Supporting Information

(Revised February 9, 2011)

Total Synthesis of (\pm)-Lysergic Acid, Lysergol, and Isolysergol by Palladium-Catalyzed Domino Cyclization of Amino Allenes Bearing a Bromoindolyl Group
Shinsuke Inuki, Shinya Oishi, Nobutaka Fujii,* and Hiroaki Ohno*
Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
E-mail: hohno@pharm.kyoto-u.ac.jp; n-fujii@pharm.kyoto-u.ac.jp

Table of Contents

Experimental Section 2
NMR Spectra 20

Experimental Section

General Methods. All moisture-sensitive reaction were performed using syringe-septum cap techniques under an argon atmosphere and all glassware was dried in an oven at $80^{\circ} \mathrm{C}$ for 2 h prior to use. Reactions at $-78{ }^{\circ} \mathrm{C}$ employed a $\mathrm{CO}_{2}-\mathrm{MeOH}$ bath. Melting points were measured by a hot stage melting point apparatus and are uncorrected. For flash chromatography, Wakosil C-300 was employed. ${ }^{1} \mathrm{H}$ NMR spectra were recording using a JEOR AL-400 or JEOL ECA-500 spectrometer, and chemical shifts are reported in $\delta(\mathrm{ppm})$ relative to TMS (in CDCl_{3}) as internal standard. ${ }^{13} \mathrm{C}$ NMR spectra were recorded using a JEOR AL-400 or JEOL ECA-500 spectrometer and referenced to the residual CHCl_{3} signal. NOE spectra were recorded on 500 MHz instruments. Chemical shifts were reported in parts per million with the residual solvent peak used as an internal standard. ${ }^{1} \mathrm{H}$ NMR spectra are tabulated as follows: chemical shift, multiplicity ($\mathrm{b}=$ broad, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet), number of protons, and coupling constant(s). Exact mass (HRMS) spectra were recorded on a JMS-HX/HX 110A mass spectrometer. Infrared (IR) spectra were obtained on a JASCO FT/IR-4100 FT-IR spectrometer with JASCO ATR PRO410-S. Microwave reaction was conducted in a sealed glass vessel (capacity 10 mL) using CEM Discover microwave reactor. The temperature was monitored using IR sensor mounted under the reaction vessel. For analytical HPLC, a Cosmosil 5C18-ARII column ($4.6 \times 250 \mathrm{~mm}$, Nacalai Tesque Inc., Kyoto, Japan) was employed on a Shimadzu LC-10ADvp (Shimadzu Corp., Ltd., Kyoto, Japan). Preparative HPLC was performed using a Cosmosil 5C18-ARII column ($20 \times 250 \mathrm{~mm}$, Nacalai Tesque Inc.) on a Shimadzu LC-6AD (Shimadzu Corp., Ltd.).

4-Bromo-1-tosyl-1H-indole-3-carbaldehyde (S1). The formylation of 4-bromoindole was carried out according to the method of Shea. ${ }^{1}$ To a stirred DMF (6 mL) was added $\mathrm{POCl}_{3}(0.98 \mathrm{~mL}, 10.5$ mmol) at $0^{\circ} \mathrm{C}$ under argon. The solution was stirred for 2 min , and then 4 -bromoindole (940 mg , 4.7 mmol) in DMF (5 mL) was added. The mixture was stirred for 1 h neatoom temperature and was slowly quenched with $\mathrm{KOH}(2.66 \mathrm{~g})$ in water (10 mL). The reaction mixture was left to cool overnight, and was then partitioned between EtOAc and saturated aqueous NaHCO_{3}. The organic layer was washed with brine, dried over MgSO_{4}, and concentrated under reduced pressure to give off a crude aldehyde as a white solid. To a stirred solution of this aldehyde in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ were added $\mathrm{TsCl}(1.08 \mathrm{~g}, 5.6 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(1.05 \mathrm{~mL}, 7.5 \mathrm{mmol})$ and DMAP ($57.4 \mathrm{mg}, 0.47 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 2 h at room temperature. The mixture was made acidic with 1 N HCl , and whole was extracted with EtOAc. The extract was washed with brine, dried over
MgSO_{4}, and concentrated under pressure to give a white solid, which was purified by column chromatography over silica gel with n-hexane-EtOAc (7:1) to give $\mathbf{S 1}$ ($1.59 \mathrm{~g}, 90 \%$ yield). Recrystallization from n-hexane-chloroform gave essentially pure $\mathbf{S 1}$ as colorless crystals: mp $176{ }^{\circ} \mathrm{C}$; IR (neat): $1676(\mathrm{C}=\mathrm{O}), 1381\left(\mathrm{NSO}_{2}\right), 1176\left(\mathrm{NSO}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.38(\mathrm{~s}$, 3H), 7.24 (dd, $J=8.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.30(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 8.00 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.41 (s, 1H), $10.29(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 21.7, 112.9, 113.9, 122.0, 126.1, 127.0, 127.3 (2С), 128.9, 130.4 (2C), 132.0, 134.1, 136.2, 146.4, 186.2. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{BrNO}_{3} \mathrm{~S}$: C, 50.81; H, 3.20; N, 3.70. Found: C, 50.81; H, 3.16; N, 3.71.

4-Bromo-3-(bromomethyl)-1-tosyl-1H-indole (9). To a stirred solution of the aldehyde S1 (4.30 g, 11.4 mmol) in $\mathrm{MeOH}(300 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(1.24 \mathrm{~g}, 32.7 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 1.5 h at room temperature, $\mathrm{H}_{2} \mathrm{O}$ was added, and the mixture was concentrated under reduced pressure. The residue was diluted with $\mathrm{Et}_{2} \mathrm{O}$, and the organic phase was separated and washed with brine and dried over MgSO_{4}. The filtrate was concentrated under reduced pressure to give a crude alcohol as a white solid, which was used without further purification. To a stirred solution of this alcohol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ was added $\mathrm{Ph}_{3} \mathrm{PBr}_{2}(5.30 \mathrm{~g}, 12.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The mixture was stirred overnight at room temperature. Concentration under reduced pressure gave an oily residue, which was purified by flash chromatography over silica gel with n-hexane-EtOAc (7:1) to give 9 ($4.46 \mathrm{~g}, 89 \%$ yield). Recrystallization from n-hexane-chloroform gave pure $\mathbf{9}$ as colorless crystals: mp $157{ }^{\circ} \mathrm{C}$; IR (neat): $1375\left(\mathrm{NSO}_{2}\right), 1173\left(\mathrm{NSO}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.36(\mathrm{~s}$, $3 \mathrm{H}), 4.88$ (s, 2H), 7.17 (dd, $J=8.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.75(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.6$, 24.7, 112.9, 114.2, 119.6, 126.1, 127.0 (2C), 127.1, 127.9, 128.2, 130.1 (2C), 134.7, 136.3, 145.6. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{NO}_{2} \mathrm{~S}$: C, 43.36; H, 2.96; N, 3.16. Found: C, 43.57; H, 2.75; N, 2.90.

4-Bromo-1-tosyl-3-[2-(trimethylsilylethynyl)-1,3-dithian-2-yl]methyl-1H-indole (11). To a stirred solution of the 2-(trimethylsilylethynyl)-1,3-dithiane 10 ($38.3 \mathrm{mg}, 0.177 \mathrm{mmol}$) in THF (1
mL) was added $n-\mathrm{BuLi}(1.65 \mathrm{M}$ solution in hexane; $0.12 \mathrm{~mL}, 0.195 \mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$ under argon. After stirring for 1 h with warming to $-20^{\circ} \mathrm{C}$, a solution of the bromide $9(72.5 \mathrm{mg}, 0.164 \mathrm{mmol})$ in THF (0.2 mL) was added to this reagent at $-20^{\circ} \mathrm{C}$. The mixture was stirred for 2 h at this temperature and quenched with $\mathrm{H}_{2} \mathrm{O}$. The whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with brine and dried over MgSO_{4}. The filtrate was concentrated under reduced pressure to give an oily residue, which was purified by flash chromatography over silica gel with n-hexane-EtOAc (7:1) to give 11 ($90.6 \mathrm{mg}, 96 \%$ yield). Recrystallization from MeCN gave pure $\mathbf{1 1}$ as colorless crystals: mp $138{ }^{\circ} \mathrm{C}$; IR (neat): $2157(\mathrm{C} \equiv \mathrm{C}), 1374\left(\mathrm{NSO}_{2}\right), 1173\left(\mathrm{NSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.05(\mathrm{~s}, 9 \mathrm{H}), 1.82-1.92(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.83$ (ddd, $J=13.9,3.3$, $3.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.29-3.37 (m, 2H), 3.78 (s, 2H), 7.07 (dd, $J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.18 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.00$ (3C), 21.8, 25.8, 29.1 (2C), 36.7, 47.1, 93.1, 103.2, 113.1, 115.0, 116.1, 125.3, 127.2 (2C), 128.4, 128.6, 129.5, 130.1 (2C), 135.2, 136.1, 145.2. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{BrNO}_{2} \mathrm{~S}_{3} \mathrm{Si}: \mathrm{C}, 51.89 ; \mathrm{H}, 4.88$; N, 2.42. Found: C, 51.66; H, 4.78; N, 2.24.

($\mathbf{)}$)-1-(4-Bromo-1-tosyl-1H-indol-3-yl)-4-(trimethylsilyl)but-3-yn-2-ol (S2). To a stirred mixture of NCS ($786 \mathrm{mg}, 5.89 \mathrm{mmol}$) and $\mathrm{AgNO}_{3}(1.03 \mathrm{~g}, 6.06 \mathrm{mmol})$ in $\mathrm{MeCN}(25 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added thioacetal $\mathbf{1 1}(1.00 \mathrm{~g}, 1.73 \mathrm{mmol})$ in $\mathrm{MeCN}(8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 5 min at this temperature and quenched with saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}$, saturated NaHCO_{3} and brine (1:1:1). The mixture was filtered through a short pad of celite with EtOAc. The filtrate was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with saturated $\mathrm{Na}_{2} \mathrm{SO}_{3}$, saturated NaHCO_{3} and brine (1:1:1), brine and dried over MgSO_{4}. The filtrate was concentrated under reduced pressure to give a yellow oily residue, which was used without further purification. To a stirred solution of the crude ketone in $\mathrm{MeOH}(50 \mathrm{~mL})$ was added $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(838 \mathrm{mg}, 2.25 \mathrm{mmol})$ at room temperature. After stirring for $10 \mathrm{~min}, \mathrm{NaBH}_{4}(118 \mathrm{mg}, 3.11 \mathrm{mmol})$ was added to this solution at $-20^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at this temperature and quenched with $\mathrm{H}_{2} \mathrm{O}$. The mixture was concentrated under reduced pressure. The residue was diluted with $\mathrm{Et}_{2} \mathrm{O}$, and the extract was washed with brine and dried over MgSO_{4}. The filtrate was concentrated under reduced pressure to give an oily residue, which was purified by flash chromatography over silica gel with n-hexane-EtOAc (4:1) to give S2 as a white amorphous solid ($530 \mathrm{mg}, 63 \%$ yield): IR (neat): $3540(\mathrm{OH}), 2172(\mathrm{C} \equiv \mathrm{C}), 1373\left(\mathrm{NSO}_{2}\right)$, $1173\left(\mathrm{NSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.16(\mathrm{~s}, 9 \mathrm{H}), 1.90(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$, 3.33 (dd, $J=14.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.42$ (dd, $J=14.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.72$ (ddd, $J=6.8,6.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.11 (dd, $J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.73$ (d,
$J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.00(3 \mathrm{C}), 21.8,34.6,63.1$, 90.8, 105.9, 113.1, 114.6, 117.8, 125.5, 127.1 (2С), 127.2, 128.1, 128.9, 130.2 (2C), 135.2, 136.5, 145.4; HRMS (FAB) calcd $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{BrNO}_{3} \mathrm{SSi}$: [M - H] ${ }^{-}$, 488.0357; found: [$\left.\mathrm{M}-\mathrm{H}\right]^{-}$, 488.0351.

Methyl (\pm)-(E)-3-[1-(4-Bromo-1-tosyl-1H-indol-3-yl)but-3-yn-2-yloxy]acrylate (12). To a stirred solution of the alcohol S2 ($84.2 \mathrm{mg}, 0.17 \mathrm{mmol}$) in THF (3 mL) was added TBAF (1.00 M solution in THF; $0.22 \mathrm{~mL}, 0.22 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at this temperature and quenched with $\mathrm{H}_{2} \mathrm{O}$. The whole was extracted with EtOAc. The extract was washed with $\mathrm{H}_{2} \mathrm{O}$, brine and dried over MgSO_{4}. The filtrate was concentrated under reduced pressure to give a pale yellow amorphous solid, which was used without further purification. To a stirred solution of this amorphous solid in $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ were added methyl propiolate ($0.028 \mathrm{~mL}, 0.31 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.043 \mathrm{~mL}, 0.31 \mathrm{mmol}$) at room temperature. The mixture was stirred overnight at room temperature. Concentration under pressure gave an oily residue, which was purified by flash chromatography over silica gel with n-hexane-EtOAc (4:1) to give 12 as a white amorphous solid ($78.9 \mathrm{mg}, 92 \%$ yield): IR (neat): 2122 ($\mathrm{C} \equiv \mathrm{C}$), 1709 ($\mathrm{C}=\mathrm{O}$), 1625 ($\mathrm{C}=\mathrm{C}$), 1373 (NSO_{2}), 1173 $\left(\mathrm{NSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=13.9$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.53 (dd, $J=13.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.70 (s, 3H), 4.90 (ddd, $J=6.8,6.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.38$ (d, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.14 (dd, $J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.22 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.39 (d, $J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 21.5,32.2,51.2,71.0,76.8,79.6,99.1,113.1,114.0,116.2,125.6,126.8$ (2C), 127.5, 127.9, 128.2, 130.0 (2C), 134.7, 136.4, 145.4, 159.9, 167.7; HRMS (FAB) calcd $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{BrNO}_{5} \mathrm{~S}:[\mathrm{M}-\mathrm{H}]^{-}, 500.0173$; found: $[\mathrm{M}-\mathrm{H}]^{-}, 500.0174$.

(\pm)-(E)-4-Bromo-1-tosyl-3-\{2-[3-(triisopropylsilyloxy)prop-1-enyloxy]but-3-ynyl\}-1H-indole (13). To a stirred solution of the enol ether $12(200 \mathrm{mg}, 0.40 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(6.5 \mathrm{~mL})$ was added DIBAL-H (0.99 M solution in toluene; $1.0 \mathrm{~mL}, 1.0 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 50 min at this temperature and quenched with 2 N Rochelle salt. After stirring for 1.5 h , the whole was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with brine and dried over MgSO_{4}. The filtrate was
concentrated under reduced pressure to give a crude alcohol as a white amorphous solid, which was used without further purification. To a stirred solution of this alcohol in DMF (2.0 mL) were added imidazole ($81.7 \mathrm{mg}, 1.2 \mathrm{mmol}$) and TIPSCl ($0.127 \mathrm{~mL}, 0.60 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After stirring overnight at room temperature, the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was separated and washed with $\mathrm{H}_{2} \mathrm{O}$, brine and dried over MgSO_{4}. The filtrate was concentrated under reduced pressure to give an oily residue, which was purified by flash chromatography over silica gel with n-hexane-EtOAc (15:1) to give 13 as a colorless oil ($239 \mathrm{mg}, 95 \%$ yield): IR (neat): 2116 (C $=\mathrm{C}$), $1665(\mathrm{C}=\mathrm{C}), 1369\left(\mathrm{NSO}_{2}\right), 1173\left(\mathrm{NSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.04-1.09(\mathrm{~m}, 21 \mathrm{H}), 2.34$ (s, 3H), 2.48 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.37 (dd, $J=13.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.52 (dd, $J=13.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.19 (d, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 4.75 (ddd, $J=6.9,6.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ (dt, $J=12.0,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.48 (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=8.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.1$ (3C), 18.0 (6C), 21.6, 32.4, 61.0, 69.2, 75.3, 81.2, 107.2, 113.0, 114.2, 117.1, 125.4, 126.9 (2C), 127.3, 127.9, 128.6, 129.9 (2C), 134.9, 136.3, 145.2, 145.5; HRMS (FAB) calcd $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{BrNO}_{4} \mathrm{SSi}$: [M - H] ${ }^{-}$, 628.1558; found: [M - H] ${ }^{-}$, 628.1555.

(\pm)-(2S,aR)-6-(4-Bromo-1-tosyl-1H-indol-3-yl)-2-(triisopropylsilyloxymethyl)hexa-3,4-dien-1-o 1 (14a) and (\pm)-(2R,aR)-Isomer (14b).
Microwave conditions (Table 1, entry 2): A solution of the silyl enol ether $\mathbf{1 3}$ ($31 \mathrm{mg}, 0.049$ mmol) in CHCl_{3} was heated under microwave irradiation at $120^{\circ} \mathrm{C}$ for 12 min , then $150^{\circ} \mathrm{C}$ for 12 min . The mixture was diluted with $\mathrm{MeOH}(0.4 \mathrm{~mL}), \mathrm{NaBH}_{4}(2.2 \mathrm{mg}, 0.059 \mathrm{mmol})$ was added at room temperature. The mixture was stirred for 1 h at room temperature. Concentration under pressure gave an oily residue, which was purified by flash chromatography over silica gel with n-hexane-EtOAc (5:1) to give $\mathbf{1 4}$ as a colorless oil ($25.4 \mathrm{mg}, 82 \%$ yield, a:b $=c a .33: 67$).
Au-Catalyzed conditions (Table 1, entry 3): To a stirred solution of the silyl enol ether $\mathbf{1 3}$ (50 mg , $0.079 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.25 \mathrm{~mL})$ was added $\left[\left(\mathrm{Ph}_{3} \mathrm{PAu}_{3} \mathrm{O}\right] \mathrm{BF}_{4}(4.3 \mathrm{mg}, 0.004 \mathrm{mmol})\right.$ at room temperature. After stirring for 7.5 h at $40^{\circ} \mathrm{C}$, the mixture was diluted with $\mathrm{MeOH}(0.5 \mathrm{~mL}) . \mathrm{NaBH}_{4}$ ($3.6 \mathrm{mg}, 0.095 \mathrm{mmol}$) was added at room temperature, and the mixture was stirred for 1 h at room temperature. Concentration under pressure gave an oily residue, which was purified by flash chromatography over silica gel with n-hexane-EtOAc (5:1) to give $\mathbf{1 4}$ as a colorless oil (39.1 mg , 78% yield, $\mathbf{a}: \mathbf{b}=c a .80: 20$). Both diastereomers were isolated by HPLC [5C18-ARII column, 254 $\mathrm{nm}, \mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}=86: 14,8 \mathrm{~mL} / \mathrm{min}$; for analytical HPLC: $1 \mathrm{~mL} / \mathrm{min}, t_{1}=48.25 \mathrm{~min}$ (minor isomer), $t_{2}=49.80 \mathrm{~min}$ (major isomer)].

(\pm)-14a
14a: IR (neat): $3456(\mathrm{OH}), 1963(\mathrm{C}=\mathrm{C}=\mathrm{C}), 1374\left(\mathrm{NSO}_{2}\right), 1173\left(\mathrm{NSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 1.07-1.10(\mathrm{~m}, 21 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=6.3,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.52-3.72 (m, 5H), 3.78 (dd, $J=9.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.02 (ddd, $J=9.7,6.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.45 (ddd, J $=13.1,6.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dd}, J=8.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{dd}, J=8.0$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{dd}, J=8.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.8$ (3С), 17.9 (6С), 21.6, 26.5, 42.7, 65.9, 66.8, 89.8, 90.8, 112.9, 114.5, 121.8, 125.1, 125.4, 126.8 (2C), 127.7, 128.7, 129.9 (2C), 134.9, 136.5, 145.1, 204.7; HRMS (FAB) calcd $\mathrm{C}_{31} \mathrm{H}_{41} \mathrm{BrNO}_{4} \mathrm{SSi}:[\mathrm{M}-\mathrm{H}]^{-}, 630.1714$; found: $[\mathrm{M}-\mathrm{H}]^{-}, 630.1707$.

(\pm)-14b
14b: IR (neat): $3441(\mathrm{OH}), 1963(\mathrm{C}=\mathrm{C}=\mathrm{C}), 1375\left(\mathrm{NSO}_{2}\right), 1173\left(\mathrm{NSO}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.02-1.07(\mathrm{~m}, 21 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.38-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.67(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.72(\mathrm{~m}$, 5 H), 3.78 (dd, $J=9.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.06 (ddd, $J=9.7,6.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.44 (ddd, $J=13.2,6.3,2.3$ Hz, 1H), 7.11 (dd, $J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}$, $1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.8$ (3C), 17.9 (6С), 21.6, 26.5, 42.6, 66.0, 66.9, 89.8, 90.9, 112.9, 114.5, 121.8, 125.1, 125.4, 126.8 (2C), 127.7, 128.7, 129.9 (2C), 135.0, 136.5, 145.2, 204.7; HRMS (FAB) calcd $\mathrm{C}_{31} \mathrm{H}_{41} \mathrm{BrNO}_{4} \mathrm{SSi}$: [M H] ${ }^{-}$, 630.1714; found: $[\mathrm{M} \mathrm{-} \mathrm{H}]^{-}, 630.1705$.

Determination of Relative Configuration of 14a: ${ }^{2,3}$

(\pm)-4-Bromo-1-tosyl-3-\{[(2R,5S)-5-(triisopropylsilyloxymethyl)-5,6-dihydro-2H-pyran-2-yl]me thyl\}-1H-indole (S3). To a stirred suspension of AgBF_{4} ($3.1 \mathrm{mg}, 0.016 \mathrm{mmol}$) in toluene (2.5 mL) was added $\mathrm{Ph}_{3} \mathrm{PAuCl}(7.8 \mathrm{mg}, 0.016 \mathrm{mmol})$ at room temperature. After stirring rapidly for 5 min , the resulting mixture was filtered through a cotton plug. To a solution of allenol 14a ($20 \mathrm{mg}, 0.032$ mmol) in toluene (0.25 mL) was added the above filtrate (0.25 mL) at room temperature. The
resulting mixture was stirred for 8.5 h at this temperature. Concentration under pressure gave an oily residue, which was purified by flash chromatography over silica gel with n-hexane-EtOAc (15:1) to give S3 as a colorless oil ($12.5 \mathrm{mg}, 63 \%$ yield): IR (neat): 1598 (C=C), 1375 (NSO_{2}), 1173 $\left(\mathrm{NSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 1.11-1.18(\mathrm{~m}, 21 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.16(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 3.16$ (d, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.56 (dd, $J=11.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.72 (dd, $J=9.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.82 (dd, $J=9.2$, $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ (d, $J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.42(\mathrm{~m}, 1 \mathrm{H}), 5.64(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{dd}, J=$ $10.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.61(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.0$ (3C), 18.1 (6C), 21.6, 32.1, 38.3, 64.4, 73.5, 77.2, 113.0, 114.5, 119.4, 125.2, 126.4, 126.6, 126.9 (2C), 127.9, 129.0, 129.9 (2C), 131.0, 135.0, 136.5, 145.1; HRMS (FAB) calcd $\mathrm{C}_{31} \mathrm{H}_{41} \mathrm{BrNO}_{4} \mathrm{SSi}$: $[\mathrm{M}+\mathrm{H}]^{+}, 630.1714$; found: $[\mathrm{M}+\mathrm{H}]^{+}, 630.1711$.

Selected NOE cross peaks for pyran S3

N-[(2S,aR)-6-(4-Bromo-1-tosyl-1H-indol-3-yl)-2-(triisopropylsilyloxymethyl)hexa-3,4-dienyl]-2 -nitrobenzenesulfonamide (15a) and Its (\pm)-($2 R, \mathbf{a R}$)-Isomer (15b). To a stirred mixture of the allenol 14 (a:b = ca. 80:20) ($300 \mathrm{mg}, 0.48 \mathrm{mmol}$), $\mathrm{NsNH}_{2}(317 \mathrm{mg}, 1.57 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(630 \mathrm{mg}$, 2.40 mmol) in benzene (18 mL) was added diethyl azodicarboxylate (40% solution in toluene; 1.10 $\mathrm{mL}, 2.40 \mathrm{mmol}$) at room temperature, and the mixture was stirred for 1.5 h at this temperature. Concentration under pressure gave an oily residue, which was purified by flash chromatography over silica gel with n-hexane-EtOAc (3:1) to give 15 as a pale yellow amorphous solid (276 mg , 70% yield, a:b = 80:20).

(\pm)-15a
15a (major): IR (neat): $1962(\mathrm{C}=\mathrm{C}=\mathrm{C}), 1540\left(\mathrm{NO}_{2}\right), 1372\left(\mathrm{NSO}_{2}\right), 1172\left(\mathrm{NSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (500
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.99-1.07(\mathrm{~m}, 21 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.42(\mathrm{~m}, 1 \mathrm{H}), 3.05$ (ddd, $J=12.6,6.3,5.1$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.27 (ddd, $J=12.6,6.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.39$ (dd, $J=10.3,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.70(\mathrm{~m}, 2 \mathrm{H})$, 3.61 (dd, $J=10.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.04 (ddd, $J=9.7,6.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.49 (ddd, $J=13.2,6.3,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.67(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{dd}, J=7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{dd}, J=7.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.8$ (3C), 18.0 (6C), 21.6, 26.5, 41.5, 45.2, 65.1, 90.1, 91.8, 112.9, 114.4, 121.7, 125.0, 125.2, 125.5, 126.8 (2C), 127.7, 128.6, 130.0 (2C), 131.0, 132.6, 133.4, 133.8, 134.9, 136.5, 145.3, 148.0, 204.5; HRMS (FAB) calcd $\mathrm{C}_{37} \mathrm{H}_{45} \mathrm{BrN}_{3} \mathrm{O}_{7} \mathrm{~S}_{2} \mathrm{Si}$: $[\mathrm{M}-\mathrm{H}]^{-}$, 814.1657; found: $[\mathrm{M}-\mathrm{H}]^{-}$, 814.1662.

$(\pm)-15 b$
15b (minor): IR (neat): $1963(\mathrm{C}=\mathrm{C}=\mathrm{C}), 1541\left(\mathrm{NO}_{2}\right), 1372\left(\mathrm{NSO}_{2}\right), 1172\left(\mathrm{NSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.99-1.05(\mathrm{~m}, 21 \mathrm{H}), 2.31-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{ddd}, J=12.6,6.3,5.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.30$ (ddd, $J=12.6,6.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.40 (dd, $J=9.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.61 (dd, $J=9.7,4.9$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.61-3.64 (m, 2H), 5.00 (ddd, $J=9.7,6.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.41 (ddd, $J=13.2,6.9,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.65(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{dd}, J=7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{dd}, J=7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.8$ (3C), 18.0 (6C), 21.6, 26.4, 41.6, 45.5, 65.1, 90.0, 91.5, 112.9, 114.5, 121.6, 125.1, 125.2, 125.4, 126.8 (2C), 127.7, 128.7, 130.0 (2C), 131.0, 132.6, 133.3, 133.8, 134.9, 136.5, 145.3, 148.0, 204.8; HRMS (FAB) calcd $\mathrm{C}_{37} \mathrm{H}_{45} \mathrm{BrN}_{3} \mathrm{O}_{7} \mathrm{~S}_{2} \mathrm{Si}$: $[\mathrm{M}-\mathrm{H}]^{-}$, 814.1657; found: $[\mathrm{M}-\mathrm{H}]^{-}$, 814.1655.

(\pm)- N-[(2S, aR)-6-(4-Bromo-1-tosyl-1H-indol-3-yl)-2-(triisopropylsilyloxymethyl)hexa-3,4-dien yl]-4-methylbenzenesulfonamide (16a) and Its (\pm)-($2 R, \mathrm{aR}$)-Isomer (16b). To a stirred mixture of the allenol 14 (a:b = ca. 80:20; $150 \mathrm{mg}, 0.24 \mathrm{mmol}$), FmocNHTs ($308 \mathrm{mg}, 0.78 \mathrm{mmol}$) and PPh_{3} ($312 \mathrm{mg}, 1.19 \mathrm{mmol}$) in THF (4 mL) was added diethyl azodicarboxylate ($0.54 \mathrm{~mL}, 1.19 \mathrm{mmol}$; 40% solution in toluene) at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 3 h at room temperature. Concentration under pressure gave an oily residue, which was dissolved in DMF (7 mL). Piperidine ($94 \mu \mathrm{~L}, 0.95 \mathrm{mmol}$) was added to the mixture at $0^{\circ} \mathrm{C}$. After stirring for 50 min at room temperature, the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with $\mathrm{H}_{2} \mathrm{O}$, brine and dried over MgSO_{4}. The filtrate
was concentrated under reduced pressure to give an oily residue, which was purified by flash chromatography over silica gel with n-hexane-EtOAc (2:1) to give $\mathbf{1 6}$ as a yellow amorphous solid (136 mg, 73\% yield, a:b = ca. 80:20).

(\pm)- $\mathbf{1 6 a}$
16a (major): IR (neat): $1964(\mathrm{C}=\mathrm{C}=\mathrm{C}), 1374\left(\mathrm{NSO}_{2}\right), 1173\left(\mathrm{NSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.98-1.04(\mathrm{~m}, 21 \mathrm{H}), 2.29-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{dd}, J=6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.00(\mathrm{dd}, J=6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=10.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=10.0,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.60-3.64$ (m, 2H), 4.96 (ddd, $J=9.1,6.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 5.14 (t, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.44 (ddd, $J=13.2$, $6.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.7$ (3C), 17.9 (6C), 21.5, 21.6, 26.4, 40.5, 45.9, 66.4, 90.2, 91.6, 112.9, 114.4, 121.6, 125.1, 125.5, 126.8 (2C), 127.1 (2C), 127.7, 128.6, 129.6 (2C), 130.0 (2C), 134.9, 136.5, 137.0, 143.2, 145.2, 204.5; HRMS (FAB) calcd $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{~S}_{2} \mathrm{Si}$: [M - H] ${ }^{-}$, 783.1963; found: [M $-\mathrm{H}]^{-}, 783.1960$.

(\pm)-16b
16b (minor): IR (neat): $1964(\mathrm{C}=\mathrm{C}=\mathrm{C}), 1374\left(\mathrm{NSO}_{2}\right), 1173\left(\mathrm{NSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.94-1.04(\mathrm{~m}, 21 \mathrm{H}), 2.27-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.99$ (ddd, $J=6.3,6.3,1.7 \mathrm{~Hz}$, 1 H), 3.01 (ddd, $J=6.3,6.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.35 (dd, $J=10.0,7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.60 (dd, $J=10.0,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.61-3.65(\mathrm{~m}, 2 \mathrm{H}), 4.94$ (ddd, $J=9.7,6.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.42$ (ddd, $J=$ 13.2, 6.3, $2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.10 (dd, $J=8.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28$ (d, $J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.35$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.41 (s, 1H), 7.71 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.73 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.94 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 11.7$ (3C), 17.9 (6C), 21.5, 21.6, 26.3, 40.5, 46.0, 66.4, 90.2, 91.5, 112.9, 114.4, 121.5, 125.1, 125.4, 126.8 (2C), 127.1 (2C), 127.7, 128.6, 129.6 (2C), 130.0 (2C), 134.9, 136.5, 137.0, 143.2, 145.2, 204.6; HRMS (FAB) calcd $\mathrm{C}_{38} \mathrm{H}_{48} \mathrm{BrN}_{2} \mathrm{O}_{5} \mathrm{~S}_{2} \mathrm{Si}$: [M - H] ${ }^{-}$, 783.1963; found: [M - H] ${ }^{-}$, 783.1968.

(\pm)-(6aR,9S)-7-(2-Nitrophenylsulfonyl)-4-tosyl-9-(triisopropylsilyloxymethyl)-4,6,6a,7,8,9-hexa hydroindolo[4,3-fg]quinoline (17a) and Its (土)-(6aS,9S)-Isomer (17b) (Table 2, Entry 3). To a stirred mixture of allenamide $\mathbf{1 5}(\mathbf{a}: \mathbf{b}=80: 20 ; 30 \mathrm{mg}, 0.037 \mathrm{mmol})$ in DMF $(0.6 \mathrm{~mL})$ were added $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(2.1 \mathrm{mg}, 0.0018 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(15 \mathrm{mg}, 0.11 \mathrm{mmol})$ at room temperature under argon, and the mixture was stirred for 3.5 h at $100{ }^{\circ} \mathrm{C}$. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with $\mathrm{H}_{2} \mathrm{O}$, brine and dried over MgSO_{4}. The filtrate was concentrated under reduced pressure to give a yellow oil which was purified by flash chromatography over silica gel with n-hexane-EtOAc (5:1) to give 17 as a yellow amorphous solid ($22.3 \mathrm{mg}, 83 \%$ yield, $\mathbf{a}: \mathbf{b}=73: 27$). Both diastereomers were isolated by PTLC with hexane-i- $\mathrm{Pr}_{2} \mathrm{O}$ (3:1).
17a (major): IR (neat): $1596(\mathrm{C}=\mathrm{C}), 1544\left(\mathrm{NO}_{2}\right), 1359\left(\mathrm{NSO}_{2}\right), 1178\left(\mathrm{NSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.97-1.04(\mathrm{~m}, 21 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.48(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=13.7,10.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.99 (ddd, $J=14.9,12.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.27 (dd, $J=14.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.55 (dd, $J=9.7,8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.69(\mathrm{dd}, J=9.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=13.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.75-4.80(\mathrm{~m}, 1 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H})$, 7.18-7.21 (m, 2H), 7.23-7.30 (m, 3H), 7.60-7.65 (m, 2H), 7.66-7.71 (m, 1H), 7.78 (d, $J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.79(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.8$ (3C), 17.9 (6C), 21.6, 29.7, 38.2, 43.0, 54.1, 64.9, 112.7, 115.6, 117.3, 120.5, 124.0, 124.3, 125.8, 126.8 (2C), 128.2, 130.0 (2C), 130.2, 131.0, 131.8, 133.4, 133.5, 133.6, 133.8, 135.4, 144.9, 147.9; HRMS (FAB) calcd $\mathrm{C}_{37} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}_{2} \mathrm{Si}$: $[\mathrm{M}-\mathrm{H}]^{-}$, 734.2395; found: $[\mathrm{M}-\mathrm{H}]^{-}$, 734.2392.
17b (minor): IR (neat): 1597 (C=C), $1542\left(\mathrm{NO}_{2}\right), 1359\left(\mathrm{NSO}_{2}\right), 1174\left(\mathrm{NSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.94-1.01(\mathrm{~m}, 21 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.53-2.58(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 2.99$ (ddd, $J=14.3,12.0,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.12$ (dd, $J=14.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.33 (dd, $J=9.7,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=13.7,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.48 (dd, $J=9.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dd}, J=12.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~d}, J$ $=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.28$ (dd, $J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.72(\mathrm{~m}, 3 \mathrm{H}), 7.76$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.78$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14$ (dd, $J=7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.9$ (3C), 18.0 (6C), 21.6, 28.7, 39.5, 40.3, 53.9, 63.9, 112.7, 115.7, 117.2, 120.4, 123.1, 124.3, 125.8, 126.8 (2C), 128.2, 130.0 (2C), 130.6, 131.4, 131.9, 133.3, 133.6, 134.0, 134.1, 135.4, 144.9, 147.8; HRMS (FAB) calcd $\mathrm{C}_{37} \mathrm{H}_{44} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}_{2} \mathrm{Si}$: [M - H] ${ }^{-}$, 734.2395; found: [M - H] ${ }^{-}$, 734.2392.

(\pm)-(6aR,9S)-4,7-Ditosyl-9-(triisopropylsilyloxymethyl)-4,6,6a,7,8,9-hexahydroindolo[4,3-fg]qu inoline (18a) and Its (\pm)-($\mathbf{6 a S}, 95$)-Isomer (18b) (Table 2, Entry 12). To a stirred mixture of allenamide 16 ($\mathbf{a}: \mathbf{b}=c a .80: 20 ; 30 \mathrm{mg}, 0.038 \mathrm{mmol})$ in DMF $(0.6 \mathrm{~mL})$ were added $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(2.2$ $\mathrm{mg}, 0.0019 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(15.8 \mathrm{mg}, 0.11 \mathrm{mmol})$ at room temperature under argon, and the mixture was stirred for 3 h at $120{ }^{\circ} \mathrm{C}$. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with $\mathrm{H}_{2} \mathrm{O}$, brine and dried over MgSO_{4}. The filtrate was concentrated under reduced pressure to give a yellow oil which was purified by flash chromatography over silica gel with n-hexane-EtOAc (6:1) to give 18 as a white amorphous solid ($17.3 \mathrm{mg}, 65 \%$ yield, $\mathbf{a}: \mathbf{b}=87: 13$). Both diastereomers were isolated by PTLC with hexane-i- $\mathrm{Pr}_{2} \mathrm{O}$ (1:1).
18a (major): IR (neat): 1598 (C=C), $1376\left(\mathrm{NSO}_{2}\right), 1178\left(\mathrm{NSO}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.95-1.05(\mathrm{~m}, 21 \mathrm{H}), 2.12-2.19(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.84$ (dd, $J=13.7,10.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.92$ (ddd, $J=14.0,12.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.33 (dd, $J=14.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.46 (dd, $J=9.6,8.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.63 (dd, $J=9.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.11 (dd, $J=13.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.67-4.73 (m, 1H), 6.07 (s, $1 \mathrm{H}), 7.15$ (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.78 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.9$ (3C), 17.9 (6C), 21.5, 21.6, 30.0, 37.3, 42.9, 53.6, 65.0, 112.7, 115.5, 117.7, 120.5, 124.0, 125.7, 126.8 (2C), 126.9 (2C), 128.3, 129.8 (2C), 129.9 (2C), 130.2, 133.3, 133.4, 135.5, 138.0, 143.3, 144.8; HRMS (FAB) calcd $\mathrm{C}_{38} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2} \mathrm{Si}$: $\left[_{M}+\mathrm{H}\right]^{+}, 705.2852$; found: $[\mathrm{M}+\mathrm{H}]^{+}, 705.2850$.
18b (minor): IR (neat): 1598 (C=C), $1377\left(\mathrm{NSO}_{2}\right), 1173\left(\mathrm{NSO}_{2}\right),{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 0.99-1.05$ (m, 21H), 2.35 (s, 3H), 2.40 (s, 3H), 2.49-2.55 (br m, 1H), 2.87 (ddd, $J=14.3,12.0,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.21$ (dd, $J=13.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.30-3.39(\mathrm{~m}, 3 \mathrm{H}), 3.89(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.64$ (dd, $J=$ $11.5,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.29(\mathrm{~m}$, $5 \mathrm{H}), 7.72$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.77 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.78$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.9$ (3C), 18.0 (6C), 21.5, 21.6, 28.4, 39.5, 39.9, 53.7, 64.3, 112.7, 115.6, 117.6, $120.5,123.6,125.8,126.8$ (2C), 127.1 (2C), 128.3, 129.7 (2C), 129.9 (2C), 130.7, 133.3, 134.1, 135.5, 138.1, 143.2, 144.8; HRMS (FAB) calcd $\mathrm{C}_{38} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2} \mathrm{Si}$: $[\mathrm{M}+\mathrm{H}]^{+}$, 705.2852; found: [M + $\mathrm{H}^{+}, 705.2849$.

Determination of Relative Configuration of 18a:

To a stirred mixture of $\mathbf{1 7 a}(25 \mathrm{mg}, 0.034 \mathrm{mmol})$ in DMF (0.2 mL) were added $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(14.3 \mathrm{mg}$ $0.34 \mathrm{mmol})$ and $\mathrm{HSCH}_{2} \mathrm{CO}_{2} \mathrm{H}(11.8 \mu \mathrm{~L}, 0.17 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 1 h at room temperature, the mixture was diluted with EtOAc was washed with saturated NaHCO_{3}, brine and dried over MgSO_{4}. The filtrate was concentrated under reduced pressure to give a crude amine as an oily residue, which was used without further purification. To a stirred solution of this amine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.25 \mathrm{~mL})$ were added $\mathrm{Et}_{3} \mathrm{~N}(14.2 \mu \mathrm{~L}, 0.102 \mathrm{mmol})$ and $\mathrm{TsCl}(9.7 \mathrm{mg}, 0.051 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 2 h at room temperature, the mixture was diluted with EtOAc and washed with $\mathrm{H}_{2} \mathrm{O}$, brine and dried over MgSO_{4}. The filtrate was concentrated under reduced pressure to give an oily residue, which was purified by flash chromatography over silica gel with n-hexane-EtOAc (6:1) to give $\mathbf{1 8 a}$ as a white amorphous solid ($18.1 \mathrm{mg}, 76 \%$ yield).

Determination of Relative Configuration of 18b:

By a procedure identical with that described for synthesis of 18a from 17a, the nosylamide 17b (24 $\mathrm{mg}, 0.033 \mathrm{mmol}$) was converted into $\mathbf{1 8 b}$ as a white amorphous solid ($13.8 \mathrm{mg}, 59 \%$ yield).

(\pm)-(6aR,9S)-7-Methyl-4-tosyl-9-(triisopropylsilyloxymethyl)-4,6,6a,7,8,9-hexahydroindolo[4,3fg]quinoline (S4a) and Its (\pm)-(6aS,9S)-Isomer (S4b). To a stirred mixture of $\mathbf{1 7}$ (a:b = 74:26) ($136 \mathrm{mg}, 0.19 \mathrm{mmol}$) in DMF (1.1 mL) were added $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(78 \mathrm{mg} 1.9 \mathrm{mmol})$ and $\mathrm{HSCH}_{2} \mathrm{CO}_{2} \mathrm{H}$ $(64 \mu \mathrm{~L}, 0.92 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring for 1 h at room temperature, the mixture was diluted with

EtOAc and washed with saturated NaHCO_{3}, brine and dried over MgSO_{4}. The filtrate was concentrated under reduced pressure to give a crude amine as an oily residue, which was used without further purification. To a stirred solution of this amine in DMF (2.0 mL) were added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($41 \mathrm{mg}, 0.30 \mathrm{mmol}$) and $\mathrm{MeI}(15 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After stirring for 5 h at room temperature, the mixture was diluted with EtOAc and washed with saturated NaHCO_{3}, brine and dried over MgSO_{4}. The filtrate was concentrated under reduced pressure to give an oily residue, which was purified by flash chromatography over silica gel with n-hexane-EtOAc (5:1 to 3:1) to give S4a ($53.4 \mathrm{mg}, 52 \%$ yield) and $\mathbf{S 4 b}$ ($16.7 \mathrm{mg}, 16 \%$ yield) both as a brown amorphous solid.
S4a: IR (neat): $1599(\mathrm{C}=\mathrm{C}), 1379\left(\mathrm{NSO}_{2}\right), 1177\left(\mathrm{NSO}_{2}\right),{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.03-1.09$ (m, 21H), 2.33 (s, 3H), 2.46 (s, 3H), 2.48-2.53 (m, 3H), 2.95-3.04 (m, 2H), 3.37 (dd, $J=15.4,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=9.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=9.3,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.16-7.21 (m, 1H), 7.19 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.23-7.29 (m, 2H), 7.72-7.76 (m, 1H), 7.74 (d, $J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 12.0$ (3C), 18.0 (6C), 21.5, 27.2, 39.2, 43.7, 53.0, 62.2, 65.0, 112.2, 116.1, 118.4, 119.7, 123.2, 125.8, 126.7 (2C), 128.6, 129.8 (2C), 129.9, 133.5, 135.0, 135.5, 144.6; HRMS (FAB) calcd $\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}$: $[\mathrm{M}-\mathrm{H}]^{-}$, 563.2769; found: $[\mathrm{M}-\mathrm{H}]^{-}$, 563.2770 .

S4b: IR (neat): $1599(\mathrm{C}=\mathrm{C}), 1379\left(\mathrm{NSO}_{2}\right), 1178\left(\mathrm{NSO}_{2}\right),{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.05-1.09$ (m, 21H), 2.22 (dd, $J=10.7,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.58(\mathrm{~m}, 4 \mathrm{H}), 2.82-2.93(\mathrm{~m}, 1 \mathrm{H})$, 2.98-3.01 (m, 1H), 3.07 (dd, $J=11.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.43 (dd, $J=15.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.65 (dd, $J=9.5$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=9.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.24-7.30 (m, 2H), 7.73-7.77 (m, 1H), $7.76(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 12.0$ (3C), 18.0 (6C), 21.5, 27.0, 39.4, 44.0, 56.8, 62.5, 65.7, 112.2, 116.3, 118.1, 119.7, 123.9, 125.8, 126.7 (2C), 128.5, 129.6, 129.8, 133.5 (2C), 133.8, 135.6, 144.6; HRMS (FAB) calcd $\mathrm{C}_{32} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SSi}:[\mathrm{M}-\mathrm{H}]^{-}, 563.2769$; found: $[\mathrm{M}-\mathrm{H}]^{-}, 563.2770$.

$\mathbf{(} \mathbf{)}$)-Isolysergol (3). To a stirred solution of S4a ($8.3 \mathrm{mg}, 0.015 \mathrm{mmol}$) in THF (0.33 mL) was added TBAF (1.00 M solution in THF; $18 \mu \mathrm{~L}, 0.018 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at room temperature and quenched with $\mathrm{H}_{2} \mathrm{O}$. The whole was extracted with EtOAc. The extract was washed with $\mathrm{H}_{2} \mathrm{O}$, brine and dried over MgSO_{4}. The filtrate was concentrated under reduced pressure to give a crude alcohol as a brown amorphous solid, which was used without further purification. To a stirred solution of this alcohol in $\mathrm{MeOH}(0.45 \mathrm{~mL})$ was added $\mathrm{Mg}(3.6 \mathrm{mg}, 0.15$ mmol) at room temperature. The mixture was stirred for 2 h at this temperature. Concentration
under pressure gave an oily residue, which was purified by PTLC with EtOAc-MeOH (3:1) to give isolysergol 3 as a pale brown solid (3.8 mg , 99% yield): IR (neat): 3213 (OH), 1604 (C=C), The IR spectra was found to be identical with that of natural isolysergol. ${ }^{4}{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}\right) \delta 2.44-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}), 2.65(\mathrm{ddd}, J=14.3,11.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.85$ (ddd, $J=11.5,4.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=14.3,5.7 \mathrm{~Hz}$, 1 H), 3.80 (ddd, $J=10.3,3.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.96 (dd, $J=10.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.89(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.22(\mathrm{~m}, 1 \mathrm{H})$; The ${ }^{1} \mathrm{H}$ NMR spectra was found to be identical with that of synthesized isolysergol reported by Ninomiya and Naito. ${ }^{5}{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}\right) \delta 27.3,36.3,43.3,57.4,63.0,66.0,109.5,109.9,111.7,118.2,121.0,122.9$, 126.0, 128.0, 133.8, 136.7; HRMS (FAB) calcd $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}$: [M - H] ${ }^{-}$, 253.1346; found: [M - H] ${ }^{-}$, 253.1352.

$\mathbf{~} \pm$)-Lysergol (2). To a stirred solution of $\mathbf{S 4 b}(16.7 \mathrm{mg}, 0.030 \mathrm{mmol})$ in THF $(0.7 \mathrm{~mL})$ was added TBAF (1.00 M solution in THF; $39 \mu \mathrm{~L}, 0.039 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 1.5 h at room temperature and quenched with $\mathrm{H}_{2} \mathrm{O}$. The whole was extracted with EtOAc. The extract was washed with $\mathrm{H}_{2} \mathrm{O}$, brine and dried over MgSO_{4}. The filtrate was concentrated under reduced pressure to give a crude alcohol as a brown amorphous solid, which was used without further purification. To a stirred solution of this alcohol in $\mathrm{MeOH}(0.85 \mathrm{~mL})$ was added $\mathrm{Mg}(7.3 \mathrm{mg}, 0.30$ mmol) at room temperature. The mixture was stirred for 3 h at this temperature. Concentration under pressure gave an oily residue, which was purified by PTLC with EtOAc $-\mathrm{MeOH}(2: 1)$ to give lysergol 2 as a pale brown solid ($7.0 \mathrm{mg}, 92 \%$ yield): IR (neat): $3427(\mathrm{OH}), 1606(\mathrm{C}=\mathrm{C}),{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}$) $\delta 2.36$ (dd, $J=10.9,10.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.61 (s, 3H), 2.74 (ddd, $J=13.7$, $12.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.85-2.93 (m, 1H), 3.17 (dd, $J=10.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.23-3.30 (m, 1H), 3.51-3.59 (m, 2H), 3.70 (dd, $J=10.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 7.13-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.25(\mathrm{~m}$, 1 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}-\mathrm{CD}_{3} \mathrm{OD}$) $\delta 26.3,38.1,43.2,56.5,63.1,64.6,109.5$ (2C), 111.6, 118.4, 121.0, 122.8, 125.8, 127.6, 133.9, 135.0; The IR, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were found to be identical with those of natural lysergol. HRMS (FAB) calcd $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}$: $[\mathrm{M}-\mathrm{H}]^{-}, 253.1346$; found: $[\mathrm{M}-\mathrm{H}]^{-}, 253.1349$.

Methyl (\pm)-(6aR,9S)-4,7-ditosyl-4,6,6a,7,8,9-hexahydroindolo[4,3-fg]quinoline-9-carboxylate (19a). To a stirred solution of $\mathbf{1 7}(\mathbf{a}: \mathbf{b}=74: 26)(190 \mathrm{mg}, 0.27 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ was added TBAF (1.00 M solution in THF; $0.32 \mathrm{~mL}, 0.32 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 40 min at room temperature and quenched with $\mathrm{H}_{2} \mathrm{O}$. The whole was extracted with EtOAc. The extract was washed with $\mathrm{H}_{2} \mathrm{O}$, brine and dried over MgSO_{4}. Concentration of the filtrate under reduced pressure followed by filtration through a short pad of SiO_{2} with EtOAc give a crude alcohol. To a stirred solution of this alcohol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added Dess-Martin periodinane (230 mg , 0.54 mmol) at $0^{\circ} \mathrm{C}$. After stirring for 30 min at this temperature, the mixture was warming to room temperature. The mixture was stirred for further 1 h at this temperature and filtrated through a short pad of SiO_{2} with EtOAc to give a crude aldehyde. To a stirred mixture of the crude aldehyde and 2-methylbut-2-ene ($1.66 \mathrm{~mL}, 16.2 \mathrm{mmol}$) in a mixed solvent of THF (2.9 mL) and t - BuOH (2.9 mL) were added $\mathrm{NaClO}_{2}(117 \mathrm{mg}, 1.30 \mathrm{mmol})$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4}(155 \mathrm{mg}, 1.30 \mathrm{mmol})$ at room temperature. After stirring for 1.5 h at room temperature, brine was added to the mixture. The whole was extracted with EtOAc. The extract was washed with brine and dried over MgSO_{4}. The filtrate was concentrated under reduced pressure to give a crude carboxylic acid. To a stirred solution of this acid in a mixed solvent of toluene $(1.7 \mathrm{~mL})$ and $\mathrm{MeOH}(1.2 \mathrm{~mL})$ was added $\mathrm{TMSCHN}_{2}(2.00$ M solution in $\left.\mathrm{Et}_{2} \mathrm{O} ; 0.35 \mathrm{~mL}, 0.70 \mathrm{mmol}\right)$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 30 min at room temperature. Concentration under pressure gave an oily residue, which was purified by flash chromatography over silica gel with n-hexane-EtOAc (4:1) to give 19a as a pale yellow amorphous solid ($96.4 \mathrm{mg}, 62 \%$ yield): IR (neat): $1736(\mathrm{C}=\mathrm{O}), 1597(\mathrm{C}=\mathrm{C}), 1347\left(\mathrm{NSO}_{2}\right), 1177\left(\mathrm{NSO}_{2}\right),{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.92$ (ddd, $J=14.9,12.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.03-3.08$ (m, 1H), 3.19 (dd, $J=14.3,10.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.27 (dd, $J=14.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.70 ($\mathrm{s}, 3 \mathrm{H}$), 4.26 (dd, $J=14.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.75$ (m, 1H), 6.37 (s, 1H), 7.18-7.30 (m, 7H), 7.69 (d, J = 8.0 $\mathrm{Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.5$, $21.6,29.4,40.2,40.8,52.3,53.0,113.1,115.9,117.2,120.4,120.7,125.8,126.7$ (4C), 128.3, 129.6, 129.9 (2C), 130.0 (2C), 133.4, 134.1, 135.4, 137.8, 143.7, 144.9, 171.2; HRMS (FAB) calcd for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}:[\mathrm{M}+\mathrm{H}]^{+}$, 577.1467; found: $[\mathrm{M}+\mathrm{H}]^{+}, 577.1471$.

Determination of Relative Configuration of 19a:

To a stirred solution of 19a ($5.0 \mathrm{mg}, 0.0086 \mathrm{mmol}$) in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(1.63 \mathrm{mg}$, 0.043 mmol) at room temperature. ${ }^{6}$ After stirring for 1 h at this temperature, $\mathrm{H}_{2} \mathrm{O}$ was added, and the mixture was concentrated under reduced pressure. The residue was dissolved in EtOAc and washed with brine and dried over MgSO_{4}. The filtrate was concentrated under reduced pressure to give a crude alcohol, which was used without further purification. To a stirred solution of this alcohol in DMF (0.2 mL) were added imidazole ($16.6 \mathrm{mg}, 0.24 \mathrm{mmol}$) and TIPSCl ($0.026 \mathrm{~mL}, 0.12$ mmol) at $0^{\circ} \mathrm{C}$. After stirring overnight at room temperature, the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with $\mathrm{H}_{2} \mathrm{O}$, brine and dried over MgSO_{4}. The filtrate was concentrated under reduced pressure to give an oily residue, which was purified by PTLC with n-hexane-EtOAc (3:1) to give 18a as a white amorphous solid ($4.1 \mathrm{mg}, 68 \%$ yield).

(\pm)-Methyl Isolysergate (20a) and (\pm)-Methyl Lysergate (20b). To a stirred solution of 19a (30 $\mathrm{mg}, 0.052 \mathrm{mmol}$) in THF (1.6 mL) was added sodium naphthalenide (0.67 M solution in THF; $0.78 \mathrm{~mL}, 0.52 \mathrm{mmol})^{7}$ at $-78{ }^{\circ} \mathrm{C}$ under argon. The mixture was stirred for 10 min at this temperature and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was made basic with saturated NaHCO_{3}. The whole was extracted with EtOAc. The extract was washed with brine and dried over MgSO_{4}. Concentration of the filtrate under reduced pressure gave a crude amine which was used without further purification. To a stirred solution of this amine in $\mathrm{MeOH}(3.0 \mathrm{~mL})$ were added formalin ($0.02 \mathrm{~mL}, 0.26 \mathrm{mmol}$), $\mathrm{NaBH}_{3} \mathrm{CN}(16.3 \mathrm{mg}, 0.26 \mathrm{mmol})$ and $\mathrm{AcOH}(55 \mu \mathrm{~L})$ at room temperature. After stirring for 1.5 h at this temperature, the mixture was quenched with saturated NaHCO_{3}. The mixture was concentrated under pressure followed by filtration through a short pad of SiO_{2} with EtOAc . The filtrate was concentrated under reduced pressure to give a yellow solid, which was purified by flash chromatography over silica gel with n-hexane-EtOAc (1:10) to give 20a and 20b as a yellow solid ($9.0 \mathrm{mg}, 61 \%$ yield, $\mathbf{a}: \mathbf{b}=35: 65$). ${ }^{1} \mathrm{H}$ NMR spectra of 20a and 20b were in agreement with those reported by Hendrickson ${ }^{8}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of methyl
lysergate 20b (major isomer): $\delta 2.63$ (s, 3H), 2.68-2.73 (m, 2H), 3.20-3.27 (m, 1H), 3.30 (dd, $J=$ 11.6, $4.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.53 (dd, $J=14.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.73-3.76$ (m, 1H), 3.79 (s, 3H), 6.60 (s, 1H), $6.92(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$; methyl isolysergate 20a (minor isomer): $\delta 2.59(\mathrm{~s}, 3 \mathrm{H}), 2.75-2.81(\mathrm{~m}, 2 \mathrm{H}), 3.20-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=11.6,3.0 \mathrm{~Hz}$, 1 H), 3.44 (dd, $J=14.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 6.56(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.16-7.25 (m, 3H), 7.92 (br s, 1H); IR (neat): 3410 (NH), 1731 (C=O), 1604 (C=C); HRMS (FAB) calcd $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}$: $[\mathrm{M}-\mathrm{H}]^{-}$, 281.1296; found: [$\left.\mathrm{M}-\mathrm{H}\right]^{-}$, 281.1304.

$\mathbf{(} \pm$)-Lysergic Acid (1). The preparation of lysergic acid (1) was carried out according to the method of Hendrickson ${ }^{8}$ and Szántay ${ }^{9}$: To solution of diastereomixture of methyl lysergate and isolysergate ($20.6 \mathrm{mg}, 0.073 \mathrm{mmol}$ 20a:b $=35: 65$) in EtOH (0.68 mL) was added $1 \mathrm{~N} \mathrm{NaOH}(0.68 \mathrm{~mL})$. The reaction mixture was stirred at $35^{\circ} \mathrm{C}$ for 2 h .0 .1 N HCl solution was used to carefully adjust the pH to 6.2 and stirred for further 2 h at $0^{\circ} \mathrm{C}$ while a solid material was formed. The precipitate was filtered off and washed with cold water and acetone to give $\mathbf{1}$ as a pale brown solid ($10.6 \mathrm{mg}, 54 \%$ yield). The IR, ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were in agreement with those reported by Hendrickson ${ }^{8}$ and Szántay ${ }^{9}$: IR (neat): $3240(\mathrm{OH}), 1589(\mathrm{C}=\mathrm{O}),{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) δ $2.53(\mathrm{~s}, 3 \mathrm{H}), 2.88-2.96(\mathrm{~m}, 2 \mathrm{H}), 3.27-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=11.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=$ $14.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-4.08(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 11.68(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 2.47(\mathrm{~s}, 3 \mathrm{H})$, 2.48-2.51 (m, 2H), 2.96-3.02 (m, 1H), $3.13(\mathrm{dd}, J=11.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=14.6,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.47-3.52(\mathrm{~m}, 1 \mathrm{H}), 6.47$ (br s, 1 H), $7.01-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 10.70$ (br s, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) $\delta 27.8,43.2,43.9,56.0,63.7,110.4,110.5,112.2,119.8,120.1$, 127.3, 128.8, 135.8, 136.7, 175.0 (one of the sp^{2} carbons was overlapped with $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$ solvent peaks); ${ }^{13} \mathrm{C}$ NMR [125 MHz, $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$] $\delta 26.6,41.7,43.2,54.6,62.5,108.8,109.9,111.0,118.7$, 119.3, 122.3, 125.9, 127.3, 133.8, 135.4, 173.4; HRMS (FAB) calcd $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}$: $[\mathrm{M}-\mathrm{H}]^{-}$, 269.1290; found: [M - H] ${ }^{-}$, 269.1289.

Reference:

(1) Lauchli, R.; Shea, K. J. Org. Lett. 2006, 8, 5287-5289.
(2) Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 15978-15979.
(3) Gockel, B.; Krause, N. Org. Lett. 2006, 8, 4485-4488.
(4) Agurell, S. Acta Pharm. Suecica 1966, 3, 7-10.
(5) Ninomiya, I.; Hashimoto, C.; Kiguchi, T.; Naito, T.; Barton, D. H. R.; Lusinchi, X.; Milliet, P. J. Chem. Soc., Perkin Trans. 1 1990, 707-713.
(6) Ballabio, M.; Sbraletta, P.; Mantegani, S.; Brambilla, E. Tetrahedron 1992, 48, 4555-4566.
(7) Hong, S.; Yang, J.; Weinreb, S. M. J. Org. Chem. 2006, 71, 2078-2089.
(8) Hendrickson, J. B.; Wang, J. Org. Lett. 2004, 6, 3-5.
(9) Moldvai, I.; Temesvári-Major, E.; Incze, M.; Szentirmay, É.; Gács-Baitz, E.; Szántay, C. J. Org. Chem. 2004, 69, 5993-6000.

single_pulse

19 ${ }^{\circ}$ IZ
$02 \cdot \mathrm{y}$ \qquad -

69 92
$\begin{array}{r}69.92 \\ 00.2 L \\ \hline 18.2 L\end{array}$
92
18.22

\qquad
$\varepsilon \square^{*} \measuredangle \varepsilon$ \qquad

9I ${ }^{\circ}$ IG \qquad
$966^{\circ} 0 L$
$7 L^{\circ} 9 L$
$78^{\circ} 9 L$
$00^{\circ} \mathrm{LL}$
$92^{\circ} \mathrm{LL}$
$99^{\circ} 6 L$

60 *66 \qquad

72.

$9 E^{\circ} 9$

LE'GDI
single pulse decoupled gated NOE
-
$76{ }^{\circ} 6 \mathrm{I}$
$0 L^{\circ} \mathrm{L9I}$

6206

- 10 -ma jor-b-1. als

DFILE	1016D10-major-b-1. al
COMNT	single_pulse
DATIM	$09-12-2007$ 21:05:27
OBNUC	1H
EXMOD	single_pulse. ex2
OBFRQ	500.16 MHz
OBSET	2.41 KHz
OBFIN	6.01 Hz
POINT	13107 H
FREQU	7507.39 Hz
SCANS	8 sec
ACQTM	1.7459 sec
PD	5.0000 sec
PW1	6.05 usec
IRNUC	1 H
CTEMP	
SLVNT	CDCL3
EXREF	25.8 c
BF	
RGAIN	0.00 ppm
	0.12 Hz
	36

$$
30 N \text { pope8 po[dnooop os[nd o[8u!s }
$$

$$
\begin{aligned}
& 98^{\circ} \text { ZII } \\
& \begin{array}{ll}
80^{\circ} 71 \\
L L^{\circ} & 121
\end{array} \\
& \begin{array}{l}
\text { LL'IZ } \\
\text { \&I' } 9 \%
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Z1 } \\
68^{\circ} 96 I
\end{array} \\
& \text { IL. LZ } \\
& \begin{array}{l}
\text { IL ' } 271 \\
69{ }^{\circ} 821
\end{array} \\
& \begin{array}{l}
69 \\
66^{\circ} 671
\end{array} \\
& \text { \&6. } \% 8 \\
& \begin{array}{l}
86 \\
09 \\
\hline 68
\end{array} \\
& \text { 09 '981 }
\end{aligned}
$$

0

पह EZ

で・ S\＆＇τ $6 \varepsilon^{*}$ Z		
$\begin{aligned} & 50^{\circ} \varepsilon \\ & 90^{\circ} \varepsilon \end{aligned}$	$\begin{array}{l\|l} 96.0 & - \\ \hline- & \square \end{array}$	
$\begin{aligned} & 9 z \cdot \varepsilon \\ & \llcorner Z \cdot \varepsilon \end{aligned} \sim$		E．
$\begin{aligned} & 8 \varepsilon \cdot \varepsilon \\ & 6 \varepsilon \cdot \varepsilon \end{aligned}=$		$E_{\dot{m}}$
$\begin{aligned} & 09^{\circ} \varepsilon \\ & \tau 9^{\circ} \varepsilon \\ & \tau 9^{\circ} \varepsilon \\ & 29^{\circ} \varepsilon \\ & \varepsilon 9^{\circ} \cdot \end{aligned}$		E° E° $E_{\dot{m}}$
$\begin{aligned} & 60^{\circ} \mathrm{s} \\ & 60^{\circ} \mathrm{s} \\ & 50^{\circ} \mathrm{s} \end{aligned}$		E i
$\begin{aligned} & 8 b^{\circ} \cdot \mathrm{s} \\ & 0 S^{\circ} \end{aligned}$		$E_{i n}$
$\begin{aligned} & 99 \cdot \mathrm{~S} \\ & \mathrm{L9} \cdot \mathrm{~S} \\ & 89 \cdot \mathrm{~s} \end{aligned}$	$\angle 0^{\circ} \tau$	E_{i}
$\begin{aligned} & 0 \tau \cdot L \\ & 2 T \cdot L 工 \end{aligned}$	$-\frac{\varepsilon 0^{\circ} \tau}{-\square}$	$E \stackrel{O}{E} \stackrel{-}{2}$
$62 . L$	$09 \div 1$	E
$\varepsilon \varepsilon \cdot L$	$\xrightarrow{-60^{\circ} \tau}$	E ${ }^{\text {N／}}$
$8 \varepsilon^{\circ} L$	$\varepsilon \sigma \div$	틀
$\begin{aligned} & \angle 9^{\circ} \mathrm{L} \\ & 89^{\circ} \mathrm{L} \end{aligned}$	$\frac{\text { S9. } \mathrm{T} \square}{-\square}$	$E^{\underline{E}}{ }^{\text {cis }}$
TL．L	$20^{\circ} \%$	E in
$8 L^{\circ} \mathrm{L} \sim$	$88 \pm=$	$E^{\dot{\infty}}$
$56^{\circ} \mathrm{L}$	$\varepsilon I \cdot \tau \mid \square$	E^{N}
$\begin{aligned} & 60 \cdot 8 \\ & 0 \tau \cdot 8 \end{aligned}$		$E_{-\infty}$

$\begin{array}{lc}\text { DFILE } & \text { 1016D19minor-a-1. als } \\ \text { COMNT } & \text { single_pulse } \\ \text { DATIM } & \text { 14-12-2007 } 20: 54: 54 \\ \text { OBNUC } & \text { 1H } \\ \text { EXMOD } & \text { single_pulse. ex2 } \\ \text { OBFRQ } & 500.16 \mathrm{MHz} \\ \text { OBSET } & 2.41 \mathrm{KHz} \\ \text { OBFIN } & 6.01 \mathrm{~Hz} \\ \text { POINT } & 13107 \\ \text { FREQU } & 7507.39 \mathrm{~Hz} \\ \text { SCANS } & 8 \\ \text { ACQTM } & 1.7459 \mathrm{sec} \\ \text { PD } & 5.0000 \mathrm{sec} \\ \text { PW1 } & 6.05 \mathrm{usec} \\ \text { IRNUC } & 1 \mathrm{H} \\ \text { CTEMP } & \\ \text { SLVNT } & \text { CDCL3 } \\ \text { EXREF } & \\ \text { BF } & 0.6 \mathrm{c} \\ \text { RGAIN } & 0.12 \mathrm{ppm} \\ \text { R } & 42\end{array}$

1016D181 BCM512-1.als

-

- 2 - als

98 ${ }^{\text {I I }}$
86 21
09^{\prime} Iz
99^{\prime} Iz
I0 0 \％
\＆${ }^{\circ} 2 \varepsilon^{\prime}$
も6 27

	$89^{\circ} \mathrm{ZII} 7$
	IG ${ }^{\text {c }}$ II
	$99^{\circ} \mathrm{LII}$
	91＊0ZI
	00 ＇も ${ }^{\text {a }}$
	89 ＇GZI
	8L＇9ZI
	$98{ }^{\circ} 9 \mathrm{ZI}$
	$63^{\circ} 82 \mathrm{I}$
	8L＇6ZI
	I6 6ZI
	91 ${ }^{\circ} 08 \mathrm{I}$
	I ${ }^{\circ}$ ¢ $¢ 1$
	97 ＇gEI
	七0 881
	$66^{\circ} \mathrm{EbI}$
	¢8 ${ }^{\text {a }}$ 矿

B
0
 ※ －

1016C159e 080626 550-100-1.
single_pulse
26-06-2008 $22: 13: 14$
1H
single_pulse. ex2
500.16 MHz
2.41 KHz
6.01 Hz
13107
7507.39 Hz
8
1.7459 sec
5.0000 sec
6.05 usec
1H
21.5 c
CDCL3

0.00 ppm
0.12 Hz
50

single pulse decoupled gate ingle pulse decoup1
$55-06-2008 \quad 09: 09: 10$
3 C

1016D139-1 080318-1. als
single pulse

016D139-1 BCM 080318-1. als ingle pulse decoupled gate

$6 L^{\circ} \mathrm{Lz}$ \qquad

