
Bispherical Force Computation. 

 An exact solution for the image force can be derived analytically in the bispherical 

coordinate system due to the isosurfaces that naturally correspond to the sphere/plane geometry.  

The bispherical coordinate system is described by three orthogonal coordinates, η, θ, and φ.  A 2-

D projection of the coordinate isosurfaces is depicted in Figure 1 for which φ=0. 

 

Supplementary Figure 1.  Isosurfaces of constant η (black) and constant θ (red) are presented for φ=0. 
The constant η isosurfaces represent circles with different radii of curvature.  The η=0 isosurface is a 
circle of infinite radius, whereas η=±∞ are circles of zero radius and located at the two poles.  The 
sphere/plane interaction can be represented by choosing η to scale with the relative sphere/plane 
separation distance.  

  Unlike the most common 11 separable coordinate systems, the bispherical coordinate 

system is only R separable with a general solution for the potential, given by: 
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where ( ) ( ) ( )θηθη coscosh, −=R .  The independent coordinate functions are determined through 

separation of variables: 
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where  and  are associated Legendre Polynomials of the first and second kinds.  Due to 

the presence of logarithmic singularities inQ , the  terms are set to zero.  In axially symmetric 

problems such as this one, we can also set 
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0=m , in which case the S  terms are discarded.   For 

two particles of arbitrary radii, which are defined by surfaces 

m

1η  and 2η , the potential inside 

particles 1 and 2 and the fluid medium, respectively, are given by: 
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241 −−−= , and  are the radii of the first and second 

spheres, and D  is the center-to-center separation distance.  The unknowns  and  are 

determined by matching with the boundary conditions (e.g., the potential is single-valued 

everywhere, and the normal component of the flux density,

1R 2R
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, is continuous across all 

interfaces).  It is possible to solve the image force problem by representing particle 2 as a half-

plane with 02 =η ; however due to convergence issues we have chosen a different approach 

based on the work of Love1, who showed that the half-plane can be treated as a fictitious sphere2 



of identical size ( 21 ηη −= ) and with coefficients  and  linked together through the 

relationship: 
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 Due to the R-separable nature of the solution, the orthogonality condition is not satisfied 

and we must employ Legendre polynomial identities in order to remove the angular dependence 

from the problem.  The following identities are used: 
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where ji ,δ  is the Kronecker delta having the values:  
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 The resulting expressions lead to a series of three term recursion relationships between 

coefficients . Many past works have described different numerical approaches for 

solving these recursion relationships

1,+n AA

1, 3, 4.  For convenience, we follow the approach developed 

by Stoy3. Once the coefficients  are computed, the potential, fields, and field gradients can be 

determined.  The force on the sphere in the z-direction (away from the surface) is computed from 

the Maxwell Stress Tensor using the expanded form:  

nA

( )
( )
( ) ( ) ( ) ( ) ( )

( ) ( ) θ
θη

θη
θη

η
η

πµ
θη

θη
π

dHH
HHa

Fz













−








−

−




−

−
= ∫ coscosh

sinsinh
cosh

1coscosh
2cosh

2 22

0

2
0

 

where the magnetic fields are determined from the negative gradient of the potential: 
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 In Supplementary Figure 2, we plot the ratio of the computed bispherical force with the 

approximate image dipole force as a function of the sphere/plane separation distance.  These 

simulations assumed that µf = 1.66 based on fitting parameters obtained through confocal 

microscopy.  The two forces differ by less than 1% when the sphere/plane separation distance is 

greater than the sphere radius.  At very small separations (down to 1/100th of a sphere diameter), 

the bispherical force converges to a fixed value that is ~10% greater than the image dipole force 

calculation.  Calculations by others have also shown that the sphere/plane force approaches a 

limiting value as the separation distance approaches zero5, 6.  We thus conclude that the image 

dipole force approximation will lead to a slight underestimation (<10% for  µf =1.66) of the exact 

magnetic force on a colloid in contact with a surface.   
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Supplementary Figure 2.  The ratio of force calculated from bispherical coordinates and image dipole 
force is plotted as a function of the relative sphere/plane separation.  

                                                        



                                     Sedimentation Analysis 

First, the density of the ferrofluid was 

determined by measuring the mass of a 500µL aliquot 

of ferrofluid taken directly from the stock volume.  The 

mass density of the ferrofluid was found to be 

1.19gm/cc which is in agreement with manufacturer 

specifications. The mean density of the colloidal beads 

was subsequently determined through a sink/float 

analysis.  In this technique, the beads were mixed with 

different concentrations of ferrofluid diluted in water, 

and microscopy images were taken to determine the 

ferrofluid concentrations at which the beads sunk to the 

bottom surface or floated to the top surface. Images 

were taken in both upright and inverted microscopy, 

and the results are presented in Supplementary Figure 3 

along with the estimated volume fraction of ferrofluid.  

According to the vendor specifications, the bulk volume 

fraction of ferrofluid was 3.9%.  Our analysis indicated 

that the mean density of the beads was 1.047g/cc, 

which agrees well with the actual density of polystyrene 

beads (1.05g/cc).  These mass density values were used 

in the force balance to estimate the ferrofluid 

permeability.    

Supplementary Figure 3.  
Microscopy images of beads in 
upright and inverted microscope as 
a function of the ferrofluid/water 
mixing ratio.   



Surface Roughness Measurements 

 Since the surface force measurements were much smaller than expected by theoretical 

predictions of the sphere/plane Van der Waals interaction, we speculated that an adsorbed 

ferrofluid layer was coating the bead, causing it to be placed further from the surface.  In order to 

ascertain the validity of this assumption, we performed atomic force microscopy on the surface 

of a bead that was previously immersed in ferrofluid.  Our past experiments have shown that 

ferrofluid can adsorb onto colloidal beads.  See for example the SEM image, provided in 

Supplementary Figure 4a, which can be found in one of our previous papers7.     The fit between 

theory and experiment indicated that the sphere/plane separation distance was on the order of 

50nm. This is consistent with AFM height image (Supplementary Figure 4b) which shows a 1-

µm area section of the top surface of the bead with the adsorbed ferrofluid layer.  

 

  

Supplementary Figure 4.  (a) SEM image of a colloidal bead arrangement that was assembled inside 
ferrofluid.  The rough surface demonstrates the adsorption of ferrofluid onto the colloidal beads.  (b) A 
high resolution AFM height image shows the surface roughness of the bead is quite large due to 
ferrofluid adsorption. 
 



Estimation of Unbinding Force 

 Fluorescent intensity measurements and image analysis techniques were used in 

conjunction to determine the frame at which each bead popped off the surface.  All beads within 

a field of view of a 5X objective were measured, except for beads that were within 4-5 bead 

diameters of another bead, for which bead-bead magnetic interactions are non-negligible. The 

experimental results for the 0.0074 pN/s loading rate data are provided in Supplementary Figure 

5a along with the fluorescent time signature for a single bead provided in Supplementary Figure 

5b.  The frame where the bead’s fluorescent intensity suddenly decreased was identified as the 

unbinding frame.  The unbinding force for each bead was determined from Equation (1) in the 

main text and the frame rate.     

 

Supplementary Figure 5.  (a) Fluorescent intensity measurements of an ensemble of beads are shown for 
0.0074 pn/s loading rate.  (b) The fluorescent intensity of a single bead is provided as a function of the 
frame number and the arrow denotes the unbinding frame.  
 
 



Surface Contact Angle Measurements 
 

PEG surfaces before and after irradiation with 254nm UV light (Migge, Heidelberg, 

Germany) were analyzed through surface contact angle measurements using a contact angle 

goniometer (Ramé-Hart, Mountain Lakes, NJ).  A drop of water was placed onto the surface and 

was allowed to rest for 1 minute. The contact angle between the drop surface and the substrate 

was measured four times, and the mean contact angle between water and PEG coated surface 

was determined to be 7.88 , with a standard deviation of 1. , whereas the same measurement 

for the irradiated sample  was , with a standard deviation of  0.64 . Since an inaccuracy of 

 is always present in these measurements, the contact angle of these two different surfaces 

are indistinguishable, which indicates little difference in the surface energy. With our surface 

force measurement technique, on the other hand, a very small change could be observed.  
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