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Abstract: The crucial details regarding Fourier multiplexing a DT-IMS coupled to an LIT-MS 
system were outlined in the figures found in the body of the primary manuscript; however, we 
have included the following six figures for added clarity about the capabilities of the system. FT-
IM-MS can be applied to the analysis of complex systems involving analytes with a variety of 
differing masses and charge states, all while yielding relatively consistent trends in resolving 
power and signal-to-noise ratios in relation to adjusting the swept frequency. Included here are 
a linear regression plot showing neurotensin 3+ peak intensity as a function of concentration 
(Figure S-1), the SNR versus frequency and resolving power versus frequency plots for both the 
charge states of lysozyme analyzed (13+ through 8+, Figures S-2 and S-3), as well as for the 
four fragments of cytochrome C examined (Figures S-4 and S-5). With regard to sweep rate 
stability of the waveform generators used, Figure S-6 shows a comparison of the two waveform 
generators used for this experiment; in this case, FT-IM-MS spectra were obtained for the 
neurotensin 3+ charge state. The sweep rate instability of waveform generator A compared to 
that of B can be seen in the form of echoes resulting in the drift time spectrum. 
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Figure S-1: a) Neurotensin 3+ drift time peak intensity shows linear behavior in response to 
concentration increases within the 1-110 nM range, although b) dynamic behavior with 
concentration change can be seen in the 1-1100 nM range for this system. Though non-linear at 
higher concentrations, the intensity profiles still increase which allows for quantiation.  
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Figure S-2: Plots of SNR as a function of sweep frequency for lysozyme charge states 13+ 
through 8+ (a-f, respectively).  
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Figure S-3: Plots of resolving power as a function of sweep frequency for lysozyme charge 
states 13+ through 8+ (a-f, respectively). 
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Figure S-4: Plots of SNR as a function of sweep frequency for cytochrome C fragments of m/z 
(a) 817, (b) 748, (c) 736, and (d) 545. 
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Figure S-5: Plots of resolving power as a function of sweep frequency for cytochrome C 
fragments of m/z (a) 817, (b) 748, (c) 736, and (d) 545. Lower resolving powers were noted for 
the peptide outlined in (d) but this observation should be tempered with the knowledge that this 
peak also demonstrated a lower SNR and its size combined with the multiple charging can give 
rise to unresolved protomers.  
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Figure S-6: A comparison of the two waveform generators used with respect to sweep rate 
stability; waveform generator A suffers from greater instability than waveform generator B, as 
indicated by the presence of echoes in waveform generator A’s FT drift time spectrum for 3+ 
charge state of neurotensin. 
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