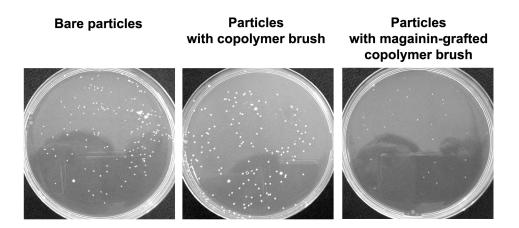

Supporting Information


Killing Microparticles Decorated by an Antimicrobial Peptide for the Easy Disinfection of Sensitive Aqueous Solutions

Thomas Blin, Viswas Purohit, Jérôme Leprince, Thierry Jouenne, Karine Glinel*

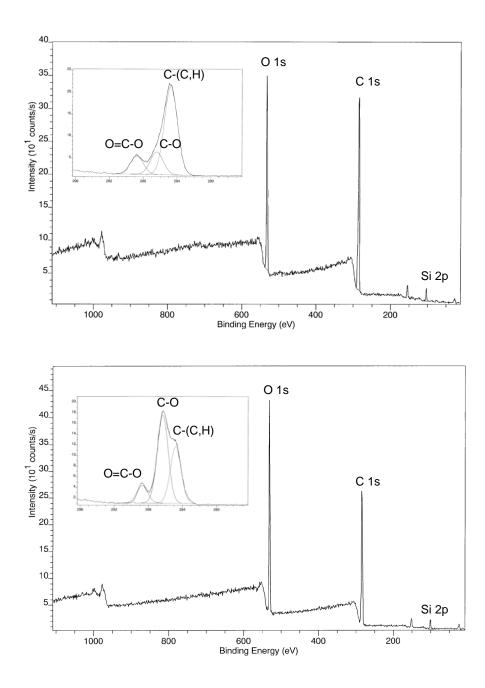

Laboratoire Polymères, Biopolymères, Surfaces (CNRS UMR 6270 & FR 3038) and Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine (INSERM U982), PRIMACEN, IFRMP23, Université de Rouen, 76821 Mont Saint Aignan, France ; Institute of Condensed Matter and Nanosciences (Bio & Soft Matter), Université catholique de Louvain, Croix du Sud 1/4, 1348 Louvain-la-Neuve, Belgium.

Figure S1. Thickness of the poly(MEO₂MA-*co*-HOEGMA) brush grown on silicon substrate as a function of the polymerization time. The thickness measurements were performed by ellipsometry.

Figure S2. Tests of bacterial culturability performed on *L. ivanovii* incubated in presence of modified and unmodified silica particles. The bacterial suspensions incubated with the particles were diluted 100 times before spreading onto Plate Count Agar for the tests.

Figure S3. XPS spectra (survey scans) measured for bare silica magnetic particles (top) and silica magnetic particles grated by poly(MEO₂MA-*co*-HOEGMA) brush (bottom). Insets: High resolution C 1s spectra.