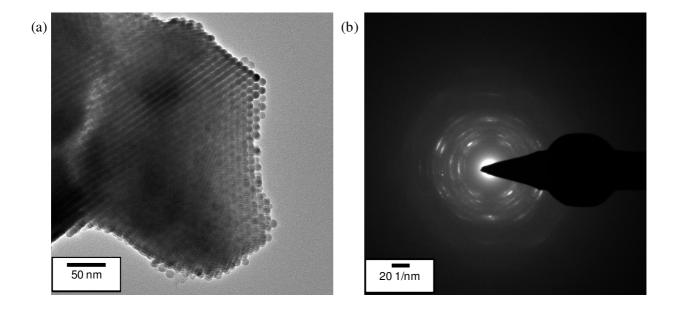
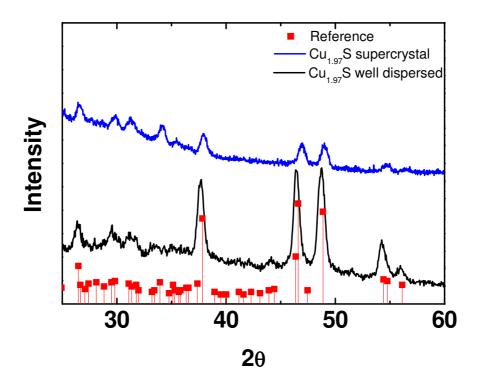
Supporting Information


Tuning the light absorption of $Cu_{1.97}S$ nanocrystals in supercrystal structures

Ilka Kriegel¹, Jessica Rodríguez-Fernández¹, Enrico Da Como¹*, Andrey A. Lutich¹, Johann


M. Szeifert² and Jochen Feldmann¹

¹Photonics and Optoelectronics Group, Department of Physics and CeNS, Ludwig-Maximilians-University, 80799 Munich, Germany

²Department of Chemistry, Ludwig-Maximilians-University, 81377 Munich, Germany

Figure S1. (a) HRTEM micrograph of a supercrystal of $Cu_{1.97}S$ nanocrystals. (b) Corresponding selected area electron diffraction (SAED) pattern, indicating that the nanocrystals are arranged in the supercrystal with a preferred orientation.

Figure S2. Powder XRD patterns of the $Cu_{1.97}S$ supercrystals and the corresponding deassembled nanocrystals after treatment with oleylamine. The peaks in both samples can be indexed to $Cu_{1.97}S$ *djurleite* (JPCDS 20-0365), confirming that the crystalline structure of the nanocrystals remains unaltered after de-assembly.