Supporting information for

 β to α form transition observed in the crystalline structure of syndiotactic polystyrene (sPS)

Tetsu Ouchi, Suguru Nagasaka and Atsushi Hotta*

Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan

AUTHOR EMAIL ADDRESS: hotta@mech.keio.ac.jp

Figure S1. X-ray diffraction profile of amorphous specimen.

Figure S2. FTIR spectrum of amorphous specimen.

Figure S3. X-ray diffractogram of β specimen.

Figure S3. X-ray diffraction profile of β specimen.

Figure S4. FTIR difference spectrum of β specimen.

Figure S5. WAXS images: (a) 0% strain, and (b) 218°C 25% strain.

Figure S6. Stress-strain curves at different temperatures.

Figure S7. WAXS images of specimens after yielding at different temperatures of (a) 140°C and (b) 160°C.

Figure S8. X-ray diffraction profiles by changing strains at different temperatures of (a) 140°C and (b) 160°C. B.Y. and A.Y. stand for "before yielding" and "after yielding" respectively.

Figure S9. FTIR difference spectra as a function of strain at temperatures of (a) 140°C and (b) 160°C. B.Y. and A.Y. stand for "before yielding" and "after yielding" respectively.

Figure S10. The ratios of α (red), β (blue), and amorphous (green) regions as a function of strain at temperatures of (a) 140°C and (b) 160°C, before yielding (circles) and after yielding (squares).