Supporting Information 1Chiral Magnesium BINOL Phosphate Catalyzed Phopshination ofImines: Access to Enantioenriched α-Amino Phosphine Oxides
Gajendrasingh K. Ingle, ${ }^{\dagger}$ Yuxue Liang, ${ }^{\dagger}$ Michael G. Mormino, ${ }^{\dagger}$ Guilong Li, ${ }^{\dagger}$ Frank R. Fronczek, ${ }^{8}$ Jon C. Antilla*, ${ }^{\dagger}$
${ }^{\dagger}$ Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, Florida, 33620, USA.
${ }^{\dagger}$ School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China.
${ }^{\S}$ Department of Chemistry X-Ray Laboratory, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.
*jantilla@usf.edu
Contents
General consideration S2
Preparation of the catalyst S3
Optimization table for hydrophosphination reaction S4
Experimental section S5-S27
References. S27
ORTEP drawing of X-ray Structure S28

General Information: All reactions were carried out in flame-dried or oven-dried screw-cap test tubes and were allowed to proceed under a dry argon atmosphere with magnetic stirring. Anhydrous acetonitrile was purchased from Aldrich., other solvents (toluene, dichloromethane, and THF) were purified by passing through a column of activated alumina under a dry argon atmosphere. Molecular Sieves ($4 \AA$) were flame-dried under high vacuum before use. Benzhydryl imines (2a-j) were synthesized according to the literature procedure. ${ }^{1}$ Aldehydes were purchased from commercial sources and used without further purification. Diphenyl, di t-butyl and diethyl phosphine oxide were purchased from commercial sources and used without further purification. BINOL $\mathrm{H}(\mathbf{1 a}),{ }^{2} \mathrm{H}(\mathbf{1 b})^{3}$ and $\mathrm{H}(\mathbf{1 c})^{4}$ were synthesized according to the known literature procedures. Thin layer chromatography was performed on Merck TLC plates (silica gel $60 \mathrm{~F}_{254}$). Flash column chromatography was performed with Merck silica gel (230-400 mesh). Enantiomeric excess (ee) was determined using a Varian Prostar HPLC with a 210 binary pump and a 335 diode array detector. Optical rotations were performed on a Rudolph Research Analytical Autopol IV polarimeter (λ 589) using a $700-\mu \mathrm{L}$ cell with a path length of $1-\mathrm{dm} .{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded on a Bruker Avance DPX-250 (250 MHz) and Varian Inova-400 spectrometer with chemical shifts reported relative to tetramethylsilane (TMS). ${ }^{31} \mathrm{P}$ NMR was recorded on a Varian Inova-400 instrument with $\mathrm{H}_{3} \mathrm{PO}_{4}$ as an external standard. The HRMS data were measured on a Agilent 1100 LC/MS ESI/TOF mass spectrometer with electro-spray ionization. Compounds described in the literature were characterized by comparing their ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and melting point (mp) to the reported values. Elemental analysis was performed by Atlantic Microlabs, Norcross, GA.

Preparation of catalysts: ${ }^{5}$

H(1a) purified on silica gel: ' $\mathrm{H}(1 a)$ purified on silica gel' was prepared by purification of $\mathrm{H}(\mathbf{1 a})$ on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (10:1). The catalyst was obtained as a white solid.
$\mathbf{H}(1 \mathbf{a})$ washed with $\mathbf{H C l}$: ' $\mathrm{H}(1 \mathrm{a})$ washed with HCl ' was prepared by purification of $\mathrm{H}(\mathbf{1 a})$ on silica gel using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (10:1).Upon purification, the catalyst was stirred in 6 M HCl for 2 h and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After removal of the solvent under reduced pressure, the catalyst was obtained as a white solid.

M(1a)n: Catalyst was prepared in situ each time for phospha-Mannich reaction. To prepare $\mathrm{M}(\mathbf{1 a})_{\mathrm{n}} \quad(\mathrm{M}=\mathrm{Na}, \mathrm{Ca}, \mathrm{Mg})(2.5$ to $10 \mathrm{~mol} \%)$, to a flame dry test tube was added ' $\mathrm{H}\left(\mathbf{1 a}\right.$) washed with HCl ' $\left(10 \mathrm{~mol} \%\right.$) and $\mathrm{NaOMe}(10 \mathrm{~mol} \%)$, or $\mathrm{Ca}(\mathrm{OMe})_{2}$ (5 $\mathrm{mol} \%$), or $\mathrm{Mg}(\mathrm{O} t \mathrm{Bu})_{2}$ (2.5 and $\left.5 \mathrm{~mol} \%\right) .1 \mathrm{~mL}$ each of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH was added and reaction mixture was stirred for 1 h . After removal of solvent, 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and then removed under reduced pressure to obtain the catalyst as a white solid.

$\mathbf{M g}(1 \mathbf{a})_{2}$ Characterization:

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 7.24(\mathrm{t}, 4 \mathrm{H}, J=7.6 \mathrm{~Hz}$), 7.33 (t, $4 \mathrm{H}, J=8.0 \mathrm{~Hz}$), $7.43-7.58(\mathrm{~m}, 24 \mathrm{H}), 7.85(\mathrm{~d}, 4 \mathrm{H}, J=8.8 \mathrm{~Hz}) 7.96(\mathrm{~s}, 4 \mathrm{H}), 8.07(\mathrm{~d}, 6 \mathrm{H}, J=8.4 \mathrm{~Hz})$, $8.11(\mathrm{~d}, 6 \mathrm{H}, J=8.4 \mathrm{~Hz}) 8.63(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO) $\delta: 122.48,122.50$, 124.31, 124.51, $124.75,124.97,125.29$. 126.01, 126.23, 126.29, 126.36, 127.43, 128.16, 128.26, 128.54, 129.51, 129.80, 130.44, 130.49, 131.25, 131.45, 131.47, 132.37, 132.42, 133.47, 149.48, 149.58. ${ }^{31} \mathrm{P}$ NMR (162 MHz , DMSO) $\delta 2.97$. HRMS (MALDI) Calcd for $\mathrm{C}_{96} \mathrm{H}_{56} \mathrm{MgO}_{8} \mathrm{P}_{2}\left(\left[\mathrm{M}_{(\mathrm{n}=2)}+2 \mathrm{H}\right]^{2+}\right) \mathrm{m} / \mathrm{z}$ 1424.346 Found 1424.499. $\left(\left[\mathrm{M}_{(\mathrm{n}=2)}+\mathrm{NH}_{4}\right]^{+}\right) \mathrm{m} / \mathrm{z} 1440.364$, Found 1440.178 .

Table S1. Detailed optimization for the enantioselective addition of diphenylphine oxide to N-benzhydryl imine.

General procedure for preparation of racemates: The imine ($\mathbf{2 a}-\mathbf{j}$ and 5a-e) (0.06 mmol), and diphylphosphine oxide ($\mathbf{3 a}$) (0.05 mmol) were weighed into a dry, re-sealable test tube with septa and stir bar. Dry dichloromethane $(0.5 \mathrm{~mL})$ was added to the mixture via syringe and the resulting mixture was stirred at room temperature overnight. Dichloromethane was removed by rotary evaporation to give a crude solid mixture that was purified by column chromatography to give the racemic product.

Imines which were generated in situ, corresponding aldehyde (0.06 mmol), diphenylmethane or amine/5H-Dibenzo[a,d]cyclohepten-5-amine ${ }^{6}$ (0.05 mmol), diphenylphosphine oxide (0.05 mmol), and 40 mg flame dried $4 \AA$ molecular sieves were weighed into a dry, re-sealable test tube with septa and a stir bar. Dry dichloromethane $(0.5 \mathrm{~mL})$ was added to the mixture via syringe and the resulting mixture was stirred at room temperature overnight. Dichloromethane was removed by rotary evaporation to give a crude solid mixture that was purified by column chromatography to give the racemic product.

General procedure for chiral BINOL magnesium phosphate catalyzed asymmetric hydrophosphination of imines (2a-j): In a typical experiment the imine (0.06 mmol), diphenylphosphine oxide (0.05 mmol) and $\mathrm{Mg}(\mathbf{1 a})_{2}(5 \mathrm{~mol} \%)$ were weighed into a dry, resealable test tube with septa and stir bar. Dry acetonitrile (0.5 mL) was added to the mixture via syringe and the resulting mixture was stirred at room temperature for 12 h . Solvent was removed by rotary evaporation to give a crude solid mixture that was purified by column chromatography to give the product. Note: The absolute configuration of compound $\mathbf{4 a}$ was determined by X-ray crystallographic analysis, and all the other products in Table 2, the absolute configuration is assumed by tentative analogy.

(-)-N-benzhydryl(diphenylphosphoryl)(phenyl)methanamine (4a) The reaction was performed in 0.05 mmol scale for 12 h using $\mathrm{Mg}(\mathbf{1 a})_{2}(5 \mathrm{~mol} \%)$. The product was obtained by flash chromatography (hexane: ethyl acetate $=1: 1$) as an oil, 23 mg , 96% yield, 93% ee. HPLC analysis: Chiralcel AS-H (hexane $/ \mathrm{iPrOH}=90 / 10,1.0$ $\mathrm{mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-major }} 7.87 \mathrm{~min}, t_{\mathrm{r} \text {-minor }} 11.88 \mathrm{~min} .[\alpha]_{\mathrm{D}}^{20}=-29.7^{\circ}\left(\mathrm{c}=0.45, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (250 MHz, CDCl_{3}): $\delta 2.81(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 4.15(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 4.53$ $(\mathrm{s}, 1 \mathrm{H}), 6.95-7.41(\mathrm{~m}, 23 \mathrm{H}), 7.77(\mathrm{t}, 2 \mathrm{H}, J=9.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 60.12\left(\mathrm{~d},{ }^{1} J=80.0 \mathrm{~Hz}\right), 64.12\left(\mathrm{~d},{ }^{3} J=13.1 \mathrm{~Hz}\right), 127.13,127.20,127.48,127.94$, 128.13, 128.28, 128.48, 128.54, 129.22, 129.31, 130.47, 130.72, 131.31, 131.45, 131.93, 132.07, 132.27, 135.53, 142.02, 143.72. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 32.4. HRMS (ESI) Calcd for $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{NOP}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 473.1915$, Found 473.1920.

(-)-N-benzhydryl(diphenylphosphoryl)(4-methoxyphenyl)methanamine (4b)
The reaction was performed in 0.05 mmol scale for 12 h using $\operatorname{Mg}(\mathbf{1 a})_{2}$ ($5 \mathrm{~mol} \%$). The product was obtained by flash chromatography (hexane: ethyl acetate $=1: 1$) as an oil, $24 \mathrm{mg}, 95 \%$ yield, 90% ee. HPLC analysis: Chiralcel (S,S) WHELK-O1 (hexane $/ \mathrm{iPrOH}=75 / 25,1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-major }} 12.24 \mathrm{~min}, t_{\text {r-minor }} 15.84 \mathrm{~min} .[\alpha]^{20}{ }_{\mathrm{D}}=$ $-20.1^{\circ}\left(\mathrm{c}=2.8, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.71(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 3.68$ $(\mathrm{s}, 3 \mathrm{H}), 4.11(\mathrm{t}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 6.68(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.94-7.52(\mathrm{~m}$, 20H), 7.73-7.81 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 55.21,59.29\left(\mathrm{~d},{ }^{1} J=81.9\right.$ $\mathrm{Hz}), 63.87\left(\mathrm{~d},{ }^{3} J=13.7 \mathrm{~Hz}\right), 113.85,113.87,127.10,127.27,127.35,127.52$, 127.92, 128.10, 128.19, 128.24, 128.38, 128.41, 128.46, 128.58, 130.30, 130.38, 130. 63, 130.77, 131.31, 131.45, 131.73, 131.78, 131.90, 132.04, 132.18, 132.31, 142.04, 1
43.74, 159.23, 159.26. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 32.6. HRMS (ESI) Calcd for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{P}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 504.2016, Found 504.2032.

(-)- N-benzhydryl(diphenylphosphoryl)(o-tolyl)methanamine (4c)
The reaction was performed in 0.05 mmol scale for 12 h using $\mathrm{Mg}(\mathbf{1 a})_{2}$ ($5 \mathrm{~mol} \%$). The product was obtained by flash chromatography (hexane: ethyl acetate $=1: 1$) as an oil, $23 \mathrm{mg}, 96 \%$ yield, 89% ee. HPLC analysis: Chiralcel AS-H (hexane $/ \mathrm{iPrOH}=$
 CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.38(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz})$, 4.45-4.53 (m, 2H), 6.81-7.31 (m, 18H), 7.48-7.63 (m, 4H), 7.79-7.86 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 18.82,54.78\left(\mathrm{~d},{ }^{1} J=80.0 \mathrm{~Hz}\right), 64.17\left(\mathrm{~d},{ }^{3} J\right.$ $=13.1 \mathrm{~Hz}$), 126.53, 127.05, 127.12, 127.45, 127.67, 127.86, 128.06, 128.31, 128.40, $128.46,128.83,130.03,130.80,131.35,131.50,131.94,131.98,132.16,132.30,133$. 51, 137.59, 142.16, 143.64. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 32.9. HRMS (ESI) Calcd for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{NOP}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 488.2126$, Found 488.2140 .

(-)- N-benzhydryl(diphenylphosphoryl)(m-tolyl)methanamine (4d)The reaction was performed in 0.05 mmol scale for 12 h using $\operatorname{Mg}(\mathbf{1 a})_{2}$ ($5 \mathrm{~mol} \%$). The product was obtained by flash chromatography (hexane: ethyl acetate $=1: 1$) as an oil, 23 mg , 95\% yield, 92% ee, HPLC analysis: Chiralcel AS-H (hexane/iPrOH = 93/7, 1.0 $\mathrm{mL} / \mathrm{min}), t_{\mathrm{r} \text {-major }} 9.17 \mathrm{~min}, t_{\mathrm{r} \text {-minor }} 14.45 \mathrm{~min} .[\alpha]^{20}{ }_{\mathrm{D}}=-23.6^{\circ}\left(\mathrm{c}=1.35, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.81$ (s, broad, 1 H), 4.13 (d, $1 \mathrm{H}, J=10.0$ $\mathrm{Hz}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 6.86-7.34(\mathrm{~m}, 19 \mathrm{H}), 7.42-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.74-7.82(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$

NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.37,60.05\left(\mathrm{~d},{ }^{1} J=80.0 \mathrm{~Hz}\right), 63.99\left(\mathrm{~d},{ }^{3} J=13.1\right.$ Hz), 126.26, 126.35, 127.08, 127.32, 127.60, 127.81, 127.99, 128.18, 128.26, 128.37 , 128.41, $128.59,129.00,129.83,129.92,130.52,130.68,131.36,131.42,131.49,13$ $1.74,131.78,131.94,132.08,132.22,135.25,137.95,142.07,143.75 .{ }^{31} \mathrm{P}$ NMR (162 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 32.5. HRMS (ESI) Calcd for $\mathrm{C}_{33} \mathrm{H}_{31} \mathrm{NOP}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 488.2138$, Found 488.2125.

(-)-N-benzhydryl(diphenylphosphoryl)(4-fluorophenyl)methanamine (4e)

The reaction was performed in 0.05 mmol scale for 12 h using $\operatorname{Mg}(\mathbf{1 a})_{2}$ ($5 \mathrm{~mol} \%$). The product was obtained by flash chromatography (hexane: ethyl acetate $=1: 1$) as an oil, $23 \mathrm{mg}, 95 \%$ yield, 90% ee. HPLC analysis: Chiralcel OD-H (hexane $/ \mathrm{iPrOH}=$ $98 / 2,1.0 \mathrm{~mL} / \mathrm{min}), t_{\mathrm{r} \text {-minor }} 12.77 \mathrm{~min}, t_{\mathrm{r} \text {-major }} 15.41 \mathrm{~min} .[\alpha]^{20}{ }_{\mathrm{D}}=-25.2^{\circ}(\mathrm{c}=1.35$, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.85(\mathrm{~d}, 1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 4.27(\mathrm{t}, 1 \mathrm{H}, J=9.5$ $\mathrm{Hz})$, $4.62(\mathrm{~s}, 1 \mathrm{H}), 6.92-7.45(\mathrm{~m}, 19 \mathrm{H}), 7.54-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.87-7.94(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 59.30\left(\mathrm{~d},{ }^{1} J=80.0 \mathrm{~Hz}\right), 64.03\left(\mathrm{~d},{ }^{3} J=13.7\right.$ $\mathrm{Hz}), 115.20,115.52,126.53,127.03,127.22,127.47,127.59,128.01,128.15,128.19$, $128.29,128.46,128.53,129.01,130.25,130.31,130.64,130.72,130.76,130.85,131$. $21,131.35,131.58,131.62,131.86,131.92,132.00,141.82,143.46 .{ }^{31} \mathrm{P}$ NMR (121 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 32.4. HRMS (ESI) Calcd for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{FNOP}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 492.1887$, Found 492.1876.

(-)- N-benzhydryl(4-bromophenyl)(diphenylphosphoryl)methanamine (4f)
The reaction was performed in 0.05 mmol scale for 12 h using $\mathrm{Mg}(\mathbf{1 a})_{2}$ ($5 \mathrm{~mol} \%$)

The product was obtained by flash chromatography (hexane: ethyl acetate $=1: 1$) as an oil, $27 \mathrm{mg}, 97 \%$ yield, 92% ee. HPLC analysis: Chiralcel (S,S) WHELK-O1 (hexane $/ \mathrm{iPrOH}=75 / 25,1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-major }} 9.61 \mathrm{~min}, t_{\mathrm{r} \text {-minor }} 12.71 \mathrm{~min} .[\alpha]^{20}{ }_{\mathrm{D}}=$ $-22.7^{\circ}\left(\mathrm{c}=3.2, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.88(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 4.26$ $(\mathrm{t}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 7.08-7.48(\mathrm{~m}, 19 \mathrm{H}), 7.54-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.87-7.94(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 59.57\left(\mathrm{~d},{ }^{1} J=79.4 \mathrm{~Hz}\right.$), $64.1\left(\mathrm{~d},{ }^{3} J=13.1\right.$ $\mathrm{Hz})$, 121.91, 121.96, 127.01, 127.26, 127.53, 128.10, 128.13, 128.28, 128.32, 128.49, $128.57,130.06,130.19,130.78,130.86,131.22,131.36,131.53,131.56,131.62,131$. $72,131.75,131.86,132.00,134.69,141.72,143.39 .{ }^{31} \mathrm{P} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ δ 32.1. HRMS (ESI) Calcd for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{BrNOP}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 552.1086, Found 552.1065.

(-)-N-benzhydryl(diphenylphosphoryl)(4-nitrophenyl)methanamine (4g)

The reaction was performed in 0.05 mmol scale for 12 h using $\mathrm{Mg}(\mathbf{1 a})_{2}$ ($5 \mathrm{~mol} \%$). The product was obtained by flash chromatography (hexane: ethyl acetate $=1: 1$) as an oil, $25 \mathrm{mg}, 97 \%$ yield, 95% ee. HPLC analysis: Chiralcel AS-H (hexane $/ \mathrm{iPrOH}=$ $75 / 25,1.0 \mathrm{~mL} / \mathrm{min}), t_{\mathrm{r} \text {-major }} 6.65 \mathrm{~min}, t_{\mathrm{r} \text {-minor }} 15.24 \mathrm{~min} .[\alpha]_{\mathrm{D}}^{20}=-24.5^{\circ}(\mathrm{c}=1.15$, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.85$ (s, broad, 1 H), 4.32 (s, broad, 1 H,), 4.44 $(\mathrm{s}, 1 \mathrm{H}), 6.92-7.37(\mathrm{~m}, 17 \mathrm{H}), 7.49-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.77-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.99(\mathrm{~d}, 2 \mathrm{H}, J=$ 8.5 Hz). ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 60.05\left(\mathrm{~d},{ }^{1} J=76.8 \mathrm{~Hz}\right.$), $64.49\left(\mathrm{~d},{ }^{3} J=13.1\right.$ $\mathrm{Hz})$, 123.46, 126.92, 127.44, 127.74, 128.00, 128.29, 128.49, 128.57, 128.70, 129.52, $129.88,129.96,131.12,131.26,131.82,131.96,132.10,132.37,141.38,142.96,143$. 74, 147.53. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 31.9. HRMS (ESI) Calcd for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 519.1832$, Found 519.1833.

(-)-N-benzhydryl(diphenylphosphoryl)(naphthalen-1-yl)methanamine (4h)

The reaction was performed in 0.05 mmol scale for 12 h using $\operatorname{Mg}(\mathbf{1 a})_{2}$ ($5 \mathrm{~mol} \%$) The product was obtained by flash chromatography (hexane: ethyl acetate $=1: 1$) as an oil, $25 \mathrm{mg}, 95 \%$ yield, 96% ee. HPLC analysis: Chiralcel AS-H (hexane $/ \mathrm{iPrOH}=$ $95 / 5,1.0 \mathrm{~mL} / \mathrm{min}), t_{\mathrm{r} \text {-major }} 10.55 \mathrm{~min}, t_{\mathrm{r} \text {-minor }} 15.77 \mathrm{~min} .[\alpha]^{20}{ }_{\mathrm{D}}=-23.9^{\circ}(\mathrm{c}=1.1$, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.02(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}), 4.50(\mathrm{~s}, 1 \mathrm{H}),, 5.14(\mathrm{t}$, $1 \mathrm{H}, J=10.0 \mathrm{~Hz}), 6.82-7.28(\mathrm{~m}, 18 \mathrm{H}), 7.41-7.69(\mathrm{~m}, 6 \mathrm{H}), 7.82-7.98(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 53.10\left(\mathrm{~d},{ }^{1} J=81.2 \mathrm{~Hz}\right), 64.29\left(\mathrm{~d},{ }^{3} J=\right.$ $13.7 \mathrm{~Hz}) 122.37,125.24,125.64,126.47,127.02,127.12,127.29,127.39,127.50,12$ $7.68,128.30,128.35,128.41,128.50,128.64,130.92,131.06,131.24,131.83,131.87$, 132.01, 132.15, 132.37, 133.33, 142.17, 143.64. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 32.8. HRMS (ESI) Calcd for $\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{NOP}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 524.2072$, Found 524.2061.

(+)-N-benzhydryl(diphenylphosphoryl)(furan-2-yl)methanamine (4i)
The reaction was performed in 0.05 mmol scale for 12 h using $\operatorname{Mg}(\mathbf{1 a})_{2}$ ($5 \mathrm{~mol} \%$). The product was obtained by flash chromatography (hexane: ethyl acetate $=1: 1$) as an oil, $22 \mathrm{mg}, 93 \%$ yield, 91% ee. HPLC analysis: Chiralcel OD-H (hexane $/ \mathrm{iPrOH}=$ $98 / 2,0.5 \mathrm{~mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-major }} 36.41 \mathrm{~min}, t_{\mathrm{r} \text {-minor }} 41.97 \mathrm{~min} .[\alpha]_{\mathrm{D}}^{20}=9.4^{\circ}(\mathrm{c}=1.15$, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.69(\mathrm{~s}$, broad, 1 H$), 4.33(\mathrm{~d}, 1 \mathrm{H}, J=12 \mathrm{~Hz}$), $4.64(\mathrm{~s}, 1 \mathrm{H}), 6.17-6.22(\mathrm{~m}, 2 \mathrm{H}), 6.97-7.54(\mathrm{~m}, 19 \mathrm{H}), 7.72-7.79(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 54.5\left(\mathrm{~d},{ }^{1} J=84.3 \mathrm{~Hz}\right), 64.70\left(\mathrm{~d},{ }^{3} J=12.5 \mathrm{~Hz}\right)$, 110.16, 110.25, 110.62, 110.65, 127.08, 127.21, 127.38, 127.61, 128.02, 128.09, 128 .22, 128.41, 128.47, 128.81, 128.99, 130.23, 130.41, 131.22, 131.37, 131.69, 131.73,
131.84, 131.92, 131.98, 141.78, 142.60, 142.64, 143.53, 149.78. ${ }^{31}$ P NMR (121 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 31.5. HRMS (ESI) Calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{NNaO}_{2} \mathrm{P}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) \mathrm{m} / \mathrm{z} 486.1593$, Found 486.1611.

(-)-N-benzhydryl(cyclohexyl)(diphenylphosphoryl)methanamine (4j)
The reaction was performed in 0.05 mmol scale for 12 h using $\operatorname{Mg}(\mathbf{1 a})_{2}$ ($5 \mathrm{~mol} \%$) The product was obtained by flash chromatography (hexane: ethyl acetate $=1: 1$) as an oil, $23 \mathrm{mg}, 96 \%$ yield, 91% ee. HPLC analysis: Chiralcel AS-H (hexane/iPrOH $=$ $98 / 2,1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-major }} 12.97 \mathrm{~min}, t_{\mathrm{r}-\mathrm{minor}} 21.48 \mathrm{~min} .[\alpha]^{20}{ }_{\mathrm{D}}=-3.5^{\circ}(\mathrm{c}=1.0$, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.85-1.80(\mathrm{~m}, 11 \mathrm{H}), 2.41(\mathrm{bs}, 1 \mathrm{H}), 3.23$ (bs, $1 \mathrm{H}), 4.65(\mathrm{~s}, 1 \mathrm{H}), 6.96-7.48(\mathrm{~m}, 16 \mathrm{H}), 7.59-7.81(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (62.5 MHz , CDCl_{3}): $\delta 25.01,25.98,26.09,26.35,26.96,27.94,32.89(\mathrm{~d}, J=12.5 \mathrm{~Hz}), 39.84(\mathrm{~d}$, $J=5.6 \mathrm{~Hz}), 58.50\left(\mathrm{~d},{ }^{1} J=70.0 \mathrm{~Hz}\right), 65.33\left(\mathrm{~d},{ }^{3} J=6.2 \mathrm{~Hz}\right)$, 127.02, 127.20, 127.48, 127.65, 127.83, 128.26, 128.35, 128.39, 128.51, 128.57, 128 $.82,128.95,129.03,130.65,130.84,130.98,131.15,131.29,131.35,131.62,131.71$, $132.62,133.86,133.95,135.28,142.79,143.35 .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 31.8. HRMS (ESI) Calcd for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{NOP}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 480.2451$, Found 480.2461 .

General procedure for three component chiral BINOL magnesium phosphate -catalyzed asymmetric hydrophosphination of imines ($4 \mathrm{k}-\mathrm{n}$):

In a typical experiment the corresponding aldehyde (0.06 mmol), aminodiphenyl methane (0.06 mmol) diphenylphosphine oxide (0.05 mmol), $\mathrm{Mg}(\mathbf{1 a})_{2}$ ($5 \mathrm{~mol} \%$) and $40 \mathrm{mg} 4 \AA$ flame dried molecular sieves were weighed into a dry, resealable test tube with septa and stir bar. Dry acetonitrile $(0.5 \mathrm{~mL})$ was added to the mixture via syringe and the resulting mixture was stirred at room temperature for 12 h . Solvent was removed by rotary evaporation to give a crude solid mixture that was purified by column chromatography to give the product.

(-)-N-benzhydryl-1-(diphenylphosphoryl)-2-methylpropan-1-amine (4k)
The reaction was performed in 0.05 mmol scale for 12 h using $\operatorname{Mg}(\mathbf{1 a})_{2}(5 \mathrm{~mol} \%)$. The product was obtained by flash chromatography (hexane: ethyl acetate $=1: 1$) as an oil, $21 \mathrm{mg}, 96 \%$ yield, 86% ee. HPLC analysis: Chiralcel $\mathrm{AS}-\mathrm{H}$ (hexane $/ \mathrm{iPrOH}=$ $93 / 7,1.0 \mathrm{~mL} / \mathrm{min}), t_{\text {r-major }} 5.80 \mathrm{~min}, t_{\text {r-minor }} 7.68 \mathrm{~min} .[\alpha]_{\mathrm{D}}^{20}=-19.1^{\circ}(\mathrm{c}=0.395$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.89-0.95(\mathrm{~m}, 6 \mathrm{H}), 1.80-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~s}$, broad, 1 H$), 3.29(\mathrm{~s}$, broad, 1 H$), 4.60(\mathrm{~s}, 1 \mathrm{H}), 6.97-7.49(\mathrm{~m}, 16 \mathrm{H}), 7.64-7.83(\mathrm{~m}, 4 \mathrm{H})$, ${ }^{13} \mathrm{C} \operatorname{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 17.30\left(\mathrm{~d},{ }^{3} J=0.9 \mathrm{~Hz}\right), 22.71\left(\mathrm{~d},{ }^{2} J=13.7 \mathrm{~Hz}\right)$, 29.9. (d, $\left.{ }^{3} J=6.3 \mathrm{~Hz}\right), 58.3\left(\mathrm{~d},{ }^{1} J=70.0 \mathrm{~Hz}\right), 65.24\left(\mathrm{~d},{ }^{3} J=5.6 \mathrm{~Hz}\right)$, 127.06, 127.25, 127.38, 127.59, 127.90, 128.20, 128.27, 128.38, 128.47, 128.65, 128 $.85,130.85,130.99,131.11,131.25,131.36,131.40,131.43,131.47,132.57,133.90$, 133.97, 135.32, 142.76, 143.41. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 31.2. HRMS (ESI) Calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{NOP}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 440.2139$, Found 440.2114.

(-)-N-benzhydryl-1-(diphenylphosphoryl)- N-propyl-1-methanamine (41)

The reaction was performed in 0.05 mmol scale for 12 h using $\operatorname{Mg}(\mathbf{1 a})_{2}(5 \mathrm{~mol} \%)$. The product was obtained by flash chromatography (hexane: ethyl acetate $=1: 1$) as white semisolid, $19.2 \mathrm{mg}, 88 \%$ yield, 62% ee. HPLC analysis: Chiralcel AS-H (hexane $/ \mathrm{iPrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\text {r-major }} 9.81 \mathrm{~min}, t_{\text {r-minor }} 18.39 \mathrm{~min} .[\alpha]^{20}{ }_{\mathrm{D}}=$ $-7.1^{\circ}\left(\mathrm{c}=0.435, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.730(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz})$, $1.24-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.75(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{bs}, 1 \mathrm{H}), 3.38(\mathrm{bs}$, $1 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 7.05-7.55(\mathrm{~m}, 16 \mathrm{H}), 7.72(\mathrm{t}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.87(\mathrm{t}, 2 \mathrm{H}, J=8.0$ $\mathrm{Hz}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.37,19.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 32.09,53.8\left(\mathrm{~d},{ }^{1} J=\right.$ $77.0 \mathrm{~Hz}), 64.84\left(\mathrm{~d},{ }^{3} J=7.0 \mathrm{~Hz}\right) 127.31,127.44,127.73,128.55,128.64,128.68$,
128.78, 131.30, 131.38, 131.78, 143.2, 143.48. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 32.8$. HRMS (ESI) Calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{NOP}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 440.2138$, Found 440.2158 .

(-)-N-benzhydryl-1-(diphenylphosphoryl)-N-butyl-1-Methanamine (4m)

The reaction was performed in 0.05 mmol scale for 12 h using $\mathrm{Mg}(\mathbf{1 a})_{2}$ ($5 \mathrm{~mol} \%$) The product was obtained by flash chromatography (hexane: ethyl acetate $=1: 1$) an oil, $14.8 \mathrm{mg}, 65 \%$ yield, 52% ee. HPLC analysis: Chiralcel AD-H (hexane $/ \mathrm{iPrOH}=85 / 15$, $1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-major }} 16.89 \mathrm{~min}, t_{\mathrm{r} \text {-minor }} 28.83 \mathrm{~min} .[\alpha]^{20}{ }_{\mathrm{D}}=-3.4^{\circ}\left(\mathrm{c}=0.765, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.68(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 0.99-1.08(\mathrm{~m}, 2 \mathrm{H}), 1.18$ (bs, $1 \mathrm{H}), 1.35-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.74(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{q}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 6.98$ - 7.00 (m, 2H), 7.07-7.18 (m, 6H), 7.32-7.49 (m, 8H), 7.63-7.82 (m, 4H), No N-H peak was observed. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.95,22.80,28.34(\mathrm{~d}, J=7 \mathrm{~Hz}$), 29.42 (d, $J=2.8 \mathrm{~Hz}$), $53.83\left(\mathrm{~d},{ }^{1} J=78.0 \mathrm{~Hz}\right), 64.81\left(\mathrm{~d},{ }^{3} J=8.0 \mathrm{~Hz}\right), 127.26,127.40$, 127.67, $127.99128 .10,128.50,128.57$ 128.62, 128.72, 130.20, 130.39, 131.23, 131.31, 131.65, 131.74, 132.15 132.56, 133.05, 133.49, 143.15, 143.43. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 32.9 \mathrm{HRMS}(\mathrm{ESI})$ Calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{NOP}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 454.2294, Found 454.2310.

(-)-N-benzhydryl-1-(diphenylphosphoryl)-3-phenylpropane-1-amine (4n)

The reaction was performed in 0.05 mmol scale for 12 h using $\operatorname{Mg}(\mathbf{1 a})_{2}$ ($5 \mathrm{~mol} \%$). The product was obtained by flash chromatography (hexane: ethyl acetate $=1: 1$) an oil, $17.5 \mathrm{mg}, 73 \%$ yield, 48% ee. HPLC analysis: Chiralcel AD-H (hexane $/ \mathrm{iPrOH}=$ $85 / 15,1.0 \mathrm{~mL} / \mathrm{min}), t_{\mathrm{r} \text {-major }} 44.08 \mathrm{mins}, t_{\mathrm{r}-\text { minor }} 52.51 \mathrm{mins} .[\alpha]^{20}{ }_{\mathrm{D}}=-2.2^{\circ}(\mathrm{c}=0.65$, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.79-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.34$
(bs, 1H), 2.51-2.59 (m, 1H), 2.79-2.86, (m, 1H) 3.44 (bs, 1H), 4.69 (s, 1H), 6.87 (d, $2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 7.04-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.25(\mathrm{~m}, 11 \mathrm{H}), 7.35-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.50$ $(\mathrm{m}, 3 \mathrm{H}), 7.54-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.83(\mathrm{t}, 2 \mathrm{H}, J=8.4) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 31.94\left(\mathrm{~d}, J=4.0 \mathrm{~Hz}\right.$), 32.47 , (d, $J=7.0 \mathrm{~Hz}$), $53.4\left(\mathrm{~d},{ }^{1} J=76.0\right.$ Hz), 64.87 (d, ${ }^{3} J=7.0 \mathrm{~Hz}$), 126.04, 127.37, 127.54, 127.68, 127.85 128.56, 128.59, $128.65,128.71,128.85,131.26,131.35,131.65,131.74,131.87,141.99,143.16$, 143.47. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 32.7. HRMS (ESI) Calcd for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{NOP}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 502.2294$, Found 502.2272, and calcd for $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) \mathrm{m} / \mathrm{z} 524.2114$, Found 524.2095.

General procedure for preparation of Imines (5a-e):

To a 100 ml round bottom flask was added corresponding aldehydes (1.1 equiv.), 5 H -Dibenzo $[\mathrm{a}, \mathrm{d}]$ cyclohepten- 5 -amine (1.0 equiv.), magnesium sulfate (5 equiv.), and methylene chloride (0.5 M) at room temperature. After few hours of stirring, resulting mixture was filtered off and evaporated to dryness to obtain the product as a white solid. The imines were purified by recrystallization using hexane/ethyl acetate.

Preparation of 5a: 5a was synthesized according to the know literature procedure. ${ }^{6}$ Product was recrystallized using hexane: ethyl acetate (10:1) to give white solid product in 69% yield. M.P. $134-137{ }^{\circ} \mathrm{C}^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.98(\mathrm{bs}, 1 \mathrm{H})$, 7.12 (s, 2H), 7.24-7.26 (m, 2H), 7.36-7.38 (m, 4H), 7.49 (bs, 3H), 7.79 (bs, 2H), 7.97 (bs, 2H), 8.35 (bs, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 72.52$, 124.87, 126.19, 128.06, 128.72, 128.83, 131.09, 131.44, 133.51, 136.59, 141.62, 161.68. HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 296.1434, Found 296.1450.

Preparation of $\mathbf{5 b}$: Product was recrystallized using hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4:3) to give white solid product in 83% yield. M.P. $193-195{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $3.85(\mathrm{~s}, 3 \mathrm{H}), 4.92(\mathrm{bs}, 1 \mathrm{H}), 6.97-6.99(\mathrm{~m}, 2 \mathrm{H}) 7.13-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 4 \mathrm{H})$ 7.76 (bs, 2H), 7.88 (bs, 2H), 8.25, (bs, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 55.60$, $114.24,125.04,126.12,128.02,128.68,129.67,130.28,131.45,133.53,141.84$, 160.86, 162.05. HRMS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 326.1539$, Found 326.1551 .

Preparation of 5c: Product was recyrstallized using hexane: ethyl acetate (8:1) to give white solid product in 79% yield. M.P. $135-136{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 2.67(s, 3H), 5.12 (bs, 1H), 7.29-7.38 (m, 5H), 7.48-7.53 (m, 6H), 7.95 (bs, 2H), 8.36 (bs, 1H), 8.76 (bs, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 19.89,73.34,124.87,126.14$ 126.33, 128.01, 128.71, 130.59, 131.17, 131.44, 133.46, 134.38, 138.25 141.70, 160.73. HRMS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 310.1590$, Found 310.1577 .

Preparation of 5d: Product was recyrstallized using hexanes: ethyl acetate (5:1) to give white solid product in 83% yield. M.P. $150-152{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.99$ (bs, 1H), 7.18 (bs, 4H), 7.25-7.29 (m, 2H), 7.39-7.42 (m, 4H) 7.79 (bs, 2H), 7.95 (bs, 2H), $8.30(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 72.38,115.84,116.06$,
$124.90,126.28,128.16,128.75,130.58,130.66,131.44,132.91,133.57,141.50$, 160.27, 163.46, 166.96. Anal calcd. for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{FN}$: C, 84.32; H, 5.15; N, 4.47. Found: C, 83.72; H, 5.08; N, 4.51.

Preparation of 5e: Product was recyrstallized using hexanes: ethyl acetate (10:1) to give yellowish white solid product in 77% yield. M.P. $124-126{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 4.96$ ($\mathrm{s}, 1 \mathrm{H}$), 6.48 ($\mathrm{s}, 1 \mathrm{H}$), 6.81 (bs, 1H), 7.09 (bs, 2H), $7.23-7.25$ $(\mathrm{m}, 1 \mathrm{H}), 7.33-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.57(\mathrm{bs}, 1 \mathrm{H}), 7.70(\mathrm{bs}, 2 \mathrm{H}), 8.05(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 72.83,111.97,114.87,126.48,128.35,128.84,131.43,133.64$, 141.21, 145.22, 150.38, 152.09. HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 286.1226, Found 286.1235.

General procedure for chiral BINOL magnesium phosphate -catalyzed asymmetric hydrophosphination of imines (6a-e): In a typical experiment the imine (0.1 mmol), diphenylphosphine oxide (0.05 mmol) and $\mathrm{Mg}(\mathbf{1 a})_{2}(5 \mathrm{~mol} \%)$ were weighed into a dry, resealable test tube with septa and stir bar. Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added to the mixture via syringe and the resulting mixture was stirred at room temperature for 12 h . Solvent was removed by rotary evaporation to give a crude solid mixture that was purified by column chromatography to give the product. Note1: The ${ }^{1} H$ and ${ }^{13} C$ NMR of products $\mathbf{6}$, a minor isomer peaks were observed. The peaks for the minor isomer are not reported. The resulting minor peaks were due to the minor dibezocycloheptene system conformer. For more information please see ref. 19 in the main text.

To determine absolute configuration, 6a was deprotected using the procedure in scheme 1, yielding compound 7a. The HPLC trace of compound 7a generated from compound 6a and compound 4 a gave $1^{\text {st }}$ peak as a major peak. This establishes the compound $\mathbf{6 a}$ and $4 \mathbf{a}$ have same absolute configuration. For the other products in

Table 3, the absolute configuration is assumed by tentative analogy.

Preparation of 6a: The reaction was performed on 0.05 mmol scale for 12 h using $\mathrm{Mg}(\mathbf{1 a})_{2}(5 \mathrm{~mol} \%)$. The product was obtained by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: ethyl acetate $=4: 1$) as white semisolid, $22.3 \mathrm{mg}, 90 \%$ yield, 99% ee. HPLC analysis: Chiralcel OD-H (hexane $/ \mathrm{iPrOH}=98 / 2,1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-major }} 32.96 \mathrm{~min}, t_{\mathrm{r} \text {-minor }} 45.60$ $\min .[\alpha]^{20}{ }_{\mathrm{D}}=11.2^{\circ}\left(\mathrm{c}=0.395, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.53(\mathrm{bs}, 1 \mathrm{H})$ $4.00(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 6.53-6.56(\mathrm{~m}, 1 \mathrm{H}), 6.66-6.69(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~d}, 1 \mathrm{H}, J=7.6$ $\mathrm{Hz}), 7.12-7.39(\mathrm{~m}, 18 \mathrm{H}), 7.50-7.66(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 60.86(\mathrm{~d}$, $\left.{ }^{1} J=78.0 \mathrm{~Hz}\right), 66.60\left(\mathrm{~d},{ }^{3} J=15.0 \mathrm{~Hz}\right), 121.99,123.03,125.68,125.87,127.48$, 127.56, 127.67, 127.79, 127.91 128.08, 128.16, 128.28, 128.36, 128.55, 128.68, $128.83,129.12,129.17,129.42,129.52,129.56,130.02,130.13,130.34,130.62$, 130.70, 130.84, 131.66, 131.74, 131.92, 132.18, 132.41, 132.50, 134.26 134.47, 134.97, 137.95, 139.10. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 32.4. HRMS (ESI) Calcd for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{NOP}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 498.1981$ Found 498.1967, and calcd for $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) \mathrm{m} / \mathrm{z}$ 520.1801, Found 520.1780.

Preparation of $\mathbf{6 b}$: The reaction was performed in 0.05 mmol scale for 12 h using $\operatorname{Mg}(\mathbf{1 a})_{2}(5 \mathrm{~mol} \%)$. The product was obtained by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: ethyl acetate $=4: 1$) as white semisolid, $23.7 \mathrm{mg}, 92 \%$ yield, 93% ee. HPLC analysis: Chiralcel OD-H (hexane $/ \mathrm{iPrOH}=98 / 2,1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-major }} 55.61 \mathrm{~min}, t_{\mathrm{r} \text {-minor }} 40.87$ $\min .[\alpha]^{20}{ }_{\mathrm{D}}=11.5^{\circ}\left(\mathrm{c}=0.94, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.47(\mathrm{bs}, 1 \mathrm{H})$,
3.78 (s, 3H), 3.93 (d, 1H, $J=9.6 \mathrm{~Hz}) .4 .67$ (s, 1H), 6.50-6.66 (m, 2H), 6.76 (d, 2H, J $=8.4 \mathrm{~Hz}), 6.92-7.40(\mathrm{~m}, 16 \mathrm{H}), 7.48-7.64(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $55.40,60.10\left(\mathrm{~d},{ }^{1} J=80.0 \mathrm{~Hz}\right) 66.33\left(\mathrm{~d},{ }^{3} J=14.0 \mathrm{~Hz}\right), 113.85,121.98,123.04,125.62$, $125.78,126.64,127.41,127.49,128.02,128.16,128.26,128.35,128.80,129.41$, $129.99,130.07,130.29,130.63,131.62,131.71,131.85,132.39,132.48,134.21$, 134.38, 138.00, 139.15, 159.37. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 32.2. HRMS (ESI) Calcd for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{P}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 528.2087, Found 528.2100, and calcd for $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) \mathrm{m} / \mathrm{z} 550.1906$, Found 550.1921.

Preparation of $6 \mathbf{c}$: The reaction was performed on 0.05 mmol scale for 12 h using $\mathrm{Mg}(\mathbf{1 a})_{2}(5 \mathrm{~mol} \%)$. The product was obtained by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: ethyl acetate $=4: 1$) as white semisolid, $24.2 \mathrm{mg}, 92 \%$ yield, 96% ee. HPLC analysis: Chiralcel AD-H (hexane $/ \mathrm{iPrOH}=85 / 15,1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-major }} 18.36 \mathrm{~min}, t_{\mathrm{r} \text {-minor }} 36.73$ $\min .[\alpha]^{20}{ }_{\mathrm{D}}=-19.7^{\circ}\left(\mathrm{c}=0.255, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.50(\mathrm{~s}, 3 \mathrm{H})$, 2.46 (br, 1H), $4.25(\mathrm{~d}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 4.66(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{q}, 2 \mathrm{H}, J=12 \mathrm{~Hz}), 6.82(\mathrm{~d}$, $1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.94(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.11-7.67(\mathrm{~m}, 20 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 19.23,55.33\left(\mathrm{~d},{ }^{1} J=80.0 \mathrm{~Hz}\right), 66.54\left(\mathrm{~d},{ }^{3} J=14.0 \mathrm{~Hz}\right), 121.86,123.05$, $125.65,125.75,126.26,127.40,127.49,127.59,127.91,128.02,128.21,128.33$, 128.55, 128.75, 129.32, 129.86, 130.10, 130.27, 130.46, 130.77, 131.69, 131.74, $131.83,131.91,132.67,132.76,134.27,134.66,138.02,139.13 .{ }^{31} \mathrm{P}$ NMR (162 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 32.7. HRMS (ESI) Calcd for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{NOP}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 512.2138$, ound 512.2134, and calcd for $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) \mathrm{m} / \mathrm{z} 534.1957$, Found 534.1954.

Preparation of $\mathbf{6 d}$: The reaction was performed on 0.05 mmol scale for 12 h using $\operatorname{Mg}(\mathbf{1 a})_{2}(5 \mathrm{~mol} \%)$. The product was obtained by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: ethyl acetate $=8: 1$) as white semisolid, $24.5 \mathrm{mg}, 95 \%$ yield, 96% ee. HPLC analysis: Chiralcel OD-H (hexane $/ \mathrm{iPrOH}=99 / 1,1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-major }} 86.61 \mathrm{mins}, t_{\mathrm{r} \text {-minor }} 58.55$ mins. $[\alpha]^{20}{ }_{\mathrm{D}}=10.1 \quad\left(\mathrm{c}=0.705, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.48$ (bs, $1 \mathrm{H}), 3.97(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}), 4.63(\mathrm{~s}, 1 \mathrm{H}), 6.51-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.91(\mathrm{~m}, 3 \mathrm{H})$, 7.07-7.64 (m, 19 H), ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 60.16\left(\mathrm{~d},{ }^{1} J=78.0 \mathrm{~Hz}\right.$), $66.50(\mathrm{~d}$, $\left.{ }^{3} J=14.0 \mathrm{~Hz}\right), 115.18$ 115.39, 121.87, 122.88, 125.73, 125.87, 127.49, 127.60, 128.11, 128.27, 128.32, $128.38,128.43,128.87,129.32,129.94,130.09,130.33,130.44$, $130.63,130.90,130.98,131.02,131.54,131.62,131.79,132.33,132.42,134.06$ 134.26, 137.73, 138.91, 161.33, 163.77. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 32.2$. HRMS (ESI) Calcd for $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{FNOP}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 516.1887$, Found 516.1867, and Calcd for $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$538.1706, Found 538.1692.

Preparation of 6e: The reaction was performed on 0.05 mmol scale for 12 h using $\mathrm{Mg}(\mathbf{1 a})_{2}(5 \mathrm{~mol} \%)$. The product was obtained by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: ethyl acetate $=8: 1$) as white semisolid, $23.9 \mathrm{mg}, 98 \%$ yield, 87% ee. HPLC analysis: Chiralcel OD-H (hexane $/ \mathrm{iPrOH}=98 / 3,1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-major }} 37.24 \mathrm{mins}, t_{\mathrm{r} \text {-minor }} 48.25$ mins. $[\alpha]^{20}{ }_{\mathrm{D}}=28.5 \quad\left(\mathrm{c}=0.37, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.30(\mathrm{bs}, 1 \mathrm{H})$, 4.15-4.12 (m, 1H), 4.75 (s, 1H), 6.08-6.28 (m, 2H), 6.54-6.72 (m, 2H), 6.98-7.70 (m, 19H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 55.01\left(\mathrm{~d},{ }^{1} J=83.0 \mathrm{~Hz}\right), 67.63,\left(\mathrm{~d},{ }^{3} J=13.0\right.$ $\mathrm{Hz}), 110.15,110.20,110.85,121.85,122.76,125.70,125.87$, 127.57, 128.18, 128.29, ,
128.32, 128.67, 129.55, 129.98, 130.11, 130.31, 130.66, 130.94, 131.15, 131.59, $131.68,131.79,131.90,132.24,132.33,134.45,134.59,137.63,138.74,142.60$, 149.69. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 30.7. HRMS (ESI) Calcd for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{P}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 488.1774$, Found 488.1760, and calcd for $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$510.1593, Found 510.1573.

General procedure for three component chiral BINOL magnesium phosphate catalyzed asymmetric hydrophosphination of imines ($\mathbf{6 f - i}$):

In a typical experiment the corresponding aldehyde (0.1 mmol$)$, 5 H -Dibenzo $[\mathrm{a}, \mathrm{d}]$ cyclohepten-5-amine $(0.1 \mathrm{mmol})$ diphenylphosphine oxide $(0.05$ $\mathrm{mmol}), \operatorname{Mg}(\mathbf{1 a})_{2}(5 \mathrm{~mol} \%)$ and $40 \mathrm{mg} 4 \AA$ flame dried molecular sieves were weighed into a dry, resealable test tube with septa and stir bar. Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added to the mixture via syringe and the resulting mixture was stirred at room temperature for 12 h . Solvent was removed by rotary evaporation to give a crude solid mixture that was purified by column chromatography to give the product.
Note: The ${ }^{1} H$ and ${ }^{13} C$ NMR of products $\mathbf{6}$, a minor isomer peaks were observed. The peaks for the minor isomer are not reported. The resulting minor peaks were due to the minor dibezocycloheptene system conformer. For more information please see ref. 19 in the main text.

Preparation of 6f: The reaction was performed on 0.05 mmol scale for 12 h using $\operatorname{Mg}(\mathbf{1 a})_{2}(5 \mathrm{~mol} \%)$. The product was obtained by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: ethyl acetate $=8: 1$) an oil, $16.6 \mathrm{mg}, 72 \%$ yield, 85% ee. HPLC analysis: Chiralcel $\mathrm{AD}-\mathrm{H}$ (hexane $/ \mathrm{iPrOH}=93 / 7,1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-major }} 22.55 \mathrm{mins}, t_{\mathrm{r} \text {-minor }} 44.71 \mathrm{mins}$. $[\alpha]^{20}{ }_{\mathrm{D}}=50.1 \quad\left(\mathrm{c}=0.655, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.50(\mathrm{~d}, 3 \mathrm{H}, J=6.8$ $\mathrm{Hz}), 0.61(\mathrm{~d}, 3 \mathrm{H}, J=6.8), 1.08-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{bs}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 1 \mathrm{H})$,), $4.25(\mathrm{~s}$,
$1 \mathrm{H}), 7.57-6.62(\mathrm{~m}, 16 \mathrm{H}), 7.74(\mathrm{t}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}) 7.92(\mathrm{t}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 17.80,22.02\left(\mathrm{~d}, J=13.0 \mathrm{~Hz}\right.$), $29.22(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 60.36\left(\mathrm{~d},{ }^{1} J\right.$ $=81.0 \mathrm{~Hz}), 68.70$, (d, $\left.{ }^{3} J=4.0 \mathrm{~Hz}\right), 121.99,122.66,125.55,125.60,127.27,127.49$, 128.16, 128.44, 128.54, 128.69, 128.80, 129.56, 129.92, 130.12, 130.40, 130.44, $131.04,131.50,131.59,131.66,132.46,132.54,133.99,134.66,138.86,139.30 .{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 29.7. HRMS (ESI) Calcd for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{P}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 464.2138, Found 464.2141, and Calcd for $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$486.1957, Found 486.1962.

Preparation of $\mathbf{6 g}$: The reaction was performed on 0.05 mmol scale for 12 h using $\mathrm{Mg}(\mathbf{1 a})_{2}(5 \mathrm{~mol} \%)$. The product was obtained by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: ethyl acetate $=8: 1$) an oil, $16.9 \mathrm{mg}, 73 \%$ yield, 80% ee. HPLC analysis: Chiralcel AD-H (hexane $/ \mathrm{iPrOH}=85 / 15,1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-major }} 22.53 \mathrm{mins}, t_{\mathrm{r} \text {-minor }} 13.21 \mathrm{mins}$. $[\alpha]^{20}{ }_{\mathrm{D}}=-50.15 \quad\left(\mathrm{c}=0.695, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.52(\mathrm{t}, 3 \mathrm{H}, J=$ $7.2 \mathrm{~Hz})$ 0.74-1.57 (m, 4H), $1.88(\mathrm{bs}, 1 \mathrm{H}), 3.11-3.15(\mathrm{~m}, 1 \mathrm{H}), 4.27(\mathrm{~s}, 1 \mathrm{H}), 6.67-6.87$ $(\mathrm{m}, 3 \mathrm{H}), 7.09-7.58(\mathrm{~m}, 12 \mathrm{H}), 7.76(\mathrm{t}, 3 \mathrm{H}, J=8.8 \mathrm{~Hz}) 7.91(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.88,19.39\left(\mathrm{~d}, J=10.0 \mathrm{~Hz}\right.$), $32.34,55.3\left(\mathrm{~d},{ }^{1} J=87.0\right.$ $\mathrm{Hz}), 68.02\left(\mathrm{~d},{ }^{3} J=5.0 \mathrm{~Hz}\right), 122.36,125.63$ 125.79, 127.25, 127.53, 128.36, 128.41, $128.46,128.69,128.81,129.65,130.09,130.39,130.47,130.87,131.77,131.94$, 132.02, 132.52, 132.59, 133.67, 134.13, 138.89, 139.14. ${ }^{31} \mathrm{P}$ NMR $\delta 31.3$ (162 MHz , CDCl_{3}). HRMS (ESI) Calcd for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{NOP}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 464.2138, Found 464.2157.

Preparation of $\mathbf{6 h}$: The reaction was performed on 0.05 mmol scale for 12 h using $\mathrm{Mg}(\mathbf{1 a})_{2}(5 \mathrm{~mol} \%)$. The product was obtained by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: ethyl acetate $=8: 1$) an oil, $19.1 \mathrm{mg}, 80 \%$ yield, 73% ee. HPLC analysis: Chiralcel AD-H (hexane $/ \mathrm{iPrOH}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-major }} 26.48 \mathrm{mins}, t_{\mathrm{r} \text {-minor }} \quad 20.87$ mins. $[\alpha]^{20}{ }_{\mathrm{D}}=-63.2\left(\mathrm{c}=0.745, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.60(\mathrm{t}, 3 \mathrm{H}, J=$ $7.2 \mathrm{~Hz})$ 0.66-1.88 (m, 5H), 1.52-1.62 (m, 1H), $1.85(\mathrm{br}, 1 \mathrm{H}) 3.04-3.08(\mathrm{~m}, 1 \mathrm{H}), 4.21$ $(\mathrm{s}, 1 \mathrm{H}), 6.61(\mathrm{~d}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 6.74-6.81(\mathrm{~m}, 2 \mathrm{H}) 7.04-7.51(\mathrm{~m}, 13 \mathrm{H}), 7.71(\mathrm{t}, 2 \mathrm{H}$, $J=9.2 \mathrm{~Hz}), 7.84(\mathrm{t}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.11(\mathrm{~d}, J=7.0$ Hz), 22.43, 28.29 (d, $J=9.0 \mathrm{~Hz}$), 29.86, $55.46\left(\mathrm{~d},{ }^{l} J=87.0 \mathrm{~Hz}\right), 68.04\left(\mathrm{~d},{ }^{3} J=5.0\right.$ $\mathrm{Hz})$, 122.33, 125.60, 125.75, 127.22, 127.48, 127.68, 128.33, 128.37, 128.44, 128.66, 128.77, 129.62, 130.04, 130.37, 130.45, 130.87, 131.15, 131.23, 131.32, 131.74, $131.89,131.98,132.46,132.54,132.93133 .63$ 133.84, 134.11, 138.84, 139.11. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 31.2. HRMS (ESI) Calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{NOP}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 478.2294 Found 478.2278, and Calcd $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$500.2114, Found 500.2093.

Preparation of $\mathbf{6 i}$: The reaction was performed on 0.05 mmol scale for 12 h using $\mathrm{Mg}(\mathbf{1 a})_{2}(5 \mathrm{~mol} \%)$. The product was obtained by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: ethyl acetate $=8: 1$) white semisolid, $22.6 \mathrm{mg}, 86 \%$ yield, 93% ee. HPLC analysis: Chiralcel OD-H (hexane/ $\mathrm{iPrOH}=98 / 2,1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-major }} 43.08 \mathrm{mins}, t_{\mathrm{r} \text {-minor }}$ 66.55 mins. $[\alpha]^{20}{ }_{\mathrm{D}}=-59.4\left(\mathrm{c}=0.47, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $1.41-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.91(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.38(\mathrm{~m}, 1 \mathrm{H})$, 3.11-3.16 (m, 1H), 4.33 (s, 1H), $6.62(\mathrm{~d}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}) 6.72-6.80(\mathrm{~m}, 4 \mathrm{H}), 7.08-7.44$ $(\mathrm{m}, 15 \mathrm{H}), 7.56-7.79(\mathrm{~m}, 5 \mathrm{H})$. No N-H Peak was observed. ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 32.48,32.52,54.80\left(\mathrm{~d},{ }^{l} J=85.0 \mathrm{~Hz}\right), 67.91\left(\mathrm{~d},{ }^{3} J=6.0 \mathrm{~Hz}\right), 122.30$, $122.40,126.00,127.33,127.63,128.50,128.55,128.62,128.68,128.79,129.68$, $130.08,130.15,130.35,130.46,131.03,131.83,132.35,132.43,133.82,134.29$,
138.79, 139.24, 141.87. ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 31.5. HRMS (ESI) Calcd for $\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{NOP}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 526.2294$, Found 526.2285 .

(-)-(diphenylphosphoryl)(phenyl)methanamine (7a).

To a 25 mL flame-dried round bottom flask filled with argon was added (-)-N-benzhydryl(diphenylphosphoryl)(phenyl)methanamine $90 \mathrm{mg}(0.19 \mathrm{mmol}, 93 \%$ ee) and 0.5 mL of anisole at room temperature. The flask was cooled to $0{ }^{\circ} \mathrm{C}$ and 400 uL of a solution of $8 \%(\mathrm{v} / \mathrm{v}) \mathrm{H}_{2} \mathrm{SO}_{4}$ in TFA was added. The ice-bath was removed and the reaction mixture was stirred for 12 h . The reaction mixture was quenched by addition of saturated aq $\mathrm{Na}_{2} \mathrm{CO}_{3} .3 \mathrm{~mL}$ of ether was added and the organic layer was separated and the aqueous layer was extracted with ether. The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The ether was removed by rotary evaporation and the residue was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=\right.$ $10: 1$) as a white solid, $47 \mathrm{mg}, 80 \%$ yield, 93% ee. HPLC analysis: Chiralcel AS-H (hexane $/ \mathrm{iPrOH}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-major }} 11.95 \mathrm{~min}, t_{\mathrm{r} \text {-minor }} 15.49 \mathrm{~min} .[\alpha]_{\mathrm{D}}^{20}=$ $-23.9^{\circ}\left(\mathrm{c}=0.09, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.27(\mathrm{~s}, 2 \mathrm{H}), 4.64(\mathrm{~d}, 1 \mathrm{H}, J$ $=6.5 \mathrm{~Hz}), 7.10-7.48(\mathrm{~m}, 13 \mathrm{H}), 7.79-7.86(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 56.83,\left({ }^{1} J=84.1 \mathrm{~Hz}\right), 125.31,127.74,127.77,128.09,128.17,128.24,128.54,128$. $72,129.04,129.63,129.80,131.13,131.32,131.58,131.72,131.79,131.91,132.05,1$ 32.12, 137.30. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 33.3. HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NOP}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 308.1199$, Found 308.1200.

Synthesis of 8a.

To a 25 mL flame-dried round bottom flask filled with argon was added (-)(diphenylphosphoryl)(phenyl)methanamine $17 \mathrm{mg}(0.05 \mathrm{mmol}, 93 \%$ ee), di-tert-butyl dicarbonate $24 \mathrm{mg}(0.11 \mathrm{mmol})$ and $5 \mathrm{~mL} \mathrm{CH}_{3} \mathrm{CN}$. The reaction mixture
was stirred at room temperature for 24 h . The product was obtained by using column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 20: 1\right), 20 \mathrm{mg}$, Yield $=88 \%$, ee $=88 \%$. HPLC analysis: Chiralcel OD-H (hexane $/ \mathrm{iPrOH}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-major }} 4.36 \mathrm{~min}, t$ ${ }_{r-m i n o r} 5.84 \mathrm{~min} .[\alpha]^{20}{ }_{\mathrm{D}}=-77.3^{\circ}\left(\mathrm{c}=0.37, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.21$ (s, 9H), $5.55(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 5.96(\mathrm{~d}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}), 7.21-7.10(\mathrm{~m}, 7 \mathrm{H})$, 7.36-7.29 (m, 3H), 7.50-7.42 (m, 3H), $7.89(\mathrm{t}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 28.33,53.98\left({ }^{1} J=75.0 \mathrm{~Hz}\right), 80.44,128.03,128.34,128.45,128.79,128.89$, $130.16,130.22,131.39,131.48,131.67,131.75,132.09,132.35,135.15,155.13 .{ }^{31} \mathrm{P}$ NMR (162 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 34.0. HRMS (ESI) Calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{P}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 408.1723, Found 408.1721, and calcd. for $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) \mathrm{m} / \mathrm{z} 430.1542$, Found 430.1533

General procedure for preparation of racemates: The imine (0.06 mmol), phosphine oxide (3b-e) (0.05 mmol), and phenylphosphinic acid ($10 \mathrm{~mol} \%$), were weighed into a dry, re-sealable test tube with septa and stir bar. Dry $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added to the mixture via syringe and the resulting mixture was stirred at room temperature overnight. Dichloromethane was removed by rotary evaporation to give a crude solid mixture that was purified by column chromatography to give the racemic product.

General procedure for chiral Magnesium phosphate salt catalyzed asymmetric hydrophosphination of benzhydrylimines using substituted diphenyl phosphine oxides (9b-e):

In a typical experiment the benzhydrylimine (0.06 mmol), phosphine oxide (3b-e) ${ }^{7}$ $(0.05 \mathrm{mmol})$ and $\mathrm{Mg}(\mathbf{1 a})_{2}(5 \mathrm{~mol} \%)$ were weighed into a dry, resealable test tube with septa and stir bar. Dry $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added to the mixture via syringe and the resulting mixture was stirred at room temperature for 24 h . Solvent was removed by rotary evaporation to give a crude solid mixture that was purified by column chromatography to give the product

Preparation of 9b: The reaction was performed on 0.05 mmol scale of $\mathbf{3 b}$. The product was obtained by flash chromatography (Hexanes: ethyl acetate $=2: 1$) white semisolid, $25.2 \mathrm{mg}, 93 \%$ yield, 84% ee. HPLC analysis: Chiralcel AD-H (hexane $/ \mathrm{iPrOH}=85 / 15,1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\text {r-major }} 22.88 \mathrm{mins}, t_{\mathrm{r} \text {-minor }} 41.44 \mathrm{mins}$. $[\alpha]^{20}{ }_{\mathrm{D}}=-49.4\left(\mathrm{c}=1.06, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.80(\mathrm{~d}, 1 \mathrm{H}, J=$ 10.8 Hz), 4.09 (t, 1H, $J=11.2 \mathrm{~Hz}$), $4.54(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{t}, 2 \mathrm{H}, J=3.6 \mathrm{~Hz}), 7.09-7.18$ $(\mathrm{m}, 17 \mathrm{H}) 7.45\left(\mathrm{dd}, 2 \mathrm{H},{ }^{1} J=8.8 \mathrm{~Hz},{ }^{2} J=2.4 \mathrm{~Hz}\right) 7.65-7.70(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 60.22\left({ }^{1} J=82.0 \mathrm{~Hz}\right), 64.25\left({ }^{3} J=14.0 \mathrm{~Hz}\right), 127.18,127.48,127.78$, $128.43,128.60,128.71,128.74,128.82,128.92,129.04,129.31,129.36,130.15$, $130.36,132.81,132.90,133.42,133.52,135.06,138.47,138.50,138.83,138.87$, 141.92, 143.55. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 30.7. HRMS (ESI) Calcd. for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{NOP}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 542.12018$, Found 542.11778 , and calcd. for $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ m/z 564.10213, Found 564.10155.

Preparation of 9c: The reaction was performed on 0.05 mmol scale of $\mathbf{3 c}$. The product was obtained by flash chromatography (Hexanes: ethyl acetate $=2: 1$) white semi solid, $22.7 \mathrm{mg}, 88 \%$ yield, 84% ee. HPLC analysis: Chiralcel AD-H (hexane $/ \mathrm{iPrOH}=$ $85 / 15,1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\text {r-major }} 17.71 \mathrm{mins}, t_{\mathrm{r} \text {-minor }} 25.47 \mathrm{mins} .[\alpha]_{\mathrm{D}}^{20}=-30.0^{\circ}(\mathrm{c}=$ $0.86, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.89(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 4.17(\mathrm{t}, 1 \mathrm{H}, J$ $=10.8 \mathrm{~Hz}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{t}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.07(\mathrm{bs}, 2 \mathrm{H}), 7.16-7.35(\mathrm{~m}, 17 \mathrm{H})$, 8.80-7.86 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 60.19\left({ }^{1} J=82.0 \mathrm{~Hz}\right), 64.0\left({ }^{3} J=\right.$ $14.0 \mathrm{~Hz}), 115.21,115.34,115.42,115.55,115.66,115.75,115.87$, 126.94, 127.19,
127.47, 128.03, 128.05, 128.17, 128.42, 128.45, 128.47, 128.49, 129.04, 129.09, 133.64, 133.74, 133.83, 134.22, 134.32, 134.41, 135.00, 141.75, 143.36, 163.39, $163.43,163.85,163.88,165.91,165.95,166.37,166.40 .{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 30.6. HRMS (ESI) Calcd. for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{NOP}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 510.17928$, Found 510.17933, and calcd. for $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) \mathrm{m} / \mathrm{z} 532.16123$, Found 532.16073.

Preparation of $\mathbf{9 d}$: The reaction was performed on 0.05 mmol scale of 3d. The product was obtained by flash chromatography (Hexanes: ethyl acetate $=1: 1$) white semisolid, $21.5 \mathrm{mg}, 79 \%$ yield, 87% ee. HPLC analysis: Chiralcel AD-H (hexane $/ \mathrm{iPrOH}=93 / 7,0.8 \mathrm{~mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-major }} 30.75 \mathrm{mins}, t_{\mathrm{r} \text {-minor }} \quad 26.37 \mathrm{mins} .[\alpha]^{20}{ }_{\mathrm{D}}$ $=-47.5^{\circ}\left(\mathrm{c}=0.63, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.82(\mathrm{bs}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H})$, $3.89(\mathrm{~s}, 3 \mathrm{H}), 4.16(\mathrm{~d}, 1 \mathrm{H}, J=9.2 \mathrm{~Hz}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 6.69\left(\mathrm{dd}, 2 \mathrm{H},{ }^{1} J=9.2 \mathrm{~Hz},{ }^{2} J=6.8\right.$ $\mathrm{Hz})$, 7.13-7.27 (m, 19H), 7.73 (d, $1 \mathrm{H}, J=8.8 \mathrm{~Hz}$), $7.75(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 55.15,55.36,60.44\left({ }^{1} J=81.0 \mathrm{~Hz}\right), 63.93\left({ }^{3} J=13.0 \mathrm{~Hz}\right), 113.40$, $113.53,113.72,113.85,121.97,122.03,122.18,122.22,123.01,123.07,123.21$, 123.26, 127.02, 127.07, 127.27, 127.65, 128.24, 128.32, 128.38, 129.16, 129.21, 133.19, 133.29, 133.76, 133.86, 135.67, 135.70, 142.05, 143.69, 161.92, 161.95, 162.34, 162.37. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.8$. HRMS (ESI) Calcd. for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{NO}_{3} \mathrm{P}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 534.21926$, Found 534.21798, and calcd. for $\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ m/z 556.20120, Found 556.19939.

Preparation of $\mathbf{9 e}$: The reaction was performed on 0.05 mmol scale of $\mathbf{3 e}$. The product
was obtained by flash chromatography (Hexanes: ethyl acetate $=1: 1$) white semisolid, $15.7 \mathrm{mg}, 63 \%$ yield, 89% ee. HPLC analysis: Chiralcel (S, S) WHELK-O1 (hexane $/ \mathrm{iPrOH}=85 / 15,1.0 \mathrm{~mL} / \mathrm{min}$), $t_{\mathrm{r} \text {-major }} 16.03 \mathrm{mins}, t_{\mathrm{r} \text {-minor }} 22.31 \mathrm{mins}$. $[\alpha]^{20}{ }_{\mathrm{D}}=-41.7^{\circ}\left(\mathrm{c}=0.715, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.47$ (s, 3H), $2.85(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 4.21(\mathrm{t}, 1 \mathrm{H}, J=10.4 \mathrm{~Hz}), 4.62(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, 2 \mathrm{H}$, $J=6.8 \mathrm{~Hz}), 7.06(\mathrm{bs}, 2 \mathrm{H}), 7.19-7.38(\mathrm{~m}, 17 \mathrm{H}), 7.74(\mathrm{t}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.44,21.66,60.15\left({ }^{1} J=80.0 \mathrm{~Hz}\right), 63.93\left({ }^{3} J=13.0 \mathrm{~Hz}\right), 126.87$, 126.90, 127.02, 127.08, 127.26, 127.65, 127.67, 128.24, 128.32, 128.37, 128.43, $128.59,128.70,129.90,129.02,129.21,129.26,131.31,131.40,131.91,132.0$, 135.68, 141.66, 141.69, 142.05, 143.71. ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 32.1. HRMS (ESI) Calcd. for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{NOP}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 502.22943$, Found 502.22770, and calcd. for $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) \mathrm{m} / \mathrm{z}$ 524.21137, Found 524.20894.

References

1. J. Bao, W. D. Wulff, J. B. Dominy, M. J. Fumo, E. B. Grant, A. C. Rob, M. C. Whitcomb, S.-M. Yeung, R. L. Ostrander, A. L. Rheingold, J. Am. Chem. Soc. 1996, 118, 3392.
2. J. Inanaga, EP 1134209 A1, 2001, 16 pp
3. R. I. Storer, D. E. Carrera, Y. Ni, D. W. C. MacMillan, J. Am. Chem. Soc. 2006, 128, 84-86.
4. P. H. Mazzocchi, P. Wilson, F. Khachik, L. Klingler, S. Minamikawa, J. Org. Chem. 1983, 48, 2981.
5. Hatano, M.; Moriyama, k.; Maki, y.; Ishihara, K. Angew. Chem. Int. Ed. 2010, 49, 3823-3826.
6. Zhang. Y.; Lu. Z.; Desai, A.; Wulff, W. D. Org. Lett. 2008, 10, 5429-5432.
7. Abell, J.P.; Yamamoto, H. J. Am. Chem. Soc. 2008, 130, 10521-10523

ORTEP Drawing of X-ray Structure of Compound 8a

