Enantioselective Copper-Catalyzed Formal [4+2] Cycloaddition of o-Aminophenol Derivatives with Propargylic Esters for Synthesis of Optically Active 3,4-Dihydro-2H-1,4-benzoxazines
 Zhen-Ting Liu, Ya-Hui Wang, Fu-Lin Zhu, and Xiang-Ping Hu*
 Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China xiangping@dicp.ac.cn

Supporting Information

General Information S-2
General Procedure for Cu-Catalyzed Asymmetric Formal [4+2] Cycloaddition ofo-Aminnophenol Derivatives with Propargylic Esters......................................S-2
Hydrogenation of Cycloadducts 3 S-25
References S-26
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra S-27

General Information

All reactions were carried out under a nitrogen atmosphere. Solvents were purified by standard procedure before use. Commercial reagents were used without further purification. Flash chromatography was performed on silica gel $60(40-63 \mu \mathrm{~m}, 60 \AA)$. Thin layer chromatography (TLC) was performed on glass plates coated with silica gel 60 with F254 indicator. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were recorded on a Bruker 400 MHz spectrometer. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent $\left(\mathrm{CHCl}_{3}=\delta 7.28\right)$. Carbon nuclear magnetic resonance $\left({ }^{13} \mathrm{C}\right.$ NMR $)$ spectra were recorded on a Bruker 100 MHz spectrometer. Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent $\left(\mathrm{CDCl}_{3}=\delta 77.07\right)$. Data are represented as follows: chemical shift, multiplicity ($\mathrm{br}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet $)$, coupling constants in Hertz (Hz), integration. Only the most important and relevant frequencies are reported. Enantiomeric ratios were determined by chiral HPLC with hexane and $i-\mathrm{PrOH}$ as solvents. Optical rotations were recorded on a JASCO P-1020 polarimeter. o-Aminnophenol derivatives $\mathbf{1}^{1}$ and propargylic esters $\mathbf{2}^{2}$ were prepared following the method from the literature.

General Procedure for Copper-Catalyzed Asymmetric Formal [4+2] Cycloaddition of \boldsymbol{o}-Aminnophenol Derivatives with Propargylic Esters

A solution of $\mathrm{Cu}(\mathrm{OTf})_{2}(5.4 \mathrm{mg}, 0.015 \mathrm{mmol})$ and $(S)-\mathbf{L 4 e}(7.2 \mathrm{mg}, 0.0165 \mathrm{mmol})$ in 1 mL of anhydrous methanol placed in an oven-dried Schlenk flask was stirred at room temperature under a nitrogen atmosphere for 1 h . After lowering the reaction temperature to $-40{ }^{\circ} \mathrm{C}$, a solution of o-aminophenol derivatives $\mathbf{1}(0.3 \mathrm{mmol})$, propargylic esters $2(0.3 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(49.8 \mathrm{mg}, 0.36$ mmol) in 2 mL of anhydrous methanol was added. The mixture was stirred at $-40{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was then concentrated under vaccum, and the residue was purified by silica gel chromatography to afford 2H-1,4-benzoxazines 3 .
(S)-4-benzyl-2-methylene-3-phenyl-3,4-dihydro-2H-benzo[b][1,4]oxazine (3aa). 91 mg (97\% yield)
 was obtained as a colorless oil after purification with column chromatography on silica gel (hexanes/ethyl acetate, 100/1). 94% ee was determined by chiral HPLC (Chiralcel AD-H, n-hexane $/ i-\mathrm{PrOH}=98 / 2,0.8 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 40^{\circ} \mathrm{C}$): $t_{R}($ major $)=6.4 \mathrm{~min}, t_{R}($ minor $)=7.2 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{28}=-58.5\left(c 0.99, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.04(\mathrm{~m}, 6 \mathrm{H}), 6.81-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.75-6.71(\mathrm{~m}$, $1 \mathrm{H}), 6.65-6.60(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=$ $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.1,143.7,139.3,137.7$, 134.0, 128.8, 128.7, 127.8, 127.5, 127.5, 127.3, 122.7, 119.4, 115.8, 114.8, 91.5, 61.2, 54.6. HRMS calc. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 314.1545$, found: 314.1527.
Vow 1 A , wavelength $=254 \mathrm{~nm}(L Z T 20150602000003 . \mathrm{D})$

mAU	\#	Time	Area	Height	Width	Area\%	Symmetry
	1	6.358	6746.1	541.1	0.1891	50.532	0.626
	2	7.215	6604	531	0.1902	49.468	0.672

(97% yield) was obtained as a colorless oil after purification with column chromatography on silica gel (hexanes/ethyl acetate, 100/1). 90% ee was determined by chiral HPLC (Chiralcel OJ-H, n-hexane $/ i-\mathrm{PrOH}=99 / 1,0.5$ $\left.\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, 40^{\circ} \mathrm{C}\right): t_{R}($ major $)=10.5 \mathrm{~min}, t_{R}($ minor $)=12.3 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{29}=$ 117.2 (c 1.02, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61-7.59(\mathrm{~m}, 2 \mathrm{H})$, 7.42-7.35 (m, 4H), 7.30-7.26 (m, 1H), 7.16-7.12 (m, 2H), 7.08-7.04 (m, 1H), 6.84-6.81 (m, 1H), 6.76-6.74 (m, 1H), 6.68-6.66(m, 1H), 5.04 (s, 1H), $4.49(\mathrm{~s}, 1 \mathrm{H}), 4.28-4.24(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~d}, J=14.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 149.7,148.4,138.3,138.2,134.1,132.1,128.9$, 128.7, 128.2, 127.8, 127.2, 127.0, 124.7, 124.0, 114.0, 93.7, 58.9, 58.7, 17.6. HRMS calc. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+}: 328.1701$, found: 328.1695.

 (84% yield) was obtained as a colorless oil after purification with column chromatography on silica gel (hexanes/ethyl acetate, 100/1). 92% ee was determined by chiral HPLC (Chiralcel OJ-H, n-hexane $/ i$-PrOH $=95 / 5$, 0.8 $\left.\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, 40{ }^{\circ} \mathrm{C}\right): t_{R}($ major $)=9.6 \mathrm{~min}, t_{R}($ minor $)=12.9 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{29}=$ -38.3 (c 1.10, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.25-7.22(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.10(\mathrm{~m}, 6 \mathrm{H})$, $6.70-6.68(\mathrm{~m}, 1 \mathrm{H}), 6.51-6.44(\mathrm{~m}, 2 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.20(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 153.0$, $141.7,139.3,137.7$, 133.6, 131.9, 128.7, 128.6, 127.7, 127.6, 127.4, 127.2, 120.0, 115.4, 115.4, 91.1 , 60.9, 54.5, 21.2. HRMS calc. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 328.1701$, found: 328.1692.

(90% yield) was obtained as a colorless oil after purification with column chromatography on silica gel (hexanes/ethyl acetate, 100/1). 94% ee was determined by chiral HPLC (Chiralcel OJ-H, n-hexane $/ i-\mathrm{PrOH}=95 / 5,0.8$ $\left.\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, 40^{\circ} \mathrm{C}\right): t_{R}($ major $)=12.3 \mathrm{~min}, t_{R}($ minor $)=16.2 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{29}$ $=-48.0\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.12(\mathrm{~m}, 6 \mathrm{H})$, 6.74-6.59 (m, 3H), 4.73(s,2H), 4.43(d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.20$ ($\mathrm{s}, 3 \mathrm{H}$) ${ }^{13}{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.9,144.0,139.2,138.0,131.5,129.7,128.8,128.6,127.7$, 127.7, 127.4, 127.3, 123.1, 116.4, 116.0, 91.6, 61.0, 55.6, 20.7. HRMS calc. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$: 328.1701, found: 328.1694 .

(79% yield) was obtained as a colorless oil after purification with column chromatography on silica gel (hexanes/ethyl acetate, 100/1). 97\% ee was determined by chiral HPLC (Chiralcel OD-H, n-hexane $/ i-\mathrm{PrOH}=99 / 1,0.5$ $\left.\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, 40{ }^{\circ} \mathrm{C}\right): t_{R}($ minor $)=15.2 \mathrm{~min}, t_{R}($ major $)=16.8 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{29}=$ $-52.1\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.48-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 6 \mathrm{H})$, 6.90-6.86 (m, 1H), 6.77-6.75 (m, 2H), $4.95(\mathrm{~s}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.45(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.2$, $141.9,139.45,137.9,133.6,128.8,128.7,127.7,127.5,127.4,127.3,125.0,121.8,121.3,112.8,91.3$, 61.1, 54.9, 16.0. HRMS calc. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 328.1701$, found: 328.1694 .
WMD1 A, Wavelength $=254 \mathrm{~nm}$ (LZTZ20150514000015.D)

mAU \ddagger	\#	Time	Area	Height	W/idth	Area\%	Symmetry
	1	15.134	1234.6	43	0.4227	51.249	0.672
175%	2	16.739	1174.4	40.4	0.4353	48.751	0.686

(S)-4-benzyl-2-methylene-6-nitro-3-phenyl-3,4-dihydro-2 \boldsymbol{H}-benzo[b][1,4]oxazine (3fa). 105 mg (98%

yield) was obtained as a yellow oil after purification with column chromatography on silica gel (hexanes/ethyl acetate, 20/1). 85% ee was determined by chiral HPLC (Chiralcel OJ-H, n-hexane $/ i-\mathrm{PrOH}=50 / 50$, $\left.0.8 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 40^{\circ} \mathrm{C}\right): t_{R}($ minor $)=12.8 \mathrm{~min}, t_{R}($ major $)=17.9 \mathrm{~min}$. $[\alpha]_{\mathrm{D}}{ }^{29}=-17.2\left(c 1.09, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.65-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.22(\mathrm{~m}, 8 \mathrm{H})$, 7.17-7.14 (m, 2H), 6.94-6.92(m, 1H), $4.94(\mathrm{~s}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.47(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.1,147.9,143.2$, $138.1,135.9,134.1,129.0,129.0,128.3,128.0,127.5,126.9,115.5,115.1,108.5,93.2,60.3,53.5$.

HRMS calc. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 359.1396$, found: 359.1389.

mAU	\#	Time	Area	Height	Width	Area\%	Symmetry
600-	1	12.72	8453.7	375.1	0.3488	50.142	0.781
	2	17.807	8405.8	184	0.6975	49.858	0.672

mg (97% yield) was obtained as a white solid after purification with column chromatography on silica gel (hexanes/ethyl acetate, 5/1). M.p.: $140-142{ }^{\circ} \mathrm{C} .91 \%$ ee was determined by chiral HPLC (Chiralcel AD-H, n-hexane $/ i$ - $\mathrm{PrOH}=90 / 10,0.8 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 40{ }^{\circ} \mathrm{C}$): t_{R} (major) $=$ $18.6 \mathrm{~min}, t_{R}($ minor $)=20.9 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{28}=-23.7\left(c 1.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d^{6}\right): \delta$ 7.41-7.36 (m, 4H), 7.34-7.29 (m, 4H), 7.28-7.25 (m, 3H), 7.22-7.19 (m, 1H), 7.04-7.06 (m, 1H), 5.39 $(\mathrm{s}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 4.77-4.73(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $\left.d^{6}\right): \delta$ $152.4,144.8,139.5,138.9,138.9,137.6,133.7,129.2,128.3,127.9,127.6,127.1,116.5,115.6,110.8$, 92.7, 60.6, 53.4. HRMS calc. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 393.1273$, found: 393.1264.

WWOD A. Wavelength $=254 \mathrm{~nm}$ (LZTV20150524000002.D)

Wow 1 A , Wavelength $=254 \mathrm{~nm}$ (LZTi20150524000001.D)

(S)-4-benzyl-6-bromo-2-methylene-3-phenyl-3,4-dihydro-2H-benzo[b][1,4]oxazine (3ha). 114 mg

(97% yield) was obtained as a colorless oil after purification with column chromatography on silica gel (hexanes/ethyl acetate, 100/1). 96% ee was determined by chiral HPLC (Chiralcel OJ-H, n-hexane $/ i$-PrOH $=95 / 5,0.8$ $\left.\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, 40{ }^{\circ} \mathrm{C}\right): t_{R}($ minor $)=10.3 \mathrm{~min}, t_{R}($ major $)=15.5 \mathrm{~min}$. $[\alpha]_{\mathrm{D}}{ }^{28}=-23.7\left(c 1.01, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 3 \mathrm{H})$, 7.25-7.21 (m, 3H), 7.19-7.16 (m, 2H), 6.86-6.79 (m, 2H), 6.75-6.73 (m, 1H), $4.81(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=$ $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 152.5,142.5,138.8,136.7,135.2,128.9,128.8,128.0,127.7,127.5,127.0,121.6$, 117.0, 116.4, 114.9, 91.8, 60.6, 53.7. HRMS calc. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}: 392.0650$, found: 392.0642.

(98% yield) was obtained as a colorless oil after purification with column chromatography on silica gel (hexanes/ethyl acetate, 100/1). 96% ee was determined by chiral HPLC (Chiralcel OJ-H, n-hexane $/ i$ - $\mathrm{PrOH}=95 / 5,0.8$ $\left.\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, 40^{\circ} \mathrm{C}\right): t_{R}($ minor $)=10.6 \mathrm{~min}, t_{R}($ major $)=15.0 \min .[\alpha]_{\mathrm{D}}{ }^{29}$ $=-45.6\left(c 1.04, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.20(\mathrm{~m}, 6 \mathrm{H})$, 7.19-7.16 (m, 2H), 6.81-6.79 (m, 1H), 6.72-6.71 (m, 1H), 6.68-6.65 (m, 1H), $4.82(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=$ $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.6,141.9,138.8,136.7,134.8,128.9,128.8,127.9,127.7,127.4,127.4,127.0$, 118.6, 116.5, 113.6, 91.7, 60.7, 53.7. HRMS calc. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}: 348.1155$, found: 348.1148.

(97% yield) was obtained as a colorless oil after purification with column chromatography on silica gel (hexanes/ethyl acetate, 100/1). 95% ee was determined by chiral HPLC (Chiralcel OD-H, n-hexane $/ i-\mathrm{PrOH}=95 / 5,0.8$ $\left.\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, 40^{\circ} \mathrm{C}\right): t_{R}($ major $)=7.7 \mathrm{~min}, t_{R}($ minor $)=9.0 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{29}=$ -68.3 (c 1.02, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.09(\mathrm{~m}, 6 \mathrm{H})$, 6.80-6.79 (m, 1H), 6.69-6.67 (m, 1H), 6.53-6.51 (m, 1H), $4.71(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=15.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.5,144.0,138.8$, 137.1, 132.7, 128.9, 128.8, 128.0, 127.6, 127.5, 127.2, 123.9, 122.4, 116.0, 115.5, 92.2, 61.1, 54.7. HRMS calc. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}: 348.1155$, found: 348.1146.

(S)-4-methyl-2-methylene-3-phenyl-3,4-dihydro-2H-benzo[b][1,4]oxazine (3la). 68 mg (95\% yield)
 was obtained as a colorless oil after purification with column chromatography on silica gel (hexanes/ethyl acetate, 100/1). 90% ee was determined by chiral HPLC (Chiralcel OJ-H, n-hexane $/ i$-PrOH $\left.=70 / 30,0.8 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 40{ }^{\circ} \mathrm{C}\right): t_{R}$ $($ major $)=13.5 \mathrm{~min}, t_{R}($ minor $)=22.3 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{29}=-253.2\left(c \quad 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.27-7.17(\mathrm{~m}, 5 \mathrm{H}), 6.91-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.67(\mathrm{~m}, 2 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H})$, $4.65(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 154.2$, 142.9, 139.0, 134.7, 128.7, 127.9, 127.4, 122.7, 118.6, 115.2, 112.6, 91.0, 63.4, 36.8. HRMS calc. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 238.1232$, found: 238.1216.

(95% yield) was obtained as a colorless oil after purification with column chromatography on silica gel (hexanes/ethyl acetate, 100/1). 80% ee was determined by chiral HPLC (Chiralcel OJ-H, n-hexane $/ i-\mathrm{PrOH}=90 / 10,0.8$ $\left.\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, 40{ }^{\circ} \mathrm{C}\right): t_{R}($ major $)=9.4 \mathrm{~min}, t_{R}($ minor $)=10.9 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{28}=$ -101.2 (c 1.00, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.24-7.11(\mathrm{~m}, 7 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 2 \mathrm{H})$, 6.86-6.84(m, 1H), 6.77-6.72(m, 1H), 6.64-6.60(m, 1H), 6.56-6.53(m, 1H), $5.40(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=$ $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 151.4,142.6,137.8,137.3,134.0,133.3,130.0,129.0,128.8,127.9,127.5,127.4$, 127.1, 122.9, 118.3, 115.7, 112.4, 92.73, 58.0, 53.1. HRMS calc. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}: 348.1155$, found: 348.1136 .

mAU	\#	Time	Area	Height	Width	Area\%	Symmetry
	1	9.478	1743.9	89.6	0.3013	50.185	0.853
250	2	10.935	1731	59	0.4573	49.815	0.861

WMOD A, Wavelength=254 nm (LZTV20150517000006.D)

| \# $\#$ | Time | Area | Height | Width | Area\% | Symmetry |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 9.418 | 6625.2 | 342.3 | 0.2986 | 89.896 | 0.771 |
| 2 | 10.891 | 744.6 | 24 | 0.4794 | 10.104 | 0.945 |

(90% yield) was obtained as a colorless oil after purification with column chromatography on silica gel (hexanes/ethyl acetate, 100/1). 96% ee was determined by chiral HPLC (Chiralcel OJ-H, n-hexane $/ i$ - $\mathrm{PrOH}=98 / 2,0.8$ $\left.\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, 40{ }^{\circ} \mathrm{C}\right): t_{R}$ (major) $=12.3 \mathrm{~min}, t_{R}($ minor $)=14.0 \mathrm{~min}$. $[\alpha]_{\mathrm{D}}{ }^{28}=-34.7\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.23-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H})$, 7.07-7.01 (m, 3H), 6.80-6.63 (m, 4H), 4.67-4.64 (m, 2H), $4.40(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.14(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 151.9,143.9,141.3,137.3,134.5,133.5$, 129.9, 128.9, 127.9, 127.7, 127.6, 127.5, 125.3, 122.8, 120.1, 115.9, 115.9, 92.2, 60.5, 55.4. HRMS calc. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}: 348.1155$, found: 348.1137 .
WHD1 A. Wavelength=254 nm (LZTZ20150517000004.D)

| m | Time | Area | Height | Width | Area\% | Symmetry |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 12.428 | 2572 | 83.1 | 0.4731 | 49.554 | 0.765 |
| 2 | 14.146 | 2618.2 | 65.8 | 0.6008 | 50.446 | 0.779 |

(S)-4-benzyl-3-(4-chlorophenyl)-2-methylene-3,4-dihydro-2H-benzo[b][1,4]oxazine (3ad). 100 mg

(96% yield) was obtained as a colorless oil after purification with column chromatography on silica gel (hexanes/ethyl acetate, 100/1). 91% ee was determined by chiral HPLC (Chiralcel AD-H, n-hexane $/ i$ - $\mathrm{PrOH}=98 / 2,0.8$ $\left.\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, 40{ }^{\circ} \mathrm{C}\right): t_{R}($ major $)=7.0 \mathrm{~min}, t_{R}($ minor $)=9.0 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{29}$ $=-37.6\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.31(\mathrm{dd}, J=12.2,4.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.27(\mathrm{dd}, J=$ $8.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.13(\mathrm{~m}, 4 \mathrm{H}), 6.86(\mathrm{dd}, J=15.0,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.82-6.71(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{~d}, J=4.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.49(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 152.2,143.9,137.6,137.4,133.6,133.5,128.8,128.8,128.6,127.7,127.6,122.7,120.1$, $115.8,115.8,91.9,60.2,55.2$. HRMS calc. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}: 348.1155$, found: 348.1138.

yield) was obtained as a colorless oil after purification with column chromatography on silica gel (hexanes/ethyl acetate, 100/1). 90% ee was determined by chiral HPLC (Chiralcel AD-H, n-hexane $/ i-\mathrm{PrOH}=98 / 2,0.8$ $\left.\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, 40^{\circ} \mathrm{C}\right): t_{R}($ major $)=6.4 \mathrm{~min}, t_{R}($ minor $)=7.5 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{29}=$ -41.6 (c 1.09, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.25-7.15(\mathrm{~m}, 5 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 2 \mathrm{H})$, 6.84-6.75 (m, 4H), 6.71-6.65 (m, 2H), 4.67 (s, 1H), $4.65(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.20(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.25(\mathrm{~d}, J=246.2$ $\mathrm{Hz}), 152.6,143.9,137.5,134.8(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 133.7,128.9(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 128.8,127.6,127.5,122.7$, $119.9,115.8,115.6,115.5(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 91.7,60.2,55.0$. HRMS calc. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{FNO}[\mathrm{M}+\mathrm{H}]^{+}$: 332.1451, found: 332.1435 .

(97% yield) was obtained as a white solid after purification with column chromatography on silica gel (hexanes/ethyl acetate, 100/1). M.p.: 68-70 ${ }^{\circ} \mathrm{C}$. 91\% ee was determined by chiral HPLC (Chiralcel AD-H, n-hexane/i-PrOH $\left.=98 / 2,0.8 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 40^{\circ} \mathrm{C}\right): t_{R}($ major $)=7.4 \mathrm{~min}, t_{R}($ minor $)=9.7$ $\min .[\alpha]_{\mathrm{D}}{ }^{28}=-41.2\left(c 1.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35-7.22(\mathrm{~m}, 7 \mathrm{H}), 7.12-7.10(\mathrm{~m}$, 2H), 6.90-6.84 (m, 2H), 6.81-6.74 (m, 2H), $4.75(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=15.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.30(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.1,143.9$, $138.1,137.3,133.5,131.7,128.9,128.8,127.6,127.6,122.7,121.6,120.1,115.8,115.8,91.9,60.2$, 55.3. HRMS calc. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}: 392.0650$, found: 392.0640 .

(3ag). 87 mg (76% yield) was obtained as a white solid after purification with column chromatography on silica gel (hexanes/ethyl acetate, 100/1). M.p.: $56-58^{\circ} \mathrm{C} .84 \%$ ee was determined by chiral HPLC (Chiralcel AD-H, n-hexane $/ i-\operatorname{PrOH}=98 / 2,0.8 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 40^{\circ} \mathrm{C}$): t_{R} (major) $=5.9$ $\min , t_{R}($ minor $)=6.9 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{28}=-33.5\left(c 1.13, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.41-7.39(\mathrm{~m}$, $2 \mathrm{H}), 7.29-7.17(\mathrm{~m}, 7 \mathrm{H}), 6.82-6.75(\mathrm{~m}, 3 \mathrm{H}), 6.72-6.68(\mathrm{~m}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.43(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 151.6,144.0,143.1,137.2,133.4,129.8(\mathrm{q}, J=32.4 \mathrm{~Hz}), 128.9,127.7,127.7,127.52,125.5$ $(\mathrm{q}, J=3.7 \mathrm{~Hz}), 124.1(\mathrm{q}, J=268.9 \mathrm{~Hz}), 122.8,120.3,116.1,115.9,92.2,60.4,55.6$. HRMS calc. for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 382.1419$, found: 382.1408 .

(S)-4-benzyl-2-methylene-3-(p-tolyl)-3,4-dihydro-2H-benzo[b][1,4]oxazine (3ah). 95 mg (97% yield)

was obtained as a white solid after purification with column chromatography on silica gel (hexanes/ethyl acetate, 100/1). M.p.: $48-50{ }^{\circ} \mathrm{C} .93 \%$ ee was determined by chiral HPLC (Chiralcel AD-H, n-hexane $/ i-\mathrm{PrOH}=98 / 2,0.8$ $\left.\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, 40^{\circ} \mathrm{C}\right): t_{R}($ major $)=6.5 \mathrm{~min}, t_{R}($ minor $)=8.1 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{28}=$ 69.2 (c 1.01, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.24-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.94$ $(\mathrm{m}, 2 \mathrm{H}), 6.81-6.79(\mathrm{~m}, 1 \mathrm{H}), 6.76-6.72(\mathrm{~m}, 1 \mathrm{H}), 6.65-6.63(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J$ $=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $153.4,143.6,137.7,137.4,136.2,134.0,129.4,128.8,127.5,127.4,127.1,122.5,119.3,115.7,114.6$, 91.2, 60.9, 54.3, 21.2. HRMS calc. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 328.1701$, found: 328.1694.

(70% yield) was obtained as a colorless oil after purification with column chromatography on silica gel (hexanes/ethyl acetate, 100/1). 93% ee was determined by chiral HPLC (Chiralcel AD-H, n-hexane $/ i$ - $\mathrm{PrOH}=98 / 2,0.8$ $\left.\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, 40^{\circ} \mathrm{C}\right): t_{R}$ (major) $=10.9 \mathrm{~min}, t_{R}($ minor $)=11.7 \mathrm{~min}$. $[\alpha]_{\mathrm{D}}{ }^{28}=-39.4\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.75-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.25(\mathrm{~m}, 8 \mathrm{H})$, 6.92-6.72 (m, 4H), $4.96(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.26(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 153.0,143.8,137.6,136.7,134.0,133.2$, $133.0,128.8,128.6,128.1,127.7,127.5,127.5,126.4,126.2,126.1,125.2,122.7,119.6,115.8,115.1$, 91.8, 61.3, 54.7. HRMS calc. for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 364.1701$, found: 364.1690.

yield) was obtained as a colorless oil after purification with column chromatography on silica gel (hexanes/ethyl acetate, 100/1). 78% ee was determined by chiral HPLC (Chiralcel OJ-H, n-hexane $/ i-\mathrm{PrOH}=98 / 2,0.8$ $\left.\mathrm{mL} / \mathrm{min}, 254 \mathrm{~nm}, 40^{\circ} \mathrm{C}\right): t_{R}($ minor $)=17.9 \mathrm{~min}, t_{R}($ major $)=20.7 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{29}=$ -102.4 (c 1.10, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.38-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H})$, 7.08-7.06 (m, 1H), 6.94-6.92(m, 1H), 6.87-6.74 (m, 5H), $4.95(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.47$ $(\mathrm{d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 152.6,144.0,141.6,137.2,133.3,128.9,128.0,127.7,126.6,125.7,125.3,122.7,120.5,116.1,115.8$, 90.7, 56.7, 54.6. HRMS calc. for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}: 320.1109$, found: 320.1094.

(S)-4-benzyl-3-methyl-2-methylene-3,4-dihydro-2H-benzo[b][1,4]oxazine (3ak). 72 mg (96% yield)

was obtained as a colorless oil after purification with column chromatography on silica gel (hexanes/ethyl acetate, 100/1). 80% ee was determined by chiral HPLC (Chiralcel OD-H, n-hexane $/ i$-PrOH $=95 / 5,0.8 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 40^{\circ} \mathrm{C}$): t_{R} (minor) $=6.2 \mathrm{~min}, t_{R}($ major $)=7.6 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{28}=-14.3\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.35-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.80(\mathrm{~m}, 1 \mathrm{H})$, 6.76-6.73 (m, 1H), 6.67-6.65 (m, 1H), $4.51(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.084.07 (m, 1H), $3.79(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.15(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $155.3,143.5,137.8,133.5,128.7,127.6,127.4,122.4,119.4,115.4,115.1,87.8,53.9,53.0,15.8$. HRMS calc. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 252.1388$, found: 252.1379.

mAU	\#	Time	Area	Height	width	Area\%	Symmetry
500	1	6.176	2736.5	295	0.1388	50.660	0.648
	2	7.628	2665.3	240.8	0.167	49.340	0.7

WM'D1 A, Wavelength $=254 \mathrm{~nm}$ (LZTC20150526000001.D)

(S)-3,4-dibenzyl-2-methylene-3,4-dihydro-2H-benzo[b][1,4]oxazine (3al). 82 mg (84% yield) was
 obtained as a colorless oil after purification with column chromatography on silica gel (hexanes/ethyl acetate, 100/1). 94% ee was determined by chiral HPLC (Chiralcel OD-H, n-hexane $/ i-\mathrm{PrOH}=95 / 5,0.8 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 40^{\circ} \mathrm{C}$): t_{R} (minor) $=6.6 \mathrm{~min}, t_{R}($ major $)=7.9 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{29}=-52.1\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.28-7.17(\mathrm{~m}, 8 \mathrm{H}), 7.02-6.96(\mathrm{~m}, 3 \mathrm{H}), 6.90-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.81-6.77(\mathrm{~m}, 1 \mathrm{H})$, $6.72-6.70(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.79-3.75 (m, 2H), 2.83 (dd, $J=13.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=13.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 152.0,143.8,138.2,137.5,133.2,129.63,128.6,128.3,127.7,127.4,126.5,122.5,119.6$, 115.7, 115.6, 89.8, 60.0, 55.1, 36.8. HRMS calc. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 328.1701$, found: 328.1696 .

Hydrogenation of Cycloadducts 3

$[\mathrm{Rh}(\mathrm{COD}) \mathrm{Cl}]_{2}(3.2 \mathrm{mg}, 0.0065 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(10.2 \mathrm{mg}, 0.039 \mathrm{mmol})$ were stirred in 1 mL of anhydrous methanol at room temperature under nitrogen atmosphere for 20 minutes. A solution of 3aa ($81.5 \mathrm{mg}, 0.26 \mathrm{mmol}$) in 1 mL of anhydrous methanol was added. The hydrogenation was performed at room temperature under 1 atm of H_{2} pressure for 10 h . After concentration of the reaction mixture under reduced pressure, the residue was purified by silica gel chromatography (hexanes/AcOEt, 100/1) to afford $4\left(80 \mathrm{mg}, 98 \%\right.$ yield) as a white solid. M.p.: $98-100{ }^{\circ} \mathrm{C} .94 \%$ ee was determined by chiral HPLC $\left(\right.$ Chiralcel OJ-H, n-hexane $/ i$ - $\mathrm{PrOH}=90 / 10,0.8 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}, 40^{\circ} \mathrm{C}$): t_{R} (major) $=20.1 \mathrm{~min}, t_{R}$ $($ minor $)=9.7 \mathrm{~min} .[\alpha]_{\mathrm{D}}{ }^{29}=-169.4\left(c 1.04, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.22-7.14(\mathrm{~m}, 8 \mathrm{H})$, 7.07-7.02 (m, 2H), 6.82-6.80(m, 1H), 6.74-6.69(m, 1H), 6.55-6.49 (m, 2H), 4.43-4.37(m, 2H), 4.16 $(\mathrm{d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $143.9,138.6,138.3,135.4,128.8,128.8,128.4,127.9,127.2,126.8,122.5,116.7,116.4,110.8,72.31$, 64.9, 52.3, 18.2. HRMS calc. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 316.1701$, found: 316.1693.

References

1. Yoo, W.-J.; Yuan, H.; Miyamura, H.; Kobayashi, S. Can. J. Chem. 2012, 90, 306-313.
2. a) Fang, P.; Hou, X.-L. Org. Lett. 2009, 11, 4612-4615; b) Bhanuchandra, M.; Kuram, M. R.; Sahoo, A. K. J. Org. Chem. 2013, 78, 11824-11834.

LZT-364
LZT-364 (CDCl3)
PROTON CDCl3 \{D: \NMR400\02T2\} nmr 8

LZT-364
LZT-364 (CDCl3)
C13CPD CDCl3 \{D: \NMR400\02T2\} nmr 8

\vec{b}

LZT-505
PROTON CDC13 \{D: $\backslash \operatorname{NMR400\backslash 02T2\} ~nmr~} 54$

LZT-505

Nヨ	
$\dot{\infty} \dot{\infty}$	$\infty \infty \sim \sim \sim \infty$
せ	
5	\cdots

∞
$\underbrace{\infty}$
∞
$\stackrel{\infty}{\circ}$
$\stackrel{\rightharpoonup}{\sim}$
$\stackrel{\rightharpoonup}{1}$

C13CPD CDC13 \{D: \NMR400\02T2\} nmr 54

LZT-474
LZT-474 (CDC13)
PROTON CDCl3 \{D: \NMR400 $\backslash 02 \mathrm{~T} 2\} \mathrm{nmr} 12$

LZT-474

LZT-474 (CDC13)
C13CPD CDC13 \{D: \NMR400\02T2\} nmr 12

1	1	1	1	1	1	1	1				1					,			
180	170	160	150	140	130	120	110	100	90		70	60	50	40	30	20	10	0	-10

$\stackrel{\odot}{\circ}$

 i

LZT-502
PROTON CDC13 \{D: $\backslash \mathrm{NMR400} \mathrm{\backslash 02T2} \mathrm{\}} \mathrm{nmr} 52$

LZT-502

$$
\begin{aligned}
& \text { t9' 'g - } \\
& 00 \text { 't9- }
\end{aligned}
$$

C13CPD CDC13 \{D: \NMR400\02T2\} nmr 52

낭 $\infty \infty \infty \infty$

© $\stackrel{\uparrow}{~}$

LZT-514
LZT-514 (CDC13)
PROTON CDC13 \{D: \NMR400\02T2\} nmr 15

LZT-514
LZT-514 (CDC13)
C13CPD CDCl3 \{D: \NMR400\02T2\} nmr 15

+	1	1	1	1	1	1	1	1	1	1	-	1	1	1	1	1	1	1	1	T	T
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10
											(ppm)										

LZT-479
LZT-479 (CDC13)
PROTON CDCl3 \{D: \NMR400\02T2\} nmr 16

LZT-479

> 6 I ${ }^{\circ}$ 8-
> $\begin{array}{ll}\overrightarrow{0} & \stackrel{4}{0} \\ \dot{8} & 0 \\ 1 & 1\end{array}$

LZT-479 (CDC13)
C13CPD CDCl3 \{D: $\backslash \mathrm{NMR} 400 \backslash 02 \mathrm{~T} 2\} \mathrm{nmr} 16$

LZT-508
LZT-508 (DMSO)
PROTON DMSO \{D: \NMR400\02T2\} nmr 12

LZT-508

LZT-508 (DMSO)
C13CPD DMS0 \{D: \NMR400\02T2\} nmr 12

LZT-478

LZT-478 (CDC13)
PROTON CDC13 \{D: \MMR400\02T2\} nmr 15

LZT-478 (CDCl3)
C13CPD CDC13 \{D: \NMR400\02T2\} nmr 15

LZT-476
LZT-476 (CDCl3)
PROTON CDCl3 \{D: $\backslash \mathrm{NMR} 400 \backslash 02 \mathrm{~T} 2\} \mathrm{nmr} 14$

8		\cdots	
ヘ		$\dot{\sim}$	8
\checkmark	そう！	¢	

LZT－476
LZT－476（CDC13）
C13CPD CDCl3 \｛D：$\backslash \mathrm{NMR} 400 \backslash 02 \mathrm{~T} 2\} \mathrm{nmr} 14$

LZT-504
PROTON CDC13 \{D: \NMR400\02T2\} nmr 53

LZT-504

C13CPD CDC13 \{D: \NMR400\02T2\} nmr 53

1	1	1	1	1	,	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

lzt-544
PROTON CDC13 \{D: \NMR400\02T2\} nmr 8

C13CPD CDC13 \{D: \NMR400\02T2\} nmr 8

LZT-489
LZT-489 CDCl3
PROTON CDC13 \{D: \backslash NMR400 $\backslash 02 \mathrm{~T} 2\}$ nmr 13

$\infty \bigcirc$
ค ค
LZT-489 CDCl3
C13CPD CDC13 \{D: \NMR400\02T2\} nmr 13

LZT-490
LZT-490 (CDCl3)
PROTON CDC13 \{D: \NMR400\02T2\} nmr 3

LZT-490
LZT-490 (CDC13)
C13CPD CDC13 \{D: \NMR400\02T2\} nmr 3

$$
\mid
$$

\square

LZT-418
LZT-418 (CDC13)
PROTON CDC13 \{D: \NMR400\02T2\} nmr 51

LZT-419
LZT-419 (CDCl3)
PROTON CDC13 \{D: $\backslash \mathrm{NMR} 400 \backslash 02 \mathrm{~T} 2\} \mathrm{nmr} 20$

LZT-419
LZT-419 (CDCl3)
C13CPD CDCl3 \{D: \NMR400\02T2\} nmr 20

200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \text { f1 } \end{gathered}$	$\begin{array}{r} 90 \\ \mathrm{ppm}) \end{array}$	80	70	60	50	40	30	20	10	0	-10

LZT-390
LZT-390 (CDCl3)
PROTON CDC13 \{D: \NMR400\02T2\} nmr 31

∞
$\dot{\sigma}$
i
농 $\begin{array}{ll}N & 0 \\ 0 \\ 0 \\ 0\end{array}$

LZT-390 (CDC13)
C13CPD CDC13 \{D: \NMR400\02T2\} nmr 31

LZT-421
LZT-421 (CDCl3)
PROTON CDCl3 \{D: $\backslash \mathrm{NMR} 400 \backslash 02 \mathrm{~T} 2\} \mathrm{nmr} 52$

$$
\begin{aligned}
& \stackrel{\infty}{\infty}
\end{aligned}
$$

LZT-421
LZT-421 (CDCl3)
C13CPD CDC13 \{D: $\backslash \mathrm{NMR} 400 \backslash 02 \mathrm{~T} 2\} \mathrm{nmr} 52$

LZT-422
LZT-422 (CDC13)
PROTON CDC13 \{D: \NMR400 $\backslash 02 \mathrm{~T} 2\}$ nmr 21

$$
\begin{aligned}
& \text { EE }{ }^{\circ G-} \\
& \boxed{6} \cdot 09-
\end{aligned}
$$

$$
\stackrel{\stackrel{L}{\square}}{\stackrel{-}{\sim}}
$$

LZT-422 (CDCl3)
C13CPD CDCl3 \{D: \NMR400\02T2\} nmr 21

+	1	1	1	1	1	,	1	1	1	1	1	T	T	1	1	1	T	1	1	T	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

$$
\begin{aligned}
& \text { 風 }
\end{aligned}
$$

LZT-538
PROTON CDC13 \{D: \MMR400\02T2\} nmr 25

LZT-538

C13CPD CDC13 \{D: \NMR400\02T2\} nmr 25

LZT-497
LZT-497 (CDCl3)
PROTON CDCl3 \{D: \NMR400\02T2\} nmr 4

C13CPD CDC13 \{D: \NMR400\02T2\} nmr 4

1	1	1	1	1	1	1	1	1	1	1		1									
200	190	180	170	160	150	140	130	120	110			80	70	60	50	40	30	20	10	0	-10

$$
\stackrel{0}{\underset{i}{i}}
$$

LZT-515
LZT-515 (CDC13)
PROTON CDCl3 \{D: \NMR400\02T2\} nmr 16

													10								
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \text { f1 } \end{gathered}$	90	80	70	60	50	40	30	20	10	0	-10

LZT-539
PROTON CDC13 \{D: \backslash NMR400 02 T 2$\}$ nmr 26

LZT-539

[^0]88 * $68-$

$9 L^{\circ} 98-$

C13CPD CDC13 \{D: \NMR400\02T2\} nmr 26

LZT-532

PROTON CDC13 \{D: \MMR400\02T2\} nmr 49

C13CPD CDCl3 \{D: $\backslash \mathrm{NMR} 400 \backslash 02 \mathrm{~T} 2\} \mathrm{nmr} 49$

200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

[^0]: 宊

