |                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
| F2P                     | -0.500 ppm                             |                                        |                    |                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
| F2                      | -150.07 Hz                             |                                        |                    |                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
| PPMCM                   | 0.38889 ppm/cm<br>116.71722 Hz/cm      |                                        |                    |                                                                                                                      |          | {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |        |   |
| HZCM                    | 110./1/22 HZ/UM                        |                                        |                    |                                                                                                                      | C        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r                |        |   |
|                         |                                        |                                        |                    | ~                                                                                                                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
|                         |                                        |                                        |                    | $\int$                                                                                                               | JFC      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
|                         |                                        | 1                                      |                    |                                                                                                                      | -11 - 1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M. M             | 111    |   |
|                         |                                        |                                        |                    | /\/WAU                                                                                                               | //'\/M   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <br>, ``, ``, `` | ~~~ \u | L |
|                         |                                        |                                        |                    |                                                                                                                      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
|                         |                                        |                                        |                    | $\cdot \cdot $ |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |        |   |
|                         |                                        |                                        |                    | 952                                                                                                                  | 12 00 12 | 204<br>295<br>060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 284              | 65 31  |   |
|                         |                                        |                                        |                    | 0.952                                                                                                                |          | 3.204<br>1.186<br>2.295<br>1.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.2              | 9.265  |   |
|                         |                                        | ······································ | ······             |                                                                                                                      |          | يربيها ليحيد المحمد والمحمد المستعمل المحمد والمحمد والم |                  |        |   |


| Current Data Parameters<br>NAME II-CMR-255<br>EXPNO 3<br>PROCNO 1                                                   | II-CMR-255-F22-27                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| F2 - Acquisition Parameters<br>Date20030414<br>Time12.08<br>INSTRUMSpect                                            | <i>t</i> -Bu <sub>2</sub> Si O, NH                                                                                                   |
| PAOBHD     5 mm     BBO     BB-1H       PULPAOG     zg30       TD     65536       SOLVENT     CDC13       NS     16 | $\begin{array}{c} & & & & \\ & & & 2-\beta & & \\ & & (2.7:1 \text{ mixture} \\ & \text{with } 2-\alpha \text{ anomer}) \end{array}$ |
| DS 2<br>SWH 6172.839 Hz<br>FIDRES 0.094190 Hz<br>AQ 5.3084660 sec                                                   |                                                                                                                                      |
| AG 456.1   DW 81.000 usec   DE 6.00 usec   TE 300.0 K   D1 1.00000000 sec                                           |                                                                                                                                      |
| P1     13.10     USC       PL1     300.1318534     MHz                                                              |                                                                                                                                      |
| F2 - Processing parameters<br>SI 32768<br>SF 300.1300045 MHz<br>WDW EM                                              |                                                                                                                                      |
| SSB 0<br>LB 0.30 Hz<br>GB 0<br>PC 1.00                                                                              |                                                                                                                                      |
| 1D NMA plot parameters<br>CX 27.00°cm<br>F1P 10.000 ppm<br>F1 3001.30 Hz<br>F2P -0.500 ppm<br>F2 -150.07 Hz         |                                                                                                                                      |
| PPMCM 0.38889 ppm/cm<br>HZCM 116.71722 Hz/cm                                                                        |                                                                                                                                      |
|                                                                                                                     |                                                                                                                                      |
| m 9 8                                                                                                               |                                                                                                                                      |


•


|          | Current<br>NAME | Carbamate<br>Data Parameters<br>II-BKM-31 | treated with                  |                   | II-BKM-31<br>e, Rh2(OAc)4, 4-pe<br>by-product | enten-1-ol 4A | Molecular Sie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ves |   |      |     |
|----------|-----------------|-------------------------------------------|-------------------------------|-------------------|-----------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|------|-----|
|          | EXPNO           | 1                                         |                               |                   | F29-37                                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | PROCNO          | 1                                         |                               | t-Bu              | 2Si~0~                                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | F2 - Acq        | uisition Parameters                       |                               | l-Du <sub>2</sub> |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | Date_           | 20040902                                  |                               |                   | 0                                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | Time            | 12.55                                     |                               |                   | $\lambda =$                                   | 7             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | INSTRUM         | spect<br>5 mm BBO BB-1H                   |                               |                   | 0                                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | PULPROG         | zg30                                      |                               |                   | 3                                             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | TD              | 65536                                     |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | SOLVENT         | CDC13                                     |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | NS              | 16                                        |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | DS<br>SWH       | 2<br>6172.839 Hz                          |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | FIDAES          | 0.094190 Hz                               |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | AQ              | 5.3084660 sec                             |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | RG              | 90.5                                      |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | DW              | 81.000 usec                               |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | DE<br>TE        | 6.00 usec<br>294.9 K                      |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | D1              | 1.00000000 sec                            |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | MCREST          | 0.0000000 sec                             |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | МСМАК           | 0.01500000 sec                            |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | ========        | - CHANNEL f1 ======                       |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | NUC1            | 1H                                        |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | P1              | 6.80 usec                                 |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | PL1<br>SF01     | 3.00 dB<br>300.1318534 MHz                |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | 5, 61           | 300.1310334 PHZ                           |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          |                 | cessing parameters                        |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | SI              | 32768                                     |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | SF<br>WDW       | 300.1299984 MHz<br>EM                     |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | SSB             | 0                                         |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | LB              | 0.30 Hz                                   |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | GB<br>PC        | 0<br>1.00                                 |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | PL              | 1.00                                      |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | ÷ |      |     |
|          | 1D NMR p        | olot parameters                           |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | CX              | 27.00 cm                                  |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | CY<br>F1P       | 15.77 ст<br>10.000 ррт                    |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   | /    |     |
|          | F1              | 3001.30 Hz                                |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | F2P             | -0.500 ppm                                |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | F2<br>PPMCM     | -150.07 Hz                                |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          | HZCM            | 0.38889 ppm/cm<br>116.71722 Hz/cm         |                               | l.,               | 1                                             |               | 1 and |     |   |      |     |
|          |                 |                                           |                               |                   | -                                             | ,t            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |   | ~ M  |     |
|          |                 |                                           |                               | М                 |                                               |               | Mulle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |   |      |     |
|          |                 |                                           |                               |                   |                                               | ·             | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |   |      | t_l |
|          |                 |                                           |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
|          |                 |                                           |                               |                   |                                               |               | $\backslash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |   |      |     |
| tegra]   |                 |                                           |                               | . 92              | 1.00                                          | E0.           | .28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |   | 9.77 |     |
| ]<br>Int |                 |                                           | I - I - I - I - I - I - I - I |                   | <del></del>                                   | <u>,  ~ </u>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |   |      |     |
| ,<br>pp  | om              | 9                                         | 8                             | 7                 | 6                                             | 5 <b>S-19</b> | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3   | 2 | 1    | 0   |
|          |                 |                                           |                               |                   |                                               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -   | 2 | -    | U U |



| NS 585<br>DS 4<br>SWH 17985.611 Hz<br>FIDRES 0.274439 Hz<br>AQ 1.8219508 sec<br>RG 32768<br>DW 27.800 usec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | · · · · · · · · · · · · · · · · · · ·    | 7a                                        |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------|-------------------------------------------|-------|
| AQ   1.8219508 sec     RG   32768     DW   27.800 usec     DE   6.00 usec     TE   300.1 K     D1   2.00000000 sec     D11   0.03000000 sec     TD0   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | <br>= - $77.4277.0076.5870.7170.7166.02$ | 21.48<br>26.95<br>25.83<br>19.82<br>18.24 | -0.01 |
| ======= CHANNEL f1 =======<br>NUC1 13C<br>P1 9.80 usec<br>PL1 6.00 dB<br>SFO1 75.4752953 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · |                                          | ,                                         | :<br> |
| CHANNEL f2       CPDPRG2     waltz16       NUC2     1H       PCPD2     67.00 usec       PL2     3.00 dB       PL12     24.00 dB       PL13     24.00 dB       SFO2     300.1312005 MHz       SI     32768       SF     75.4677480 MHz       WDW     EM       SSB     0       LB     3.00 Hz       GB     0       PC     1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                                          |                                           |       |
| FG 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                                          |                                           |       |
| an well a best the first sectory of the state in the sector of well of the sector of the binage of the binage is the sector of the binage is the binage is the sector of the binage is the sector of the binage is the |   |                                          |                                           |       |







| Current Data Parameters<br>NAME II-LR-3<br>EXPNO 8<br>PROCNO 1<br>F2 - Acquisition Parameters<br>Date_ 20080218<br>Time 13.15                                                                                                                                                            | Silyl-prote                                              | II-LR-3<br>ected N-tosylated D-glucal 3-carbamate<br>13C NMR         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| INSTRUM     spect       PROBHD     5 mm     BBO BB-1H       PULPROG     zgpg30       TD     65536       SOLVENT     CDCl3       NS     708       DS     4       SWH     17985.611 Hz       FIDRES     0.274439 Hz       AQ     1.8219508 sec       RG     32768       DW     27.800 usec | 150.08<br>145.54<br>144.97<br>135.47<br>129.57<br>128.36 | 99.46<br>77.42<br>77.42<br>76.58<br>74.61<br>73.60<br>73.50<br>65.46 | 27.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·   |
| DE     6.00 usec       TE     295.0 K       D1     2.00000000 sec       d11     0.03000000 sec       DELTA     1.89999998 sec       TD0     1                                                                                                                                            |                                                          |                                                                      | <b>.</b> 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| ======     CHANNEL f1 =====       NUC1     13C       P1     9.00 usec       PL1     6.00 dB       SFO1     75.4752953 MHz                                                                                                                                                                |                                                          |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CH₃ |
| ======     CHANNEL f2 ======       CPDPRG2     waltz16       NUC2     1H       PCPD2     81.00 usec       PL12     26.00 dB       PL13     26.00 dB       PL2     3.00 dB       SFO2     300.1312005 MHz                                                                                 |                                                          |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| F2 - Processing parameters   32768     SI   32768     SF   75.4677514 MHz     WDW   EM     SSB   0     LB   3.00 Hz     GB   0     PC   1.40                                                                                                                                             |                                                          |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| maaalassafaaaastatsiyasaatastaatsinaataataataataataataataataataataataataat                                                                                                                                                                                                               |                                                          |                                                                      | anticipation and the first state of the stat |     |
|                                                                                                                                                                                                                                                                                          |                                                          | 20 110 100 90 80 70 60<br>S-25                                       | 50 40 30 20 10 Q -10 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |

Current Data Parameters NAME I-VB-31 EXPNO 2 PROCNO 1 I-VB-31□ Chrom. Product: Phenyl Carbamate t-Bu F2 - Acquisition Parameters Date\_\_\_\_\_20050811 t-Bu-Si-O 
 Time
 13.12

 INSTRUM
 spect

 PROBHD
 5 mm BBO BB-1H

 PULPROG
 zg30

 TD
 65536

 SOLVENT
 CDCl3

 NS
 16

 DS
 2

 SWH
 6172.839 Hz

 FIDRES
 0.094190 Hz

 AQ
 5.3084660 sec

 RG
 90.5

 DW
 81.000 usec

 DE
 6.00 usec

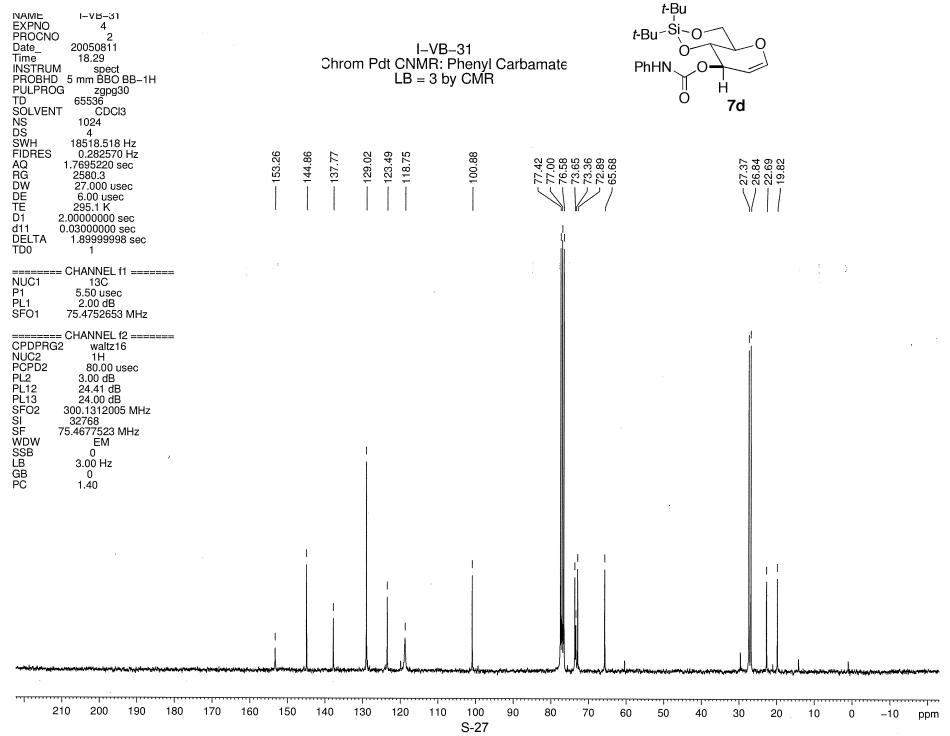
 TE
 293.2 K

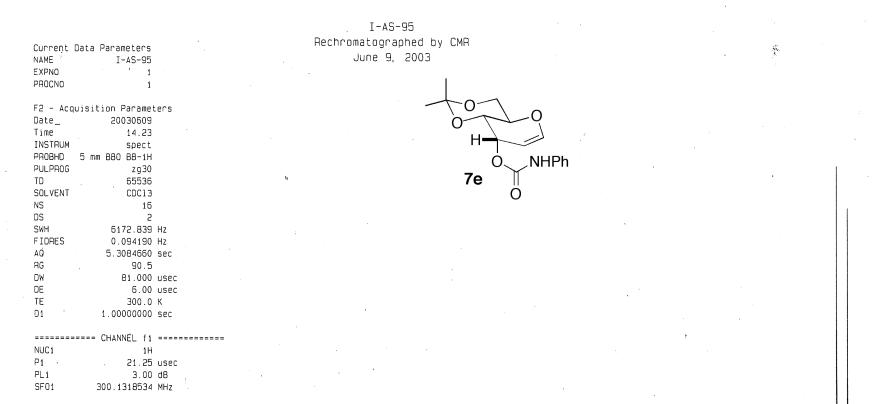
 D1
 1.0000000 sec

 TD0
 1
 Time 13.12 O PhHN. റ Н Ô 7d TD0 1 ======= CHANNEL f1 ======== NUC1 P1 1H 6.80 usec 3.00 dB 300.1318534 MHz PL1 SFO1 
 F2 - Processing parameters

 SI
 32768

 SF
 300.1300072 MHz


 WDW
 EM


 SSB
 0

 LB
 0.30 Hz

 GB
 0

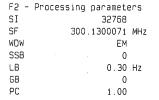
 PC
 1.00
 10 9 8 7 6 5 3 2 1 0 4 ppm0.95 0.03 0.96 18.00 .03 0.94 4.27 98 S 4.25 0. ~ S-26





000

6

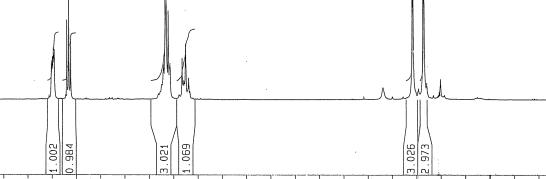

93.

8

60

. N

7

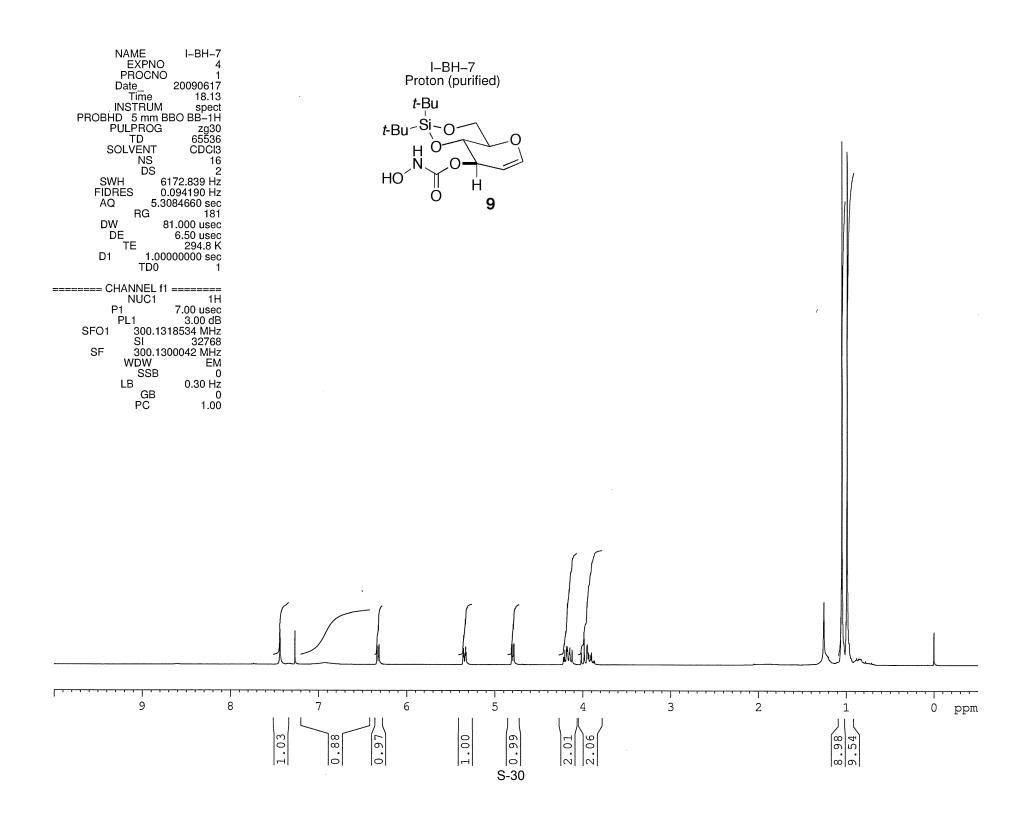



1D NMR plot parameters СХ ì 27.00 cm F1P 10.000 ppm F1 3001.30 Hz F2P -0.500 ppm F2 -150.07 Hz PPMCM 0.38889 ppm/cm HZCM 116.71722 Hz/cm

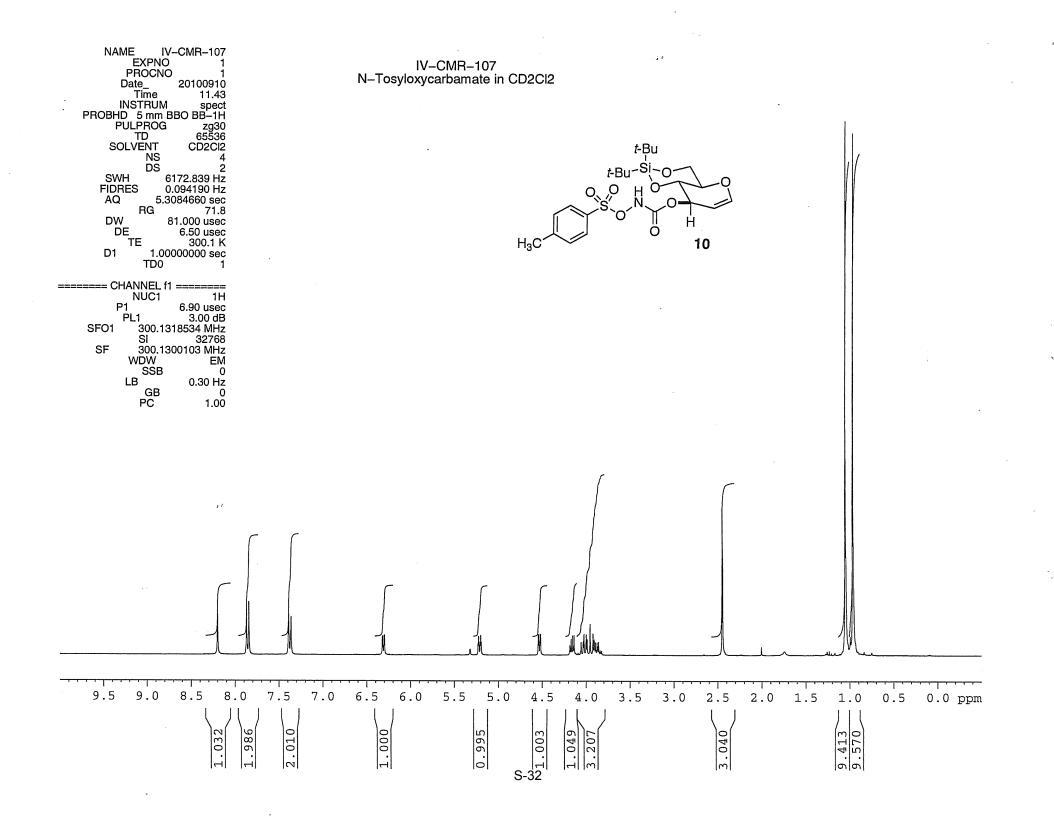
9

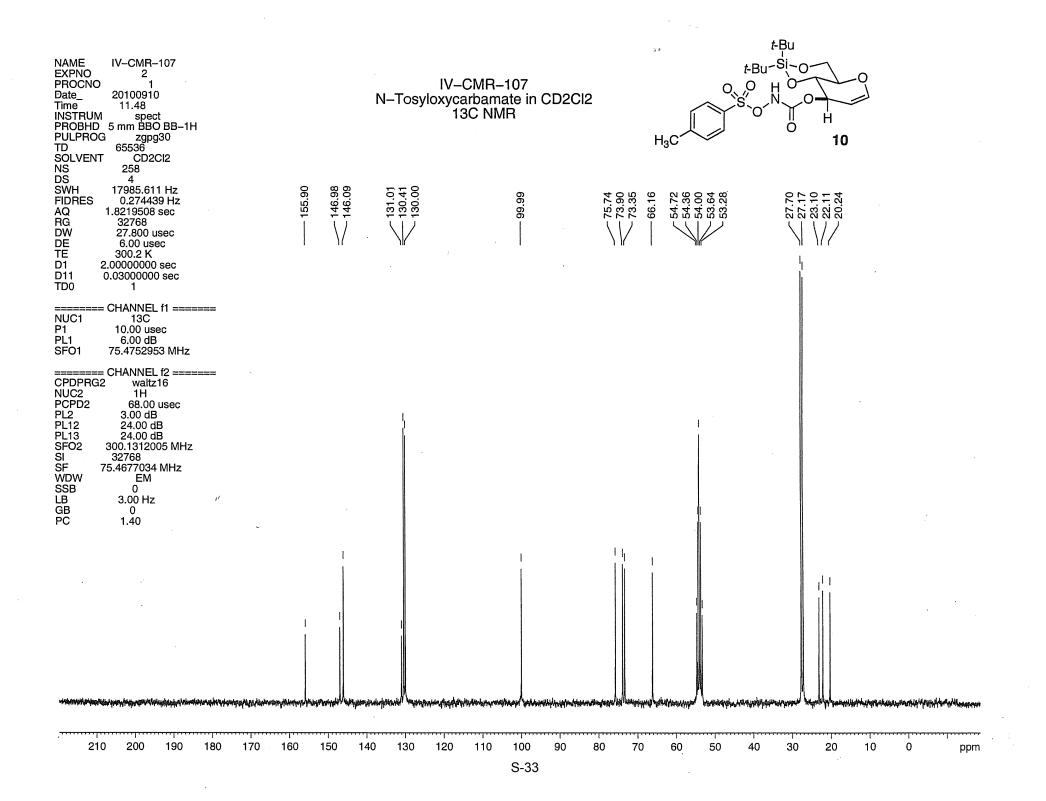
5 S-28

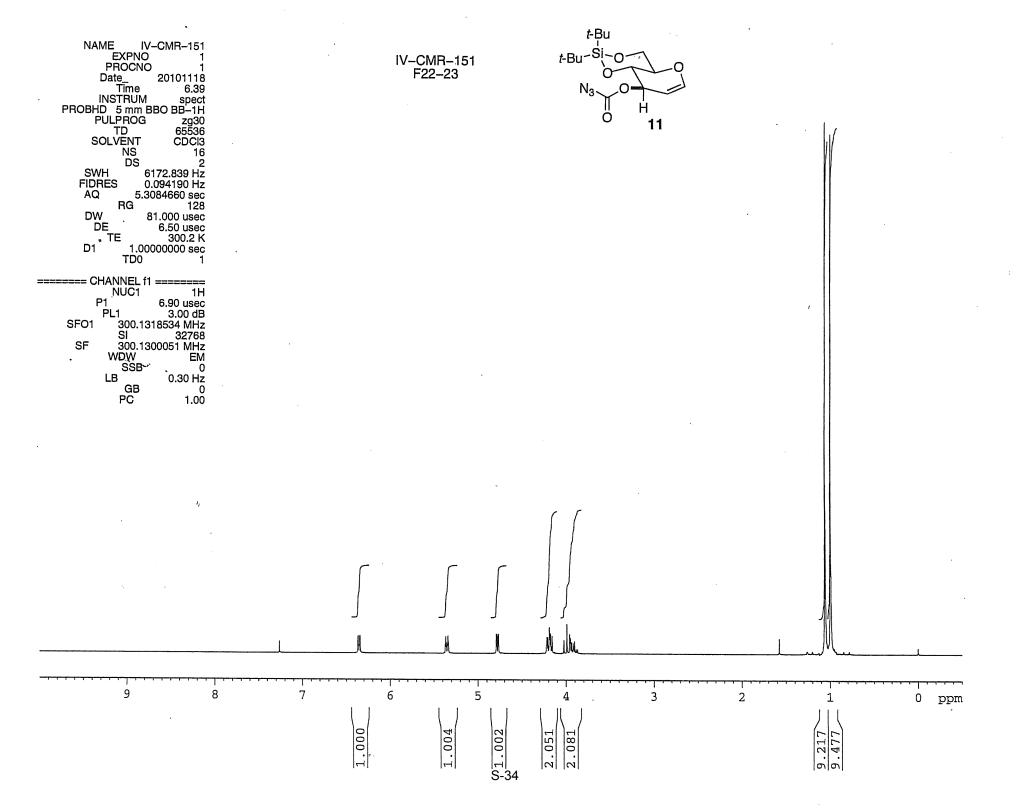
4




З

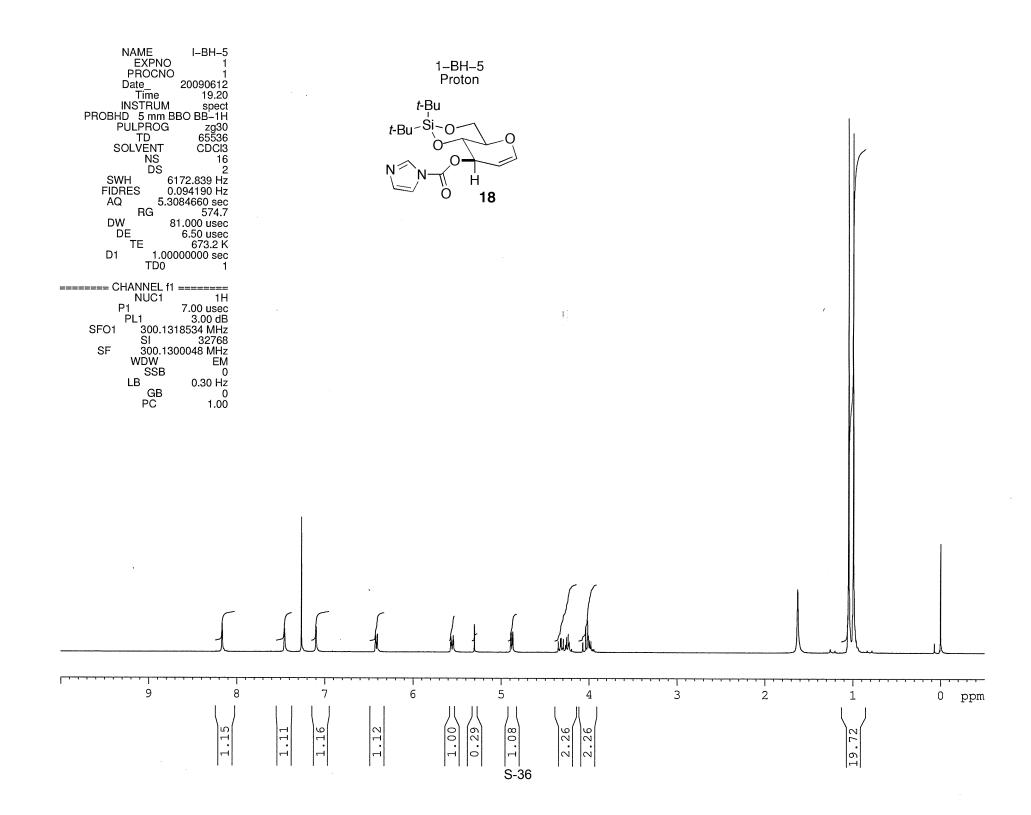

2

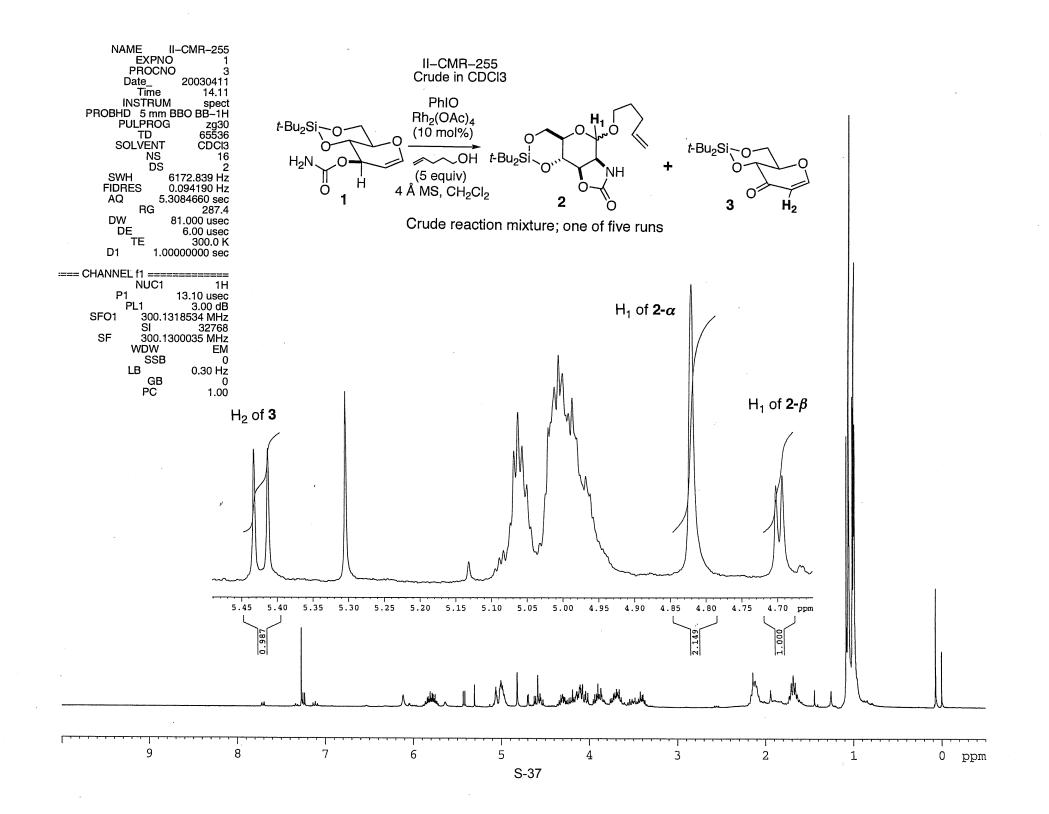

pþm

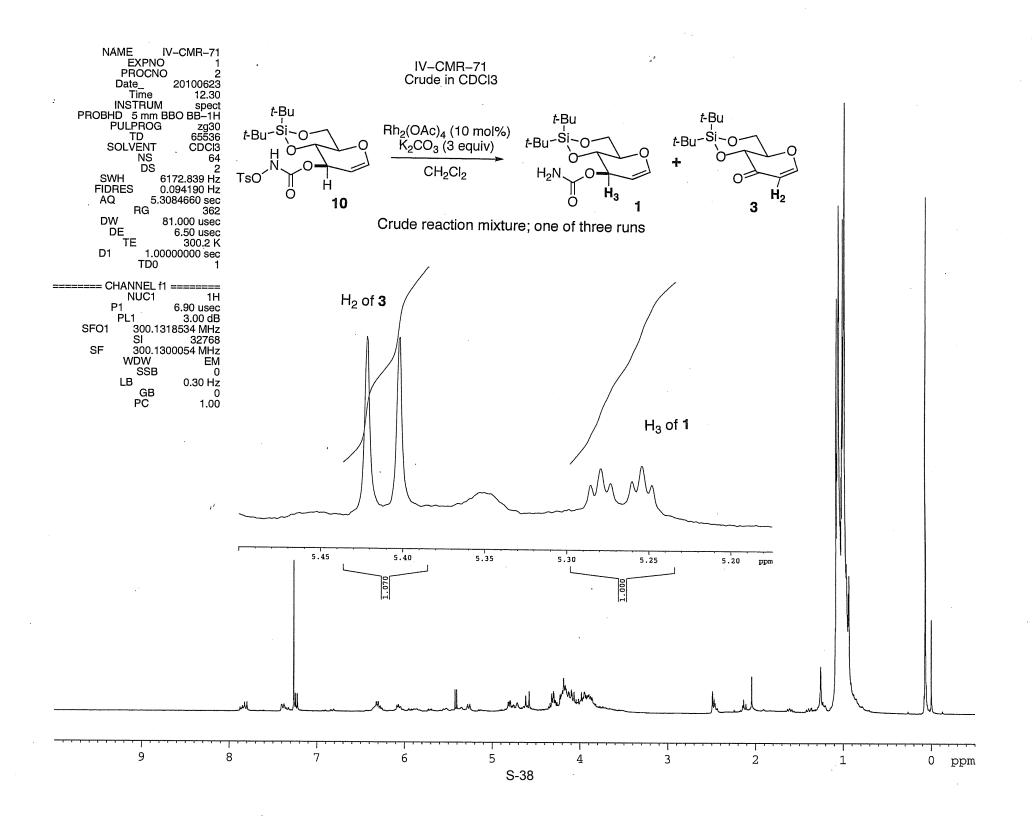

| • .                               | 4<br>5<br>5                                              | Rechromati                                                                                                      | -AS-95<br>ographed by CMR<br>June 9, 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H<br>O<br>7e<br>O<br>NHPh |                                                                                                                   | Current Data Parameters<br>NAME I-AS-95<br>EXPNO 2<br>PROCNO 1<br>F2 - Acquisition Parameters<br>Date_ 20030609<br>Time 15.09<br>INSTRUM spect                                                                  |
|-----------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| шdd                               |                                                          |                                                                                                                 | 100.014<br>98.822<br>77.421<br>76.998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 69.189                    | 0<br>5<br>1                                                                                                       | PROBHD     5 mm     B80     BB-1H       PULPROG     zgpg30       TD     65536       SOLVENT     CDC13       NS     1024       DS     4       SWH     18518.518       FIDRES     0.282570       AQ     1.7695220 |
|                                   |                                                          | •                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                                                                                                   | RG   1149.4     DW   27.000 usec     DE   6.00 usec     TE   300.0 K     D1   2.00000000 sec     d11   0.0300000 sec     d12   0.00002000 sec                                                                   |
| •                                 |                                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                                                                                                   | NUC1     1 3C       P1     23.13 usec       PL1     6.00 dB       SF01     75.4752653 MHz       =========     CHANNEL f2       CPDPRG2     waltz16                                                              |
|                                   |                                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           | 1 · · · · · · · · · · · · · · · · · · ·                                                                           | NUC2     1H       PCPD2     90.00     usec       PL2     3.00     dB       PL12     14.75     dB       PL13     24.00     dB       SF02     300.1312005     MHz                                                 |
|                                   |                                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                                                                                                   | F2 - Processing parameters     SI   32768     SF   75.4677561     WDW   EM     SSB   0     LB   1.00     G8   0     PC   1.40                                                                                   |
| <sup>iged</sup> terfingestigteter | an afara ta parta da ana ana ana ana ana ana ana ana ana | unaning here and a second s | , het have been a state of the |                           | an and a second | 1D NMA plot parameters<br>CX 20.00 cm<br>F1P 220.000 ppm<br>F1 16602.91 Hz<br>F2P -20.000 ppm<br>F2 -1509.35 Hz                                                                                                 |
|                                   |                                                          |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                                                                                                                   | РРМСМ 12.00000 ppm/cm<br>HZCM 905.61310 Hz/cm                                                                                                                                                                   |

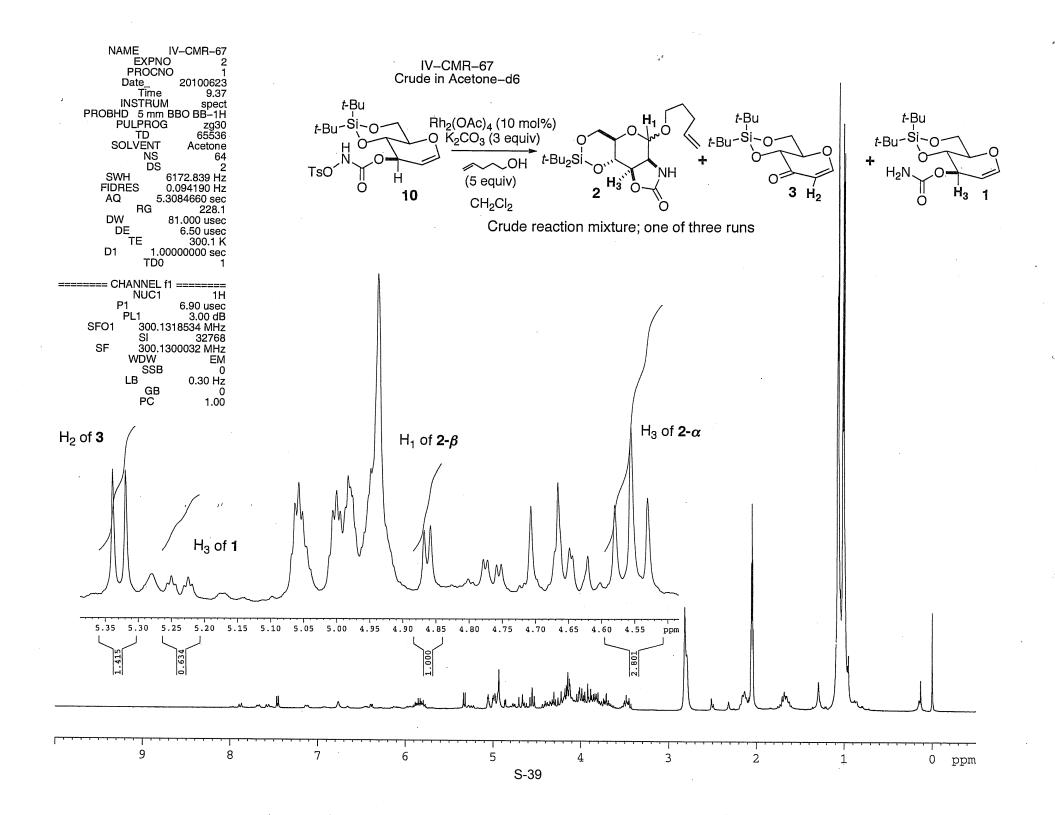



| NAME     I-BH-7       EXPNO     5       PROCNO     1       Date_     20090617       Time     14.59       INSTRUM     spect       PROBHD     5 mm BBO BB-1H       PULPROG     zgpg30       TD     65536       SOLVENT     CDCl3       NS     526       DS     4 |                                                           | I–BH–7<br>Carbon (purified)                                                                                     | t-Bu<br>t-Bu-Si-O<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>H |                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------|
| DS   4     SWH   17985.611 Hz     FIDRES   0.274439 Hz     AQ   1.8219508 sec     RG   32768     DW   27.800 usec     DE   6.00 usec     TE   295.2 K     D1   2.00000000 sec     D11   0.03000000 sec     TD0   1                                             | 158.99<br>145.21                                          | 100.27                                                                                                          | 77.42<br>77.00<br>76.58<br>73.61<br>72.80<br>65.61               | 23.88<br>29.88<br>19.88<br>29.88<br>29.88<br>29.88 |
| CHANNEL f1        NUC1     13C        P1     10.00 usec        PL1     6.00 dB        SFO1     75.4752953 MHz                                                                                                                                                  |                                                           |                                                                                                                 |                                                                  | ,                                                  |
|                                                                                                                                                                                                                                                                |                                                           |                                                                                                                 |                                                                  |                                                    |
|                                                                                                                                                                                                                                                                |                                                           |                                                                                                                 |                                                                  |                                                    |
| and a second find that the second and a second s                                                                                                                                                | aline have been and all the start produces in the provide | Levily-International States and St | 111<br>                                                          |                                                    |
| 210 200 190 180 170                                                                                                                                                                                                                                            | 160 150 140 13                                            |                                                                                                                 |                                                                  | 40 30 20 10 0 –10 ppm                              |





-1









